1
|
Spârchez Z, Crăciun R, Nenu I, Mocan LP, Spârchez M, Mocan T. Refining Liver Biopsy in Hepatocellular Carcinoma: An In-Depth Exploration of Shifting Diagnostic and Therapeutic Applications. Biomedicines 2023; 11:2324. [PMID: 37626820 PMCID: PMC10452389 DOI: 10.3390/biomedicines11082324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
The field of hepatocellular carcinoma (HCC) has faced significant change on multiple levels in the past few years. The increasing emphasis on the various HCC phenotypes and the emergence of novel, specific therapies have slowly paved the way for a personalized approach to primary liver cancer. In this light, the role of percutaneous liver biopsy of focal lesions has shifted from a purely confirmatory method to a technique capable of providing an in-depth characterization of any nodule. Cancer subtype, gene expression, the mutational profile, and tissue biomarkers might soon become widely available through biopsy. However, indications, expectations, and techniques might suffer changes as the aim of the biopsy evolves from providing minimal proof of the disease to high-quality specimens for extensive analysis. Consequently, a revamped position of tissue biopsy is expected in HCC, following the reign of non-invasive imaging-only diagnosis. Moreover, given the advances in techniques that have recently reached the spotlight, such as liquid biopsy, concomitant use of all the available methods might gather just enough data to improve therapy selection and, ultimately, outcomes. The current review aims to discuss the changing role of liver biopsy and provide an evidence-based rationale for its use in the era of precision medicine in HCC.
Collapse
Affiliation(s)
- Zeno Spârchez
- Department of Gastroenterology, “Prof. Dr. O. Fodor” Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania; (Z.S.); (I.N.); (T.M.)
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Rareș Crăciun
- Department of Gastroenterology, “Prof. Dr. O. Fodor” Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania; (Z.S.); (I.N.); (T.M.)
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Iuliana Nenu
- Department of Gastroenterology, “Prof. Dr. O. Fodor” Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania; (Z.S.); (I.N.); (T.M.)
- Department of Physiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Lavinia Patricia Mocan
- Department of Histology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Mihaela Spârchez
- 2nd Pediatric Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400124 Cluj-Napoca, Romania;
| | - Tudor Mocan
- Department of Gastroenterology, “Prof. Dr. O. Fodor” Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania; (Z.S.); (I.N.); (T.M.)
- UBBMed Department, Babeș-Bolyai University, 400349 Cluj-Napoca, Romania
| |
Collapse
|
2
|
He R, Xu Y, Yu L, Meng N, Wang H, Cui Y, Yam JWP. Extracellular Vesicles Act as Carriers for Cargo Delivery and Regulate Wnt Signaling in the Hepatocellular Carcinoma Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15072088. [PMID: 37046749 PMCID: PMC10093647 DOI: 10.3390/cancers15072088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
As the primary type of liver cancer, hepatocellular carcinoma (HCC) causes a large number of deaths every year. Despite extensive research conducted on this disease, the prognosis of HCC remains unclear. Recently, research has largely focused on extracellular vesicles (EVs), and they have been found to participate in various ways in the development of various diseases, including HCC, such as by regulating cell signaling pathways. However, recent studies have reported the mechanisms underlying the regulation of Wnt signaling by EVs in HCC, primarily focusing on the regulation of the canonical pathways. This review summarizes the current literature on the regulation of Wnt signaling by EVs in HCC and their underlying mechanisms. In addition, we also present future research directions in this field. This will deepen the understanding of HCC and provide new ideas for its treatment.
Collapse
Affiliation(s)
- Risheng He
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi 563006, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361000, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng 224007, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou 310063, China
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Changxing 313000, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hang Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Yu S, Zhou L, Fu J, Xu L, Liu B, Zhao Y, Wang J, Yan X, Su J. H-TEX-mediated signaling between hepatocellular carcinoma cells and macrophages and exosome-targeted therapy for hepatocellular carcinoma. Front Immunol 2022; 13:997726. [PMID: 36311698 PMCID: PMC9608495 DOI: 10.3389/fimmu.2022.997726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence for the key role of the immune microenvironment in the occurrence and development of hepatocellular carcinoma. As an important component of the immune microenvironment, the polarization state and function of macrophages determine the maintenance of the immunosuppressive tumor microenvironment. Hepatocellular carcinoma tumor-derived exosomes, as information carriers, regulate the physiological state of cells in the microenvironment and control cancer progression. In this review, we focus on the role of the exosome content in disease outcomes at different stages in the progression of hepatitis B virus/hepatitis C virus-induced hepatocellular carcinoma. We also explore the mechanism by which macrophages contribute to the formation of hepatocellular carcinoma and summarize the regulation of macrophage functions by the heterogeneity of exosome loading in liver cancer. Finally, with the rise of exosome modification in immunotherapy research on hepatocellular carcinoma, we summarize the application prospects of exosome-based targeted drug delivery.
Collapse
Affiliation(s)
- Sihang Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiaying Fu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Long Xu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Buhan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuanxin Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jian Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoyu Yan
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Xiaoyu Yan, ; Jing Su,
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Xiaoyu Yan, ; Jing Su,
| |
Collapse
|
4
|
Small Extracellular Vesicles and Their Involvement in Cancer Resistance: An Up-to-Date Review. Cells 2022; 11:cells11182913. [PMID: 36139487 PMCID: PMC9496799 DOI: 10.3390/cells11182913] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, tremendous progress has been made in understanding the roles of extracellular vesicles (EVs) in cancer. Thanks to advancements in molecular biology, it has been found that the fraction of EVs called exosomes or small EVs (sEVs) modulates the sensitivity of cancer cells to chemotherapeutic agents by delivering molecularly active non-coding RNAs (ncRNAs). An in-depth analysis shows that two main molecular mechanisms are involved in exosomal modified chemoresistance: (1) translational repression of anti-oncogenes by exosomal microRNAs (miRs) and (2) lack of translational repression of oncogenes by sponging of miRs through long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). At the cellular level, these processes increase the proliferation and survival of cancer cells and improve their ability to metastasize and resist apoptosis. In addition, studies in animal models have shown enhancing tumor size under the influence of exosomal ncRNAs. Ultimately, exosomal ncRNAs are responsible for clinically significant chemotherapy failures in patients with different types of cancer. Preliminary data have also revealed that exosomal ncRNAs can overcome chemotherapeutic agent resistance, but the results are thoroughly fragmented. This review presents how exosomes modulate the response of cancer cells to chemotherapeutic agents. Understanding how exosomes interfere with chemoresistance may become a milestone in developing new therapeutic options, but more data are still required.
Collapse
|
5
|
Słomka A, Wang B, Mocan T, Horhat A, Willms AG, Schmidt-Wolf IGH, Strassburg CP, Gonzalez-Carmona MA, Lukacs-Kornek V, Kornek MT. Extracellular Vesicles and Circulating Tumour Cells - complementary liquid biopsies or standalone concepts? Theranostics 2022; 12:5836-5855. [PMID: 35966579 PMCID: PMC9373826 DOI: 10.7150/thno.73400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsies do promise a lot, but are they keeping it? In the past decade, additional novel biomarkers qualified to be called like that, of which, some took necessary hurdles resulting in FDA approval and clinical use. Some others are since a while around, well known and were once regarded to be a game changer in cancer diagnosis or cancer screening. But, during their clinical use limitations were observed from statistical significance and questions raised regarding their robustness, that eventually led to be dropped from associated clinical guidelines for certain applications including cancer diagnosis. The purpose of this review isn't to give a broad overview of all current liquid biopsy as biomarkers, weight them and promise a brighter future in cancer prevention, but rather to take a deeper look on two of those who do qualify to be called liquid biopsies now or then. These two are probably of greatest interest conceptually and methodically, and likely have the highest chances to be in clinical use soon, with a portfolio extension over their original conceptual usage. We aim to dig deeper beyond cancer diagnosis or cancer screening. Actually, we aim to review in depth extracellular vesicles (EVs) and compare with circulating tumour cells (CTCs). The latter methodology is partially FDA approved and in clinical use. We will lay out similarities as taking advantage of surface antigens on EVs and CTCs in case of characterization and quantification. But drawing readers' attention to downstream application based on capture/isolation methodology and simply on their overall nature, here apparently being living material eventually recoverable as CTCs are vs. dead material with transient effects on recipient cell as in case of EVs. All this we try to bring in perspective, compare and conclude towards which future direction we are aiming for, or should aim for. Do we announce a winner between CTCs vs EVs? No, but we provide good reasons to intensify research on them.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany.,Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Adelina Horhat
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Arnulf G Willms
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany.,Department of General, Visceral and Vascular Surgery, German Armed Forces Hospital Hamburg, 22049 Hamburg, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Maria A Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Miroslaw T Kornek
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| |
Collapse
|
6
|
Wang J, Wang X, Zhang X, Shao T, Luo Y, Wang W, Han Y. Extracellular Vesicles and Hepatocellular Carcinoma: Opportunities and Challenges. Front Oncol 2022; 12:884369. [PMID: 35692794 PMCID: PMC9175035 DOI: 10.3389/fonc.2022.884369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/25/2022] [Indexed: 12/05/2022] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing worldwide. Extracellular vesicles (EVs) contain sufficient bioactive substances and are carriers of intercellular information exchange, as well as delivery vehicles for nucleic acids, proteins and drugs. Although EVs show great potential for the treatment of HCC and their role in HCC progression has been extensively studied, there are still many challenges such as time-consuming extraction, difficult storage, easy contamination, and low drug loading rate. We focus on the biogenesis, morphological characteristics, isolation and extraction of EVs and their significance in the progression of HCC, tumor invasion, immune escape and cancer therapy for a review. EVs may be effective biomarkers for molecular diagnosis of HCC and new targets for tumor-targeted therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoya Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xintong Zhang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Tingting Shao
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yanmei Luo
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Academician (Expert) Workstation of Sichuan Province, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
7
|
Mocan LP, Ilieș M, Melincovici CS, Spârchez M, Crăciun R, Nenu I, Horhat A, Tefas C, Spârchez Z, Iuga CA, Mocan T, Mihu CM. Novel approaches in search for biomarkers of cholangiocarcinoma. World J Gastroenterol 2022; 28:1508-1525. [PMID: 35582128 PMCID: PMC9048460 DOI: 10.3748/wjg.v28.i15.1508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) arises from the ductular epithelium of the biliary tree, either within the liver (intrahepatic CCA) or more commonly from the extrahepatic bile ducts (extrahepatic CCA). This disease has a poor prognosis and a growing worldwide prevalence. The poor outcomes of CCA are partially explained by the fact that a final diagnosis is challenging, especially the differential diagnosis between hepatocellular carcinoma and intrahepatic CCA, or distal CCA and pancreatic head adenocarcinoma. Most patients present with an advanced disease, unresectable disease, and there is a lack in non-surgical therapeutic modalities. Not least, there is an acute lack of prognostic biomarkers which further complicates disease management. Therefore, there is a dire need to find alternative diagnostic and follow-up pathways that can lead to an accurate result, either singlehandedly or combined with other methods. In the "-omics" era, this goal can be attained by various means, as it has been successfully demonstrated in other primary tumors. Numerous variants can reach a biomarker status ranging from circulating nucleic acids to proteins, metabolites, extracellular vesicles, and ultimately circulating tumor cells. However, given the relatively heterogeneous data, extracting clinical meaning from the inconsequential noise might become a tall task. The current review aims to navigate the nascent waters of the non-invasive approach to CCA and provide an evidence-based input to aid clinical decisions and provide grounds for future research.
Collapse
Affiliation(s)
- Lavinia-Patricia Mocan
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Maria Ilieș
- Department of Proteomics and Metabolomics, MedFUTURE Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Mihaela Spârchez
- 2nd Pediatrics Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Rareș Crăciun
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Iuliana Nenu
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Adelina Horhat
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Cristian Tefas
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Zeno Spârchez
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, MedFUTURE Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Tudor Mocan
- 3rd Medical Department, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
- Department of Gastroenterology, "Prof. dr. Octavian Fodor" Institute for Gastroenterology and Hepatology, Cluj-Napoca 400162, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| |
Collapse
|
8
|
Kumar DN, Chaudhuri A, Aqil F, Dehari D, Munagala R, Singh S, Gupta RC, Agrawal AK. Exosomes as Emerging Drug Delivery and Diagnostic Modality for Breast Cancer: Recent Advances in Isolation and Application. Cancers (Basel) 2022; 14:1435. [PMID: 35326585 PMCID: PMC8946254 DOI: 10.3390/cancers14061435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most common type of malignancy which covers almost one-fourth of all the cancers diagnosed in women. Conventionally, chemo-, hormonal-, immune-, surgery, and radiotherapy are the clinically available therapies for BC. However, toxicity and other related adverse effects are still the major challenges. A variety of nano platforms have been reported to overcome these limitations, among them, exosomes provide a versatile platform not only for the diagnosis but also as a delivery vehicle for drugs. Exosomes are biological nanovesicles made up of a lipidic bilayer and known for cell-to-cell communication. Exosomes have been reported to be present in almost all bodily fluids, viz., blood, milk, urine, saliva, pancreatic juice, bile, peritoneal, and cerebrospinal fluid. Such characteristics of exosomes have attracted immense interest in cancer diagnosis and therapy. They can deliver bioactive moieties such as protein, lipids, hydrophilic as well as hydrophobic drugs, various RNAs to both distant and nearby recipient cells as well as have specific biological markers. By considering the growing interest of the scientific community in this field, we comprehensively compiled the information about the biogenesis of exosomes, various isolation methods, the drug loading techniques, and their diverse applications in breast cancer diagnosis and therapy along with ongoing clinical trials which will assist future scientific endeavors in a more organized direction.
Collapse
Affiliation(s)
- Dulla Naveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (D.N.K.); (A.C.); (D.D.); (S.S.)
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (D.N.K.); (A.C.); (D.D.); (S.S.)
| | - Farrukh Aqil
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (F.A.); (R.M.); (R.C.G.)
| | - Deepa Dehari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (D.N.K.); (A.C.); (D.D.); (S.S.)
| | - Radha Munagala
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (F.A.); (R.M.); (R.C.G.)
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (D.N.K.); (A.C.); (D.D.); (S.S.)
| | - Ramesh C. Gupta
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; (F.A.); (R.M.); (R.C.G.)
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, Baxter II Research Building, University of Louisville, Louisville, KY 40202, USA
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (D.N.K.); (A.C.); (D.D.); (S.S.)
| |
Collapse
|
9
|
Impact of Non-Coding RNAs on Chemotherapeutic Resistance in Oral Cancer. Biomolecules 2022; 12:biom12020284. [PMID: 35204785 PMCID: PMC8961659 DOI: 10.3390/biom12020284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular communication via EVs is currently considered to be important for acquired drug resistance. Here, we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be therapeutic targets as well as biomarkers for cancer diagnosis.
Collapse
|
10
|
Visan KS, Lobb RJ, Wen SW, Bedo J, Lima LG, Krumeich S, Palma C, Ferguson K, Green B, Niland C, Cloonan N, Simpson PT, McCart Reed AE, Everitt SJ, MacManus MP, Hartel G, Salomon C, Lakhani SR, Fielding D, Möller A. Blood-Derived Extracellular Vesicle-Associated miR-3182 Detects Non-Small Cell Lung Cancer Patients. Cancers (Basel) 2022; 14:cancers14010257. [PMID: 35008424 PMCID: PMC8750562 DOI: 10.3390/cancers14010257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer-related death worldwide as patients are burdened with incredibly poor prognosis. Low survival rates are primarily attributed to lack of early detection and, therefore, timely therapeutic interventions. Late diagnosis is essentially caused by absent and non-specific symptoms, and compounded by inadequate diagnostic tools. We show here that a lung cancer biomarker, based on a simple blood test, might provide promising advantages for diagnostic assessment. Small extracellular vesicles (sEVs) are miniscule messengers that carry cancer biomarkers and are easily detected in the blood. We identify that the abundance of a specific micro-RNA, miR-3182, in these sEVs can be detected in the blood of lung cancer patients but not in controls with benign lung conditions. This demonstrates the potential use of miR-3182 as a biomarker for lung cancer diagnosis. Abstract With five-year survival rates as low as 3%, lung cancer is the most common cause of cancer-related mortality worldwide. The severity of the disease at presentation is accredited to the lack of early detection capacities, resulting in the reliance on low-throughput diagnostic measures, such as tissue biopsy and imaging. Interest in the development and use of liquid biopsies has risen, due to non-invasive sample collection, and the depth of information it can provide on a disease. Small extracellular vesicles (sEVs) as viable liquid biopsies are of particular interest due to their potential as cancer biomarkers. To validate the use of sEVs as cancer biomarkers, we characterised cancer sEVs using miRNA sequencing analysis. We found that miRNA-3182 was highly enriched in sEVs derived from the blood of patients with invasive breast carcinoma and NSCLC. The enrichment of sEV miR-3182 was confirmed in oncogenic, transformed lung cells in comparison to isogenic, untransformed lung cells. Most importantly, miR-3182 can successfully distinguish early-stage NSCLC patients from those with benign lung conditions. Therefore, miR-3182 provides potential to be used for the detection of NSCLC in blood samples, which could result in earlier therapy and thus improved outcomes and survival for patients.
Collapse
Affiliation(s)
- Kekoolani S. Visan
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.S.V.); (R.J.L.); (L.G.L.); (S.K.)
- School of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Richard J. Lobb
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.S.V.); (R.J.L.); (L.G.L.); (S.K.)
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shu Wen Wen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia;
| | - Justin Bedo
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Luize G. Lima
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.S.V.); (R.J.L.); (L.G.L.); (S.K.)
| | - Sophie Krumeich
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.S.V.); (R.J.L.); (L.G.L.); (S.K.)
| | - Carlos Palma
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane QLD 4029, Australia; (C.P.); (C.S.)
| | - Kaltin Ferguson
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Ben Green
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Colleen Niland
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Nicole Cloonan
- Faculty of Science, University of Auckland, Auckland 1010, New Zealand;
| | - Peter T. Simpson
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Sarah J. Everitt
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (S.J.E.); (M.P.M.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael P. MacManus
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (S.J.E.); (M.P.M.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane QLD 4029, Australia; (C.P.); (C.S.)
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago 171177, Chile
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - David Fielding
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4072, Australia; (K.F.); (B.G.); (C.N.); (P.T.S.); (A.E.M.R.); (S.R.L.); (D.F.)
- Department of Thoracic Medicine, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (K.S.V.); (R.J.L.); (L.G.L.); (S.K.)
- School of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Correspondence: ; Tel.: +61-7-3845-3950; Fax: +61-7-3362-0105
| |
Collapse
|
11
|
Patel YP, Husereau D, Leighl NB, Melosky B, Nam J. Health and Budget Impact of Liquid-Biopsy-Based Comprehensive Genomic Profile (CGP) Testing in Tissue-Limited Advanced Non-Small Cell Lung Cancer (aNSCLC) Patients. Curr Oncol 2021; 28:5278-5294. [PMID: 34940080 PMCID: PMC8700634 DOI: 10.3390/curroncol28060441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND OBJECTIVES: Molecular genetic testing using tissue biopsies can be challenging for patients due to unfavorable tumor sites, the invasive nature of a tissue biopsy, and the added time of booking a repeat biopsy (re-biopsy). Centers in Canada have found insufficient tissue rates to be approximately 10%, and even among successful biopsies, insufficient DNA in tissue samples is approximately 16%, triggering the lengthy process of re-biopsies. Using aNSCLC as an example, this study sought to characterize the health and budget impact of alternative liquid-biopsy(LBx)-based comprehensive genomic profile (CGP) testing in tissue-limited patients (TL-LBx-CGP) from a Canadian publicly funded healthcare perspective. MATERIAL AND METHODS: An economic model was developed to estimate the incremental cost and life-years gained as a population associated with adopting TL-LBx-CGP. The eligible patient population was modeled using a top-down epidemiological approach based on the published literature and expert clinician input. Treatment allocation was modeled based on biomarker prevalence in the published literature, and the availability of funded therapies. Costs included molecular testing, as well as drug, administrative, and supportive costs, and relevant health data included median overall survival and median progression-free survival data. RESULTS: Incorporation of TL-LBx-CGP demonstrated an overall impact of $14.7 million with 168 life-years gained to the Canadian publicly funded healthcare system in the 3-year time horizon.
Collapse
Affiliation(s)
- Yuti P. Patel
- Hoffmann-La Roche Ltd., Mississauga, ON L5N 5M8, Canada
- Correspondence:
| | - Donald Husereau
- School of Epidemiology, Public Health and Preventive Medicine, University of Ottawa, Ottawa, ON K1G 5Z3, Canada;
| | | | - Barbara Melosky
- British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada;
| | - Julian Nam
- Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Bldg 1/Floor 12, CH-4070 Basel, Switzerland;
| |
Collapse
|
12
|
Zhang X, Liu D, Gao Y, Lin C, An Q, Feng Y, Liu Y, Liu D, Luo H, Wang D. The Biology and Function of Extracellular Vesicles in Cancer Development. Front Cell Dev Biol 2021; 9:777441. [PMID: 34805181 PMCID: PMC8602830 DOI: 10.3389/fcell.2021.777441] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) exert their biological functions by delivering proteins, metabolites, and nucleic acids to recipient cells. EVs play important roles in cancer development. The anti-tumor effect of EVs is by their cargos carrying proteins, metabolites, and nucleic acids to affect cell-to-cell communication. The characteristics of cell-to-cell communication can potentially be applied for the therapy of cancers, such as gastric cancer. In addition, EVs can be used as an effective cargos to deliver ncRNAs, peptides, and drugs, to target tumor tissues. In addition, EVs have the ability to regulate cell apoptosis, autophagy, proliferation, and migration of cancer cells. The ncRNA and peptides that were engaged with EVs were associated with cell signaling pathways in cancer development. This review focuses on the composition, cargo, function, mechanism, and application of EVs in cancers.
Collapse
Affiliation(s)
- Xinyi Zhang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yongjian Gao
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chao Lin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China.,School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Qingwu An
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ye Feng
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yangyang Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
13
|
Li S. The basic characteristics of extracellular vesicles and their potential application in bone sarcomas. J Nanobiotechnology 2021; 19:277. [PMID: 34535153 PMCID: PMC8447529 DOI: 10.1186/s12951-021-01028-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Bone sarcomas are rare cancers accompanied by metastatic disease, mainly including osteosarcoma, Ewing sarcoma and chondrosarcoma. Extracellular vesicles (EVs) are membrane vesicles released by cells in the extracellular matrix, which carry important signal molecules, can stably and widely present in various body fluids, such as plasma, saliva and scalp fluid, spinal cord, breast milk, and urine liquid. EVs can transport almost all types of biologically active molecules (DNA, mRNA, microRNA (miRNA), proteins, metabolites, and even pharmacological compounds). In this review, we summarized the basic biological characteristics of EVs and focused on their application in bone sarcomas. EVs can be use as biomarker vehicles for diagnosis and prognosis in bone sarcomas. The role of EVs in bone sarcoma has been analyzed point-by-point. In the microenvironment of bone sarcoma, bone sarcoma cells, mesenchymal stem cells, immune cells, fibroblasts, osteoclasts, osteoblasts, and endothelial cells coexist and interact with each other. EVs play an important role in the communication between cells. Based on multiple functions in bone sarcoma, this review provides new ideas for the discovery of new therapeutic targets and new diagnostic analysis.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China.
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
14
|
Osei EB, Paniushkina L, Wilhelm K, Popp J, Nazarenko I, Krafft C. Surface-Enhanced Raman Spectroscopy to Characterize Different Fractions of Extracellular Vesicles from Control and Prostate Cancer Patients. Biomedicines 2021; 9:biomedicines9050580. [PMID: 34065470 PMCID: PMC8161280 DOI: 10.3390/biomedicines9050580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed structures ranging in size from about 60 to 800 nm that are released by the cells into the extracellular space; they have attracted interest as easily available biomarkers for cancer diagnostics. In this study, EVs from plasma of control and prostate cancer patients were fractionated by differential centrifugation at 5000× g, 12,000× g and 120,000× g. The remaining supernatants were purified by ultrafiltration to produce EV-depleted free-circulating (fc) fractions. Spontaneous Raman and surface-enhanced Raman spectroscopy (SERS) at 785 nm excitation using silver nanoparticles (AgNPs) were employed as label-free techniques to collect fingerprint spectra and identify the fractions that best discriminate between control and cancer patients. SERS spectra from 10 µL droplets showed an enhanced Raman signature of EV-enriched fractions that were much more intense for cancer patients than controls. The Raman spectra of dehydrated pellets of EV-enriched fractions without AgNPs were dominated by spectral contributions of proteins and showed variations in S-S stretch, tryptophan and protein secondary structure bands between control and cancer fractions. We conclude that the AgNPs-mediated SERS effect strongly enhances Raman bands in EV-enriched fractions, and the fractions, EV12 and EV120 provide the best separation of cancer and control patients by Raman and SERS spectra.
Collapse
Affiliation(s)
- Eric Boateng Osei
- Leibniz Institute of Photonic Technology, Member of Research Alliance “Health Technologies“, Albert-Einstein-Straße 9, 07745 Jena, Germany; (E.B.O.); (J.P.)
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Liliia Paniushkina
- Medical Center University Freiburg, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (L.P.); (I.N.)
| | - Konrad Wilhelm
- Center for Surgery, Medical Center, Department of Urology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany;
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Research Alliance “Health Technologies“, Albert-Einstein-Straße 9, 07745 Jena, Germany; (E.B.O.); (J.P.)
- Institute of Physical Chemistry and Abbe School of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Irina Nazarenko
- Medical Center University Freiburg, Institute for Infection Prevention and Hospital Epidemiology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (L.P.); (I.N.)
- German Cancer Consortium, Partner Site Freiburg and German Cancer Research Center (DKFZ), Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology, Member of Research Alliance “Health Technologies“, Albert-Einstein-Straße 9, 07745 Jena, Germany; (E.B.O.); (J.P.)
- Correspondence: ; Tel.: +49-3641-206306
| |
Collapse
|
15
|
Xue D, Han J, Liu Y, Tuo H, Peng Y. Current perspectives on exosomes in the diagnosis and treatment of hepatocellular carcinoma (review). Cancer Biol Ther 2021; 22:279-290. [PMID: 33847207 PMCID: PMC8183537 DOI: 10.1080/15384047.2021.1898728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC), a malignant tumor, is poor. Tumor recurrence and metastasis are the major challenges for the treatment of HCC. Various studies have demonstrated that exosomes, which are loaded with various biomolecules including nucleic acids, lipids, and proteins are involved in the recurrence and metastasis of HCC. Additionally, exosomes mediate various biological processes, such as immune response, cell apoptosis, angiogenesis, thrombosis, autophagy, and intercellular signal transduction. In cancer, exosomes regulate cancer cell differentiation, development, and drug resistance. Circular RNAs, microRNAs, and proteins in the exosomes can serve as early diagnostic and prognostic markers for HCC. As exosomes are characterized by low immunogenicity and high stability in the tissues and circulation, they can be used to deliver the drugs in cancer therapies.
Collapse
Affiliation(s)
- Dongdong Xue
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China
| | - Jingzhao Han
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China.,Department of Graduate School, Hebei Medical University, Shijiazhuang, P. R. China
| | - Yifan Liu
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China.,Department of Graduate School, Hebei Medical University, Shijiazhuang, P. R. China
| | - Hongfang Tuo
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China
| | - Yanhui Peng
- Department of Hepatobiliary Surgery, General Hospital, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
16
|
Biadglegne F, König B, Rodloff AC, Dorhoi A, Sack U. Composition and Clinical Significance of Exosomes in Tuberculosis: A Systematic Literature Review. J Clin Med 2021; 10:E145. [PMID: 33406750 PMCID: PMC7795701 DOI: 10.3390/jcm10010145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) remains a major health issue worldwide. In order to contain TB infections, improved vaccines as well as accurate and reliable diagnostic tools are desirable. Exosomes are employed for the diagnosis of various diseases. At present, research on exosomes in TB is still at the preliminary stage. Recent studies have described isolation and characterization of Mycobacterium tuberculosis (Mtb) derived exosomes in vivo and in vitro. Mtb-derived exosomes (Mtbexo) may be critical for TB pathogenesis by delivering mycobacterial-derived components to the recipient cells. Proteomic and transcriptomic analysis of Mtbexo have revealed a variety of proteins and miRNA, which are utilized by the TB bacteria for pathogenesis. Exosomes has been isolated in body fluids, are amenable for fast detection, and could contribute as diagnostic or prognostic biomarker to disease control. Extraction of exosomes from biological fluids is essential for the exosome research and requires careful standardization for TB. In this review, we summarized the different studies on Mtbexo molecules, including protein and miRNA and the method used to detect exosomes in biological fluids and cell culture supernatants. Thus, the detection of Mtbexo molecules in biological fluids may have a potential to expedite the diagnosis of TB infection. Moreover, the analysis of Mtbexo may generate new aspects in vaccine development.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- College of Medicine and Health Sciences, Bahir Dar University, 79 Bahir Dar, Ethiopia
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Arne C. Rodloff
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; (B.K.); (A.C.R.)
| | - Anca Dorhoi
- Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
17
|
Li S, Wang W. Extracellular Vesicles in Tumors: A Potential Mediator of Bone Metastasis. Front Cell Dev Biol 2021; 9:639514. [PMID: 33869189 PMCID: PMC8047145 DOI: 10.3389/fcell.2021.639514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
As one of the most common metastatic sites, bone has a unique microenvironment for the growth and prosperity of metastatic tumor cells. Bone metastasis is a common complication for tumor patients and accounts for 15-20% of systemic metastasis, which is only secondary to lung and liver metastasis. Cancers prone to bone metastasis include lung, breast, and prostate cancer. Extracellular vesicles (EVs) are lipid membrane vesicles released from different cell types. It is clear that EVs are associated with multiple biological phenomena and are crucial for intracellular communication by transporting intracellular substances. Recent studies have implicated EVs in the development of cancer. However, the potential roles of EVs in the pathological exchange of bone cells between tumors and the bone microenvironment remain an emerging area. This review is focused on the role of tumor-derived EVs in bone metastasis and possible regulatory mechanisms.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- Department of Tissue Engineering, Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University, Shenyang, China
- *Correspondence: Shenglong Li,
| | - Wei Wang
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- Wei Wang,
| |
Collapse
|