1
|
Rosenberg S, Devir M, Kaduri L, Grinshpun A, Miner V, Hamburger T, Granit A, Nissan A, Maymon O, Peretz T. Distinct breast cancer phenotypes in BRCA 1/2 carriers based on ER status. Breast Cancer Res Treat 2023; 198:197-205. [PMID: 36729248 DOI: 10.1007/s10549-022-06851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/26/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE BRCA1/2 genes are the two main genes associated with hereditary breast cancers (BC). In the present study, we explore clinical and molecular characteristics of BRCA-associated BC in relation to estrogen receptor (ER) status. METHODS Three BC databases (DB) were evaluated: (i) Hadassah oncogenetics (n = 4826); (ii) METABRIC (n = 1980), and (iii) Nick-Zainal (n = 560). We evaluated age at diagnosis in BRCA positive (BP) and BRCA negative (BN) patients, and tested for mutational signature differences in cohort iii. mRNA differential expression analysis (DEA) and pathway analysis were performed in cohort ii. RESULTS Age at diagnosis was lower in BP vs. BN tumors in all cohorts in the ER- group, and only in cohort i for the ER + group. Signature 3 was universal in BP BC, whereas several signatures were associated with ER status. Pathway analysis was performed between BP&BN, and was significant only in ER- tumors: the major activated pathways involved cancer-related processes and were highly significant. The most significant pathway was estrogen-mediated S-phase entry and the most activated upstream regulator was ERBB2. CONCLUSION Signature 3 was universal for all BP BC, while other signatures were associated with ER status. ER + BP& BN show similar genomic characteristics, ER- BP differed markedly from BN. This suggests that the initial carcinogenic process is universal for all BRCA carriers, but further insults lead to the development of two genomically distinct subtypes ER- and ER + . This may shed light on possible mechanisms involved in BP and carry preventive and therapeutic implications.
Collapse
Affiliation(s)
- Shai Rosenberg
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
- The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Kiryat Hadassa, 91120, Jerusalem, Israel.
| | - Michal Devir
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Kiryat Hadassa, 91120, Jerusalem, Israel
| | - Luna Kaduri
- Sharett Institute for Oncology, Hadassah-Hebrew University Medical Center, Kiryat Hadassa, 91120, Jerusalem, Israel
| | - Albert Grinshpun
- Sharett Institute for Oncology, Hadassah-Hebrew University Medical Center, Kiryat Hadassa, 91120, Jerusalem, Israel
| | - Vardiella Miner
- Department of Human Genetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tamar Hamburger
- R&D Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avital Granit
- Sharett Institute for Oncology, Hadassah-Hebrew University Medical Center, Kiryat Hadassa, 91120, Jerusalem, Israel
| | - Aviram Nissan
- Department of General and Oncological Surgery - Surgery C, Sheba Medical Center, Ramat Gan, Israel
| | - Ofra Maymon
- Sharett Institute for Oncology, Hadassah-Hebrew University Medical Center, Kiryat Hadassa, 91120, Jerusalem, Israel
| | - Tamar Peretz
- Sharett Institute for Oncology, Hadassah-Hebrew University Medical Center, Kiryat Hadassa, 91120, Jerusalem, Israel.
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Vovk V, Wang R. Confidence and Discoveries with E-values. Stat Sci 2023. [DOI: 10.1214/22-sts874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Vladimir Vovk
- Vladimir Vovk is Professor, Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, UK
| | - Ruodu Wang
- Ruodu Wang is Professor and University Research Chair, Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
Wiggins GAR, Black MA, Dunbier A, Morley-Bunker AE, Pearson JF, Walker LC. Increased gene expression variability in BRCA1-associated and basal-like breast tumours. Breast Cancer Res Treat 2021; 189:363-375. [PMID: 34287743 PMCID: PMC8357684 DOI: 10.1007/s10549-021-06328-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022]
Abstract
Purpose Inherited variants in the cancer susceptibility genes, BRCA1 and BRCA2 account for up to 5% of breast cancers. Multiple gene expression studies have analysed gene expression patterns that maybe associated with BRCA12 pathogenic variant status; however, results from these studies lack consensus. These studies have focused on the differences in population means to identified genes associated with BRCA1/2-carriers with little consideration for gene expression variability, which is also under genetic control and is a feature of cellular function. Methods We measured differential gene expression variability in three of the largest familial breast cancer datasets and a 2116 breast cancer meta-cohort. Additionally, we used RNA in situ hybridisation to confirm expression variability of EN1 in an independent cohort of more than 500 breast tumours. Results BRCA1-associated breast tumours exhibited a 22.8% (95% CI 22.3–23.2) increase in transcriptome-wide gene expression variability compared to BRCAx tumours. Additionally, 40 genes were associated with BRCA1-related breast cancers that had ChIP-seq data suggestive of enriched EZH2 binding. Of these, two genes (EN1 and IGF2BP3) were significantly variable in both BRCA1-associated and basal-like breast tumours. RNA in situ analysis of EN1 supported a significant (p = 6.3 × 10−04) increase in expression variability in BRCA1-associated breast tumours. Conclusion Our novel results describe a state of increased gene expression variability in BRCA1-related and basal-like breast tumours. Furthermore, genes with increased variability may be driven by changes in DNA occupancy of epigenetic effectors. The variation in gene expression is replicable and led to the identification of novel associations between genes and disease phenotypes. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06328-y.
Collapse
Affiliation(s)
- George A R Wiggins
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Anita Dunbier
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Arthur E Morley-Bunker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - John F Pearson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
4
|
Wengner AM, Scholz A, Haendler B. Targeting DNA Damage Response in Prostate and Breast Cancer. Int J Mol Sci 2020; 21:E8273. [PMID: 33158305 PMCID: PMC7663807 DOI: 10.3390/ijms21218273] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Steroid hormone signaling induces vast gene expression programs which necessitate the local formation of transcription factories at regulatory regions and large-scale alterations of the genome architecture to allow communication among distantly related cis-acting regions. This involves major stress at the genomic DNA level. Transcriptionally active regions are generally instable and prone to breakage due to the torsional stress and local depletion of nucleosomes that make DNA more accessible to damaging agents. A dedicated DNA damage response (DDR) is therefore essential to maintain genome integrity at these exposed regions. The DDR is a complex network involving DNA damage sensor proteins, such as the poly(ADP-ribose) polymerase 1 (PARP-1), the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), the ataxia-telangiectasia-mutated (ATM) kinase and the ATM and Rad3-related (ATR) kinase, as central regulators. The tight interplay between the DDR and steroid hormone receptors has been unraveled recently. Several DNA repair factors interact with the androgen and estrogen receptors and support their transcriptional functions. Conversely, both receptors directly control the expression of agents involved in the DDR. Impaired DDR is also exploited by tumors to acquire advantageous mutations. Cancer cells often harbor germline or somatic alterations in DDR genes, and their association with disease outcome and treatment response led to intensive efforts towards identifying selective inhibitors targeting the major players in this process. The PARP-1 inhibitors are now approved for ovarian, breast, and prostate cancer with specific genomic alterations. Additional DDR-targeting agents are being evaluated in clinical studies either as single agents or in combination with treatments eliciting DNA damage (e.g., radiation therapy, including targeted radiotherapy, and chemotherapy) or addressing targets involved in maintenance of genome integrity. Recent preclinical and clinical findings made in addressing DNA repair dysfunction in hormone-dependent and -independent prostate and breast tumors are presented. Importantly, the combination of anti-hormonal therapy with DDR inhibition or with radiation has the potential to enhance efficacy but still needs further investigation.
Collapse
Affiliation(s)
| | | | - Bernard Haendler
- Preclinical Research, Research & Development, Pharmaceuticals, Bayer AG, Müllerstr. 178, 13353 Berlin, Germany; (A.M.W.); (A.S.)
| |
Collapse
|