1
|
Kluge K, Lotz V, Einspieler H, Haberl D, Spielvogel C, Amereller D, Kramer G, Grubmüller B, Shariat S, Haug A, Hacker M, Kenner L, Egger G. Imaging and outcome correlates of ctDNA methylation markers in prostate cancer: a comparative, cross-sectional [⁶⁸Ga]Ga-PSMA-11 PET/CT study. Clin Epigenetics 2025; 17:36. [PMID: 40001235 PMCID: PMC11863674 DOI: 10.1186/s13148-025-01811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/02/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND To validate the clinical utility of a previously identified circulating tumor DNA methylation marker (meth-ctDNA) panel for disease detection and survival outcomes, meth-ctDNA markers were compared to PSA levels and PSMA PET/CT findings in men with different stages of prostate cancer (PCa). METHODS 122 PCa patients who underwent [⁶⁸Ga]Ga-PSMA-11 PET/CT and plasma sampling (03/2019-08/2021) were analyzed. cfDNA was extracted, and a panel of 8 individual meth-ctDNA markers was queried. PET scans were qualitatively and quantitatively assessed. PSA and meth-ctDNA markers were compared to PET findings, and their relative prognostic value was evaluated. RESULTS PSA discriminated best between negative and tumor-indicative PET scans in all (AUC 0.77) and hormone-sensitive (hsPC) patients (0.737). In castration-resistant PCa (CRPC), the meth-ctDNA marker KLF8 performed best (AUC 0.824). CHST11 differentiated best between non- and metastatic scans (AUC 0.705) overall, KLF8 best in hsPC and CRPC (AUC 0.662, 0.85). Several meth-ctDNA markers correlated low to moderate with the tumor volume in all (5/8) and CRPC patients (6/8), while PSA levels correlated moderately to strongly with the tumor volume in all groups (all p < 0.001). CRPC overall survival was independently associated with LDAH and PSA (p = 0.0168, p < 0.001). CONCLUSION The studied meth-ctDNA markers are promising for the minimally-invasive detection and prognostication of CRPC but do not allow for clinical characterization of hsPC. Prospective studies are warranted for their use in therapy response and outcome prediction in CRPC and potential incremental value for PCa monitoring in PSA-low settings.
Collapse
Affiliation(s)
- Kilian Kluge
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDLAM), Medical University of Vienna, Vienna, Austria
| | - Vincent Lotz
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Holger Einspieler
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - David Haberl
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDLAM), Medical University of Vienna, Vienna, Austria
| | - Clemens Spielvogel
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dominik Amereller
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gero Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Bernhard Grubmüller
- Department of Urology and Andrology, University Hospital Krems, Krems, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Shahrokh Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Urology, Department of Special Surgery, The University of Jordan, Amman, Jordan
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Urology, Weill Cornell Medical College, New York, NY, USA
| | - Alexander Haug
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics (CDLAM), Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Lukas Kenner
- Christian Doppler Laboratory for Applied Metabolomics (CDLAM), Medical University of Vienna, Vienna, Austria
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Habeshian TS, Cannavale KL, Slezak JM, Shu YH, Chien GW, Chen X, Shi F, Siegmund KD, Van Den Eeden SK, Huang J, Chao CR. DNA methylation markers for risk of metastasis in a cohort of men with localized prostate cancer. Epigenetics 2024; 19:2308920. [PMID: 38525786 DOI: 10.1080/15592294.2024.2308920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/14/2024] [Indexed: 03/26/2024] Open
Abstract
Accurately identifying life-threatening prostate cancer (PCa) at time of diagnosis remains an unsolved problem. We evaluated whether DNA methylation status of selected candidate genes can predict the risk of metastasis beyond clinical risk factors in men with untreated PCa. A nested case-control study was conducted among men diagnosed with localized PCa at Kaiser Permanente California between 01/01/1997-12/31/2006 who did not receive curative treatments. Cases were those who developed metastasis within 10 years from diagnosis. Controls were selected using density sampling. Ninety-eight candidate genes were selected from functional categories of cell cycle control, metastasis/tumour suppressors, cell signalling, cell adhesion/motility/invasion, angiogenesis, and immune function, and 41 from pluripotency genes. Cancer DNA from diagnostic biopsy blocks were extracted and analysed. Associations of methylation status were assessed using CpG site level and principal components-based analysis in conditional logistic regressions. In 215 cases and 404 controls, 27 candidate genes were found to be statistically significant in at least one of the two analytical approaches. The agreement between the methods was 25.9% (7 candidate genes, including 2 pluripotency markers). The DNA methylation status of several candidate genes was significantly associated with risk of metastasis in untreated localized PCa patients. These findings may inform future risk prediction models for PCa metastasis beyond clinical characteristics.
Collapse
Affiliation(s)
- Talar S Habeshian
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kimberly L Cannavale
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jeff M Slezak
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Yu-Hsiang Shu
- Biostatistics and Innovations, Biostatistics and Programming, Clinical Affairs, Inari Medical, CA, USA
| | - Gary W Chien
- Department of Urology, Los Angeles Medical Center, Kaiser Permanente Southern California, Los Angeles, CA, USA
| | - XuFeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Feng Shi
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Kimberly D Siegmund
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Chun R Chao
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J Tyson School of Medicine, Pasadena, CA, USA
| |
Collapse
|
3
|
Bozkurt AS, Yılmaz ŞG, Kaplan DS, Bal R. The regenerative effect of exosomes isolated from mouse embryonic fibroblasts in mice created as a sciatic nerve crush injury model. Mol Biol Rep 2024; 51:1046. [PMID: 39388029 DOI: 10.1007/s11033-024-09962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Exosomes (Exos) are candidates for functional recovery and regeneration following sciatic nerve crushed (SNC) injury due to their composition which can accelerate tissue regeneration. Therefore, mouse embryonic fibroblast-derived exosomes were evaluated for their regenerative capacity in SNC injury. METHODS AND RESULTS In the study, 40 Balb/c males (20 ± 5 g) and two pregnant mice (for embryonic fibroblast tissue) were used and crushed injury was induced in the left sciatic nerve with an aneurysm clamp. Sciatic nerve model mice were randomly divided into 5 groups (n = 8; control, n = 8; sham, n = 8; SNC, n = 8; Mouse embryonic fibroblast exosome (mExo), n = 8; SNC + Mouse embryonic fibroblast exosome (SNC + mExo). Rotarod tests for motor functions and hot plate and von Frey tests for sensory functions were analyzed in the groups. Expression changes of exosome genes (RARRES1, NAGS, HOXA13, and MEIS1) immunohistochemical analysis of these gene proteins, and structural exosome NF-200 and S100 proteins were evaluated by confocal microscopy. Behavioral analyses showed that the damage in SNC was significant between groups on day14 and day28 (P < 0.05). In behavioral analyses, it was determined that motor functions and mechanical sensitivity lost in SNC were regained after mExo treatment. While expression of all genes was detected in MEF-derived exosomes, the high expression was MESI1 and the low expression was HOXA13. NF200, an indicator of axon number and neurofilament density, was found to decrease in SNC (P < 0.001) and increase after treatment, but not significantly. The decreased S100 protein levels in SNC and the increase detected after treatment were not significant. CONCLUSION The expression of four mRNAs in mExos indicates that these genes may have an effect on regenerative processes after SNC injury. The regenerative process supported by tissue protein expressions demonstrates the therapeutic potential of mExo treatment.
Collapse
Affiliation(s)
- Ahmet Sarper Bozkurt
- Physiology Department, Medicine Faculty, Gaziantep University, Gaziantep, Turkey.
| | - Şenay Görücü Yılmaz
- Nutrition and Dietetics Department, Health Science Faculty, Gaziantep University, Gaziantep, Turkey
| | - Davut Sinan Kaplan
- Physiology Department, Medicine Faculty, Gaziantep University, Gaziantep, Turkey
| | - Ramazan Bal
- Physiology Department, Medicine Faculty, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
4
|
Zakari S, Niels NK, Olagunju GV, Nnaji PC, Ogunniyi O, Tebamifor M, Israel EN, Atawodi SE, Ogunlana OO. Emerging biomarkers for non-invasive diagnosis and treatment of cancer: a systematic review. Front Oncol 2024; 14:1405267. [PMID: 39132504 PMCID: PMC11313249 DOI: 10.3389/fonc.2024.1405267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/05/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a global health challenge, necessitating continuous advancements in diagnostic and treatment strategies. This review focuses on the utility of non-invasive biomarkers in cancer diagnosis and treatment, their role in early detection, disease monitoring, and personalized therapeutic interventions. Through a systematic review of the literature, we identified 45 relevant studies that highlight the potential of these biomarkers across various cancer types, such as breast, prostate, lung, and colorectal cancers. The non-invasive biomarkers discussed include liquid biopsies, epigenetic markers, non-coding RNAs, exosomal cargo, and metabolites. Notably, liquid biopsies, particularly those based on circulating tumour DNA (ctDNA), have emerged as the most promising method for early, non-invasive cancer detection due to their ability to provide comprehensive genetic and epigenetic information from easily accessible blood samples. This review demonstrates how non-invasive biomarkers can facilitate early cancer detection, accurate subtyping, and tailored treatment strategies, thereby improving patient outcomes. It underscores the transformative potential of non-invasive biomarkers in oncology, highlighting their application for enhancing early detection, survival rates, and treatment precision in cancer care. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023474749 PROSPERO, identifier CRD42023474749.
Collapse
Affiliation(s)
- Suleiman Zakari
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, College of Medicine, Federal University of Health Sciences Otukpo, Otukpo, Benue State, Nigeria
| | - Nguedia K. Niels
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
- Biotechnology Centre, University of Yaounde I, Yaounde, Cameroon
| | - Grace V. Olagunju
- Department of Molecular Biology, New Mexico State University, Las Cruces, NM, United States
| | - Precious C. Nnaji
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwabusayo Ogunniyi
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
| | - Mercy Tebamifor
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Emmanuel N. Israel
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| | - Sunday E. Atawodi
- Department of Biochemistry, Federal University Lokoja, Lokoja, Kogi State, Nigeria
| | - Olubanke Olujoke Ogunlana
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria
- Covenant Applied Informatics and Communication - Africa Centre of Excellence (CApIC-ACE), Covenant University, Ota, Ogun State, Nigeria
| |
Collapse
|
5
|
Chao CR, Slezak J, Siegmund K, Cannavale K, Shu Y, Chien GW, Chen X, Shi F, Song N, Van Den Eeden SK, Huang J. Genome-wide methylation profiling of diagnostic tumor specimens identified DNA methylation markers associated with metastasis among men with untreated localized prostate cancer. Cancer Med 2023; 12:18837-18849. [PMID: 37694549 PMCID: PMC10557825 DOI: 10.1002/cam4.6507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND We used a genome-wide discovery approach to identify methylation markers associated with metastasis in men with localized prostate cancer (PCa), as better identification of those at high risk of metastasis can inform treatment decision-making. METHODS We identified men with localized PCa at Kaiser Permanente California (January 1, 1997-December 31, 2006) who did not receive curative treatment and followed them for 10 years to determine metastasis status. Cases were chart review-confirmed metastasis, and controls were matched using density sampling. We extracted DNA from the cancerous areas in the archived diagnostic tissue blocks. We used Illumina's Infinium MethylationEPIC BeadChip for methylation interrogation. We used conditional logistic regression and Bonferroni's correction to identify methylation markers associated with metastasis. In a separate validation cohort (2007), we evaluated the added predictive utility of the methylation score beyond clinical risk score. RESULTS Among 215 cases and 404 controls, 31 CpG sites were significantly associated with metastasis status. Adding the methylation score to the clinical risk score did not meaningfully improve the c-statistic (0.80-0.81) in the validation cohort, though the score itself was statistically significant (p < 0.01). In the validation cohort, both clinical risk score alone and methylation marker score alone are well calibrated for predicted 10-year metastasis risks. Adding the methylation score to the clinical risk score only marginally improved predictive risk calibration. CONCLUSION Our findings do not support the use of these markers to improve clinical risk prediction. The methylation markers identified may inform novel hypothesis in the roles of these genetic regions in metastasis development.
Collapse
Affiliation(s)
- Chun R. Chao
- Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaCaliforniaUSA
- Department of Health Systems ScienceKaiser Permanente Bernard J Tyson School of MedicinePasadenaCaliforniaUSA
| | - Jeff Slezak
- Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaCaliforniaUSA
| | - Kimberly Siegmund
- Department of Population and Public Health Sciences, USC Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kimberly Cannavale
- Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaCaliforniaUSA
| | - Yu‐Hsiang Shu
- Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaCaliforniaUSA
| | - Gary W. Chien
- Department of Urology, Los Angeles Medical CenterKaiser Permanente Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xu‐Feng Chen
- Department of Pathology, School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Feng Shi
- Department of Pathology, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Nan Song
- Department of Urology Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | | | - Jiaoti Huang
- Department of Pathology, School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
6
|
Stevens C, Hightower A, Buxbaum SG, Falzarano SM, Rhie SK. Genomic, epigenomic, and transcriptomic signatures of prostate cancer between African American and European American patients. Front Oncol 2023; 13:1079037. [PMID: 36937425 PMCID: PMC10018228 DOI: 10.3389/fonc.2023.1079037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Prostate cancer is the second most common cancer in men in the United States, and racial disparities are greatly observed in the disease. Specifically, African American (AA) patients have 60% higher incidence and mortality rates, in addition to higher grade and stage prostate tumors, than European American (EA) patients. In order to narrow the gap between clinical outcomes for these two populations, genetic and molecular signatures contributing to this disparity have been characterized. Over the past decade, profiles of prostate tumor samples from different ethnic groups have been developed using molecular and functional assays coupled with next generation sequencing or microarrays. Comparative genome-wide analyses of genomic, epigenomic, and transcriptomic profiles from prostate tumor samples have uncovered potential race-specific mutations, copy number alterations, DNA methylation, and gene expression patterns. In this study, we reviewed over 20 published studies that examined the aforementioned molecular contributions to racial disparities in AA and EA prostate cancer patients. The reviewed genomic studies revealed mutations, deletions, amplifications, duplications, or fusion genes differentially enriched in AA patients relative to EA patients. Commonly reported genomic alterations included mutations or copy number alterations of FOXA1, KMT2D, SPOP, MYC, PTEN, TP53, ZFHX3, and the TMPRSS2-ERG fusion. The reviewed epigenomic studies identified that CpG sites near the promoters of PMEPA1, RARB, SNRPN, and TIMP3 genes were differentially methylated between AA and EA patients. Lastly, the reviewed transcriptomic studies identified genes (e.g. CCL4, CHRM3, CRYBB2, CXCR4, GALR1, GSTM3, SPINK1) and signaling pathways dysregulated between AA and EA patients. The most frequently found dysregulated pathways were involved in immune and inflammatory responses and neuroactive ligand signaling. Overall, we observed that the genomic, epigenomic, and transcriptomic alterations evaluated between AA and EA prostate cancer patients varied between studies, highlighting the impact of using different methods and sample sizes. The reported genomic, epigenomic, and transcriptomic alterations do not only uncover molecular mechanisms of tumorigenesis but also provide researchers and clinicians valuable resources to identify novel biomarkers and treatment modalities to improve the disparity of clinical outcomes between AA and EA patients.
Collapse
Affiliation(s)
- Claire Stevens
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, United States
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
| | - Alexandria Hightower
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, United States
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
| | - Sarah G. Buxbaum
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
- Department of Epidemiology and Biostatistics, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, United States
| | - Sara M. Falzarano
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Suhn K. Rhie
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, CA, United States
- CaRE2 Program, Florida-California Health Equity Center, Los Angeles, CA, United States
| |
Collapse
|
7
|
Pidsley R, Lam D, Qu W, Peters TJ, Luu P, Korbie D, Stirzaker C, Daly RJ, Stricker P, Kench JG, Horvath LG, Clark SJ. Comprehensive methylome sequencing reveals prognostic epigenetic biomarkers for prostate cancer mortality. Clin Transl Med 2022; 12:e1030. [PMID: 36178085 PMCID: PMC9523674 DOI: 10.1002/ctm2.1030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Prostate cancer is a clinically heterogeneous disease with a subset of patients rapidly progressing to lethal-metastatic prostate cancer. Current clinicopathological measures are imperfect predictors of disease progression. Epigenetic changes are amongst the earliest molecular changes in tumourigenesis. To find new prognostic biomarkers to enable earlier intervention and improved outcomes, we performed methylome sequencing of DNA from patients with localised prostate cancer and long-term clinical follow-up. METHODS We used whole-genome bisulphite sequencing (WGBS) to comprehensively map and compare DNA methylation of radical prostatectomy tissue between patients with lethal disease (n = 7) and non-lethal (n = 8) disease (median follow-up 19.5 years). Validation of differentially methylated regions (DMRs) was performed in an independent cohort (n = 185, median follow-up 15 years) using targeted multiplex bisulphite sequencing of candidate regions. Survival was assessed via univariable and multivariable analyses including clinicopathological measures (log-rank and Cox regression models). RESULTS WGBS data analysis identified cancer-specific methylation patterns including CpG island hypermethylation, and hypomethylation of repetitive elements, with increasing disease risk. We identified 1420 DMRs associated with prostate cancer-specific mortality (PCSM), which showed enrichment for gene sets downregulated in prostate cancer and de novo methylated in cancer. Through comparison with public prostate cancer datasets, we refined the DMRs to develop an 18-gene prognostic panel. Applying this panel to an independent cohort, we found significant associations between PCSM and hypermethylation at EPHB3, PARP6, TBX1, MARCH6 and a regulatory element within CACNA2D4. Strikingly in a multivariable model, inclusion of CACNA2D4 methylation was a better predictor of PCSM versus grade alone (Harrell's C-index: 0.779 vs. 0.684). CONCLUSIONS Our study provides detailed methylome maps of non-lethal and lethal prostate cancer and identifies novel genic regions that distinguish these patient groups. Inclusion of our DNA methylation biomarkers with existing clinicopathological measures improves prognostic models of prostate cancer mortality, and holds promise for clinical application.
Collapse
Affiliation(s)
- Ruth Pidsley
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| | - Dilys Lam
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,Present address:
School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia,Present address:
Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Wenjia Qu
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Timothy J. Peters
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| | - Phuc‐Loi Luu
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| | - Darren Korbie
- Centre for Personalised NanomedicineAustralian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Clare Stirzaker
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| | - Roger J. Daly
- Cancer Research Program and Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Phillip Stricker
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia,Department of UrologySt. Vincent's Prostate Cancer CentreSydneyNew South WalesAustralia
| | - James G. Kench
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,Department of Tissue PathologyNSW Health PathologyRoyal Prince Alfred HospitalCamperdownSydneyNew South WalesAustralia
| | - Lisa G. Horvath
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia,Chris O'Brien Lifehouse, CamperdownSydneyNew South WalesAustralia,University of SydneySydneyNew South WalesAustralia
| | - Susan J. Clark
- Garvan Institute of Medical ResearchSydneyNew South WalesAustralia,School of Clinical MedicineSt Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW SydneySydneyNew South WalesAustralia
| |
Collapse
|
8
|
Liu Q, Reed M, Zhu H, Cheng Y, Almeida J, Fruhbeck G, Ribeiro R, Hu P. Epigenome-wide DNA methylation and transcriptome profiling of localized and locally advanced prostate cancer: Uncovering new molecular markers. Genomics 2022; 114:110474. [DOI: 10.1016/j.ygeno.2022.110474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/15/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
|
9
|
Gu CY, Dai B, Zhu Y, Lin GW, Wang HK, Ye DW, Qin XJ. The novel transcriptomic signature of angiogenesis predicts clinical outcome, tumor microenvironment and treatment response for prostate adenocarcinoma. Mol Med 2022; 28:78. [PMID: 35836112 PMCID: PMC9284787 DOI: 10.1186/s10020-022-00504-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis plays the critical roles in promoting tumor progression, aggressiveness, and metastasis. Although few studies have revealed some angiogenesis-related genes (ARGs) could serve as prognosis-related biomarkers for the prostate cancer (PCa), the integrated role of ARGs has not been systematically studied. The RNA-sequencing data and clinical information of prostate adenocarcinoma (PRAD) were downloaded from The Cancer Genome Atlas (TCGA) as discovery dataset. Twenty-three ARGs in total were identified to be correlated with prognosis of PRAD by the univariate Cox regression analysis, and a 19-ARG signature was further developed with significant correlation with the disease-free survival (DFS) of PRAD by the least absolute shrinkage and selection operator (LASSO) Cox regression with tenfold cross-validation. The signature stratified PRAD patients into high- and low-ARGs signature score groups, and those with high ARGs signature score were associated with significantly poorer outcomes (median DFS: 62.71 months vs unreached, p < 0.0001). The predicting ability of ARGs signature was subsequently validated in two independent cohorts of GSE40272 & PRAD_MSKCC. Notably, the 19-ARG signature outperformed the typical clinical features or each involved ARG in predicting the DFS of PRAD. Furthermore, a prognostic nomogram was constructed with three independent prognostic factors, including the ARGs signature, T stage and Gleason score. The predicted results from the nomogram (C-index = 0.799, 95%CI = 0.744-0.854) matched well with the observed outcomes, which was verified by the calibration curves. The values of area under receiver operating characteristic curve (AUC) for DFS at 1-, 3-, 5-year for the nomogram were 0.82, 0.83, and 0.83, respectively, indicating the performance of nomogram model is of reasonably high accuracy and robustness. Moreover, functional enrichment analysis demonstrated the potential targets of E2F targets, G2M checkpoint pathways, and cell cycle pathways to suppress the PRAD progression. Of note, the high-risk PRAD patients were more sensitive to immune therapies, but Treg might hinder benefits from immunotherapies. Additionally, this established tool also could predict response to neoadjuvant androgen deprivation therapy (ADT) and some chemotherapy drugs, such as cisplatin, paclitaxel, and docetaxel, etc. The novel ARGs signature, with prognostic significance, can further promote the application of targeted therapies in different stratifications of PCa patients.
Collapse
Affiliation(s)
- Cheng-Yuan Gu
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Guo-Wen Lin
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hong-Kai Wang
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Xiao-Jian Qin
- Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), Fudan University, No. 270 Dong'an Road, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
10
|
Dillinger T, Sheibani-Tezerji R, Pulverer W, Stelzer I, Hassler MR, Scheibelreiter J, Pérez Malla CU, Kuroll M, Domazet S, Redl E, Ely S, Brezina S, Tiefenbacher A, Rebhan K, Hübner N, Grubmüller B, Mitterhauser M, Hacker M, Weinhaeusel A, Simon J, Zeitlinger M, Gsur A, Kramer G, Shariat SF, Kenner L, Egger G. Identification of tumor tissue-derived DNA methylation biomarkers for the detection and therapy response evaluation of metastatic castration resistant prostate cancer in liquid biopsies. Mol Cancer 2022; 21:7. [PMID: 34980142 PMCID: PMC8722310 DOI: 10.1186/s12943-021-01445-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Thomas Dillinger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.,Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Raheleh Sheibani-Tezerji
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.,Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Walter Pulverer
- Health & Environment Department, Molecular Diagnostics, AIT-Austrian Institute of Technology GmbH, Vienna, Austria
| | - Ines Stelzer
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.,Department of Health Economics, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Melanie R Hassler
- Department of Pathology, Medical University of Vienna, Vienna, Austria.,Department of Urology, Medical University Vienna, Vienna, Austria
| | | | | | | | - Sandra Domazet
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Elisa Redl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sarah Ely
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Andreas Tiefenbacher
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.,Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Katharina Rebhan
- Department of Urology, Medical University Vienna, Vienna, Austria
| | - Nicolai Hübner
- Department of Urology, Medical University Vienna, Vienna, Austria
| | | | - Markus Mitterhauser
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Vienna, Austria
| | - Andreas Weinhaeusel
- Health & Environment Department, Molecular Diagnostics, AIT-Austrian Institute of Technology GmbH, Vienna, Austria
| | - Judit Simon
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.,Department of Health Economics, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gero Kramer
- Department of Urology, Medical University Vienna, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Medical University Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Urology, Weill Cornell Medical College, New York, NY, USA.,Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria.,Division of Urology, Department of Special Surgery, Jordan University Hospital, The University of Jordan, Amman, Jordan.,European Association of Urology Research Foundation, Arnhem, The Netherlands
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria.,Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Gerda Egger
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria. .,Department of Pathology, Medical University of Vienna, Vienna, Austria. .,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
11
|
Şeref C, Acar Ö, Kılıç M, Vural M, Sağlıcan Y, Saraç H, Coşkun B, İnce Ü, Esen T, Lack NA. Histologically benign PI-RADS 4 and 5 lesions contain cancer-associated epigenetic alterations. Prostate 2022; 82:145-153. [PMID: 34672371 DOI: 10.1002/pros.24255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The detection rate of clinically significant prostate cancer has improved with the use of multiparametric magnetic resonance imaging (mpMRI). Yet, even with MRI-guided biopsy 15%-35% of high-risk lesions (Prostate Imaging-Reporting and Data System [PI-RADS] 4 and 5) are histologically benign. It is unclear if these false positives are due to diagnostic/sampling errors or pathophysiological alterations. To better understand this, we tested histologically benign PI-RAD 4 and 5 lesions for common malignant epigenetic alterations. MATERIALS AND METHODS MRI-guided in-bore biopsy samples were collected from 45 patients with PI-RADS 4 (n = 31) or 5 (n = 14) lesions. Patients had a median clinical follow-up of 3.8 years. High-risk mpMRI patients were grouped based on their histology into biopsy positive for tumor (BPT; n = 28) or biopsy negative for tumor (BNT; n = 17). From these biopsy samples, DNA methylation of well-known tumor suppressor genes (APC, GSTP1, and RARβ2) was quantified. RESULTS Similar to previous work we observed high rates of promoter methylation at GSTP1 (92.7%), RARβ2 (57.3%), and APC (37.8%) in malignant BPT samples but no methylation in benign TURP chips. Interestingly, similar to the malignant samples the BNT biopsies also had increased methylation at the promoter of GSTP1 (78.8%) and RARβ2 (34.6%). However, despite these epigenetic alterations none of these BNT patients developed prostate cancer, and those who underwent repeat mpMRI (n = 8) demonstrated either radiological regression or stability. CONCLUSIONS Histologically benign PI-RADS 4 and 5 lesions harbor prostate cancer-associated epigenetic alterations.
Collapse
Affiliation(s)
- Ceren Şeref
- Department of Health Sciences, Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ömer Acar
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
| | - Mert Kılıç
- Department of Urology, VKF American Hospital, Istanbul, Turkey
| | - Metin Vural
- Department of Radiology, VKF American Hospital, Istanbul, Turkey
| | - Yeşim Sağlıcan
- Department of Pathology, Acıbadem University School of Medicine, Istanbul, Turkey
| | - Hilal Saraç
- Department of Health Sciences, Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Bilgen Coşkun
- Department of Radiology, VKF American Hospital, Istanbul, Turkey
| | - Ümit İnce
- Department of Pathology, Acıbadem University School of Medicine, Istanbul, Turkey
| | - Tarık Esen
- Department of Urology, Koc University School of Medicine, Istanbul, Turkey
- Department of Urology, VKF American Hospital, Istanbul, Turkey
| | - Nathan A Lack
- Department of Health Sciences, Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
- Department of Medical Pharmacology, Koç University School of Medicine, Istanbul, Turkey
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Friedemann M, Horn F, Gutewort K, Tautz L, Jandeck C, Bechmann N, Sukocheva O, Wirth MP, Fuessel S, Menschikowski M. Increased Sensitivity of Detection of RASSF1A and GSTP1 DNA Fragments in Serum of Prostate Cancer Patients: Optimisation of Diagnostics Using OBBPA-ddPCR. Cancers (Basel) 2021; 13:4459. [PMID: 34503269 PMCID: PMC8431466 DOI: 10.3390/cancers13174459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/05/2023] Open
Abstract
Identification of aberrant DNA methylation is a promising tool in prostate cancer (PCa) diagnosis and treatment. In this study, we evaluated a two-step method named optimised bias-based preamplification followed by digital PCR (OBBPA-dPCR). The method was used to identify promoter hypermethylation of 2 tumour suppressor genes RASSF1A and GSTP1 in the circulating cell-free DNA (cfDNA) from serum samples of PCa patients (n = 75), benign prostatic hyperplasia (BPH, n = 58), and healthy individuals (controls, n = 155). The PCa cohort was further subdivided into subgroups comprising (I) patients with Gleason Scores (GS) ≤ 7 (n = 55), (II) GS ≥ 8 (n = 10), and (III) patients with metastatic PCa diagnosis (n = 10). We found that RASSF1A methylation levels were significantly increased in all 3 PCa subgroups compared to the controls and BPH cohorts (p < 0.01 for all comparisons). Fractional abundances of methylated GSTP1 DNA fragments were significantly increased in subgroup III of metastatic PCa patients (p < 0.001). RASSF1A methylation analysis was found to be beneficial as a complementary biomarker where further diagnostic validation is most crucial. In combination with free PSA, RASSF1A methylation status helps to identify PCa patients with GS ≥ 8 and grey-zone total PSA values between 2-10 ng/mL. In our study, PCR biases between 80-90% were sufficient to detect minute amounts of tumour DNA with high signal-to-noise ratios as well as high analytical sensitivity and specificity. Both RASSF1A and GSTP1 exhibited strongly increased DNA methylation levels in all metastatic PCa patients. Our data indicates a superior sensitivity of epigenetic biomarker analyses in early detection of PCa metastases that should also help to improve PCa therapy.
Collapse
Affiliation(s)
- Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Friederike Horn
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Katharina Gutewort
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Lars Tautz
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Carsten Jandeck
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- German Department of Human Nutrition Potsdam-Rehbruecke, Institute of Experimental Diabetology, 14558 Nuthetal, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Olga Sukocheva
- School of Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia;
| | - Manfred P. Wirth
- Department of Urology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.P.W.); (S.F.)
| | - Susanne Fuessel
- Department of Urology, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.P.W.); (S.F.)
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; (M.F.); (L.T.); (F.H.); (K.G.); (C.J.); (N.B.)
| |
Collapse
|
13
|
Lianidou E. Detection and relevance of epigenetic markers on ctDNA: recent advances and future outlook. Mol Oncol 2021; 15:1683-1700. [PMID: 33942482 PMCID: PMC8169441 DOI: 10.1002/1878-0261.12978] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy, a minimally invasive approach, is a highly powerful clinical tool for the real-time follow-up of cancer and overcomes many limitations of tissue biopsies. Epigenetic alterations have a high potential to provide a valuable source of innovative biomarkers for cancer, owing to their stability, frequency, and noninvasive accessibility in bodily fluids. Numerous DNA methylation markers are now tested in circulating tumor DNA (ctDNA) as potential biomarkers, in various types of cancer. DNA methylation in combination with liquid biopsy is very powerful in identifying circulating epigenetic biomarkers of clinical importance. Blood-based epigenetic biomarkers have a high potential for early detection of cancer since DNA methylation in plasma can be detected early during cancer pathogenesis. In this review, we summarize the latest findings on DNA methylation markers in ctDNA for early detection, prognosis, minimal residual disease, risk of relapse, treatment selection, and resistance, for breast, prostate, lung, and colorectal cancer.
Collapse
Affiliation(s)
- Evi Lianidou
- Analysis of Circulating Tumor CellsLaboratory of Analytical ChemistryDepartment of ChemistryUniversity of AthensGreece
| |
Collapse
|
14
|
Avery-Kiejda KA. Switching off Cancer: Is There a Role for Epigenetics? Cancers (Basel) 2021; 13:cancers13061272. [PMID: 33809396 PMCID: PMC7998574 DOI: 10.3390/cancers13061272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Kelly A. Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia;
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
15
|
Bahreyni A, Luo H. Advances in Targeting Cancer-Associated Genes by Designed siRNA in Prostate Cancer. Cancers (Basel) 2020; 12:E3619. [PMID: 33287240 PMCID: PMC7761674 DOI: 10.3390/cancers12123619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Short interfering RNAs (siRNAs) have provided novel insights into the field of cancer treatment in light of their ability to specifically target and silence cancer-associated genes. In recent years, numerous studies focus on determining genes that actively participate in tumor formation, invasion, and metastasis in order to establish new targets for cancer treatment. In spite of great advances in designing various siRNAs with diverse targets, efficient delivery of siRNAs to cancer cells is still the main challenge in siRNA-mediated cancer treatment. Recent advancements in the field of nanotechnology and nanomedicine hold great promise to meet this challenge. This review focuses on recent findings in cancer-associated genes and the application of siRNAs to successfully silence them in prostate cancer, as well as recent progress for effectual delivery of siRNAs to cancer cells.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, 1081 Burrard St, Vancouver, BC V6Z 1Y6, Canada;
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|