1
|
Zhang J, Chen C, Geng Q, Li H, Wu M, Chan B, Wang S, Sheng W. ZNF263 cooperates with ZNF31 to promote the drug resistance and EMT of pancreatic cancer through transactivating RNF126. J Cell Physiol 2024; 239:e31259. [PMID: 38515383 DOI: 10.1002/jcp.31259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attribute to the aggressive local invasion, distant metastasis and drug resistance of PDAC patients, which was strongly accelerated by epithelial-mesenchymal transition (EMT). In current study, we systematically investigate the role of ZNF263/RNF126 axis in the initiation of EMT in PDAC in vitro and vivo. ZNF263 is firstly identified as a novel transactivation factor of RNF126. Both ZNF263 and RNF126 were overexpressed in PDAC tissues, which were associated with multiple advanced clinical stages and poor prognosis of PDAC patients. ZNF263 overexpression promoted cell proliferation, drug resistance and EMT in vitro via activating RNF126 following by the upregulation of Cyclin D1, N-cad, and MMP9, and the downregulation of E-cad, p21, and p27. ZNF263 silencing contributed to the opposite phenotype. Mechanistically, ZNF263 transactivated RNF126 via binding to its promoter. Further investigations revealed that ZNF263 interacted with ZNF31 to coregulate the transcription of RNF126, which in turn promoted ubiquitination-mediated degradation of PTEN. The downregulation of PTEN activated AKT/Cyclin D1 and AKT/GSK-3β/β-catenin signaling, thereby promoting the malignant phenotype of PDAC. Finally, the coordination of ZNF263 and RNF126 promotes subcutaneous tumor size and distant liver metastasis in vivo. ZNF263, as an oncogene, promotes proliferation, drug resistance and EMT of PDAC through transactivating RNF126.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chuanping Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qilong Geng
- Department of Clinical Medicine, The First Clinical College, Anhui Medical University, Hefei, Anhui, China
| | - Haoyu Li
- Department of Clinical Medicine, The First Clinical College, Anhui Medical University, Hefei, Anhui, China
| | - Mengcheng Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Boyuan Chan
- Department of Clinical Medicine, The First Clinical College, Anhui Medical University, Hefei, Anhui, China
| | - Shiyang Wang
- Department of Geriatric Surgery, The First Hospital, China Medical University, Shenyang, China
| | - Weiwei Sheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Alfonsín G, Berral-González A, Rodríguez-Alonso A, Quiroga M, De Las Rivas J, Figueroa A. Stratification of Colorectal Patients Based on Survival Analysis Shows the Value of Consensus Molecular Subtypes and Reveals the CBLL1 Gene as a Biomarker of CMS2 Tumours. Int J Mol Sci 2024; 25:1919. [PMID: 38339195 PMCID: PMC10856263 DOI: 10.3390/ijms25031919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The consensus molecular subtypes (CMSs) classification of colorectal cancer (CRC) is a system for patient stratification that can be potentially applied to therapeutic decisions. Hakai (CBLL1) is an E3 ubiquitin-ligase that induces the ubiquitination and degradation of E-cadherin, inducing epithelial-to-mesenchymal transition (EMT), tumour progression and metastasis. Using bioinformatic methods, we have analysed CBLL1 expression on a large integrated cohort of primary tumour samples from CRC patients. The cohort included survival data and was divided into consensus molecular subtypes. Colon cancer tumourspheres were used to analyse the expression of stem cancer cells markers via RT-PCR and Western blotting. We show that CBLL1 gene expression is specifically associated with canonical subtype CMS2. WNT target genes LGR5 and c-MYC show a similar association with CMS2 as CBLL1. These mRNA levels are highly upregulated in cancer tumourspheres, while CBLL1 silencing shows a clear reduction in tumoursphere size and in stem cell biomarkers. Importantly, CMS2 patients with high CBLL1 expression displayed worse overall survival (OS), which is similar to that associated with CMS4 tumours. Our findings reveal CBLL1 as a specific biomarker for CMS2 and the potential of using CMS2 with high CBLL1 expression to stratify patients with poor OS.
Collapse
Affiliation(s)
- Gloria Alfonsín
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), 15006 A Coruña, Spain; (G.A.); (A.R.-A.); (M.Q.)
| | - Alberto Berral-González
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL & IBSAL), Consejo Superior de Investigaciones Cientificas (CSIC), University of Salamanca (USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Andrea Rodríguez-Alonso
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), 15006 A Coruña, Spain; (G.A.); (A.R.-A.); (M.Q.)
| | - Macarena Quiroga
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), 15006 A Coruña, Spain; (G.A.); (A.R.-A.); (M.Q.)
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL & IBSAL), Consejo Superior de Investigaciones Cientificas (CSIC), University of Salamanca (USAL) and Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain;
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), 15006 A Coruña, Spain; (G.A.); (A.R.-A.); (M.Q.)
| |
Collapse
|
3
|
Qiao X, Lin J, Shen J, Chen Y, Zheng L, Ren H, Zhao X, Yang H, Li P, Wang Z. FBXO28 suppresses liver cancer invasion and metastasis by promoting PKA-dependent SNAI2 degradation. Oncogene 2023; 42:2878-2891. [PMID: 37596321 PMCID: PMC10516749 DOI: 10.1038/s41388-023-02809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
FBXO28 is a member of F-box proteins that are the substrate receptors of SCF (SKP1, CULLIN1, F-box protein) ubiquitin ligase complexes. Despite the implications of its role in cancer, the function of FBXO28 in epithelial-mesenchymal transition (EMT) process and metastasis for cancer remains largely unknown. Here, we report that FBXO28 is a critical negative regulator of migration, invasion and metastasis in human hepatocellular carcinoma (HCC) in vitro and in vivo. FBXO28 expression is upregulated in human epithelial cancer cell lines relative to mesenchymal counterparts. Mechanistically, by directly binding to SNAI2, FBXO28 functions as an E3 ubiquitin ligase that targets the substrate for degradation via ubiquitin proteasome system. Importantly, we establish a cooperative function for PKA in FBXO28-mediated SNAI2 degradation. In clinical HCC specimens, FBXO28 protein levels positively whereas negatively correlate with PKAα and SNAI2 levels, respectively. Low FBXO28 or PRKACA expression is associated with poor prognosis of HCC patients. Together, these findings elucidate the novel function of FBXO28 as a critical inhibitor of EMT and metastasis in cancer and provide a mechanistic rationale for its candidacy as a new prognostic marker and/or therapeutic target in human aggressive HCC.
Collapse
Affiliation(s)
- Xinran Qiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingyu Lin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajia Shen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyun Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hangjiang Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Yang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Pengyu Li
- Qilu Hospital of Shan Dong University, Jinan, Shandong Province, China
| | - Zhen Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Li XM, Zhao ZY, Yu X, Xia QD, Zhou P, Wang SG, Wu HL, Hu J. Exploiting E3 ubiquitin ligases to reeducate the tumor microenvironment for cancer therapy. Exp Hematol Oncol 2023; 12:34. [PMID: 36998063 DOI: 10.1186/s40164-023-00394-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
AbstractTumor development relies on a complex and aberrant tissue environment in which cancer cells receive the necessary nutrients for growth, survive through immune escape, and acquire mesenchymal properties that mediate invasion and metastasis. Stromal cells and soluble mediators in the tumor microenvironment (TME) exhibit characteristic anti-inflammatory and protumorigenic activities. Ubiquitination, which is an essential and reversible posttranscriptional modification, plays a vital role in modulating the stability, activity and localization of modified proteins through an enzymatic cascade. This review was motivated by accumulating evidence that a series of E3 ligases and deubiquitinases (DUBs) finely target multiple signaling pathways, transcription factors and key enzymes to govern the functions of almost all components of the TME. In this review, we systematically summarize the key substrate proteins involved in the formation of the TME and the E3 ligases and DUBs that recognize these proteins. In addition, several promising techniques for targeted protein degradation by hijacking the intracellular E3 ubiquitin-ligase machinery are introduced.
Collapse
|
5
|
Yoon JY, Seo SU, Woo SM, Kwon TK. USP41 Enhances Epithelial-Mesenchymal Transition of Breast Cancer Cells through Snail Stabilization. Int J Mol Sci 2023; 24:ijms24021693. [PMID: 36675208 PMCID: PMC9863231 DOI: 10.3390/ijms24021693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Ubiquitination, one of many post-translational modifications, causes proteasome-mediated protein degradation by attaching ubiquitin to target proteins. Multiple deubiquitinases inhibit the ubiquitination pathway by removing the ubiquitin chain from protein, thus contributing to the stabilization of substrates. USP41 contributes to invasion, apoptosis and drug resistance in breast and lung cancer cells. However, the detailed mechanism and role of USP41 in breast cancer have not been elucidated. USP41 was overexpressed and showed poor prognosis according to the aggressive phenotype of breast cancer cells. Knockdown of USP41 inhibited migration and growth of breast cancer cells, whereas overexpression of USP41 increased cell growth and migration. In addition, depletion of USP41 downregulated Snail protein expression, an epithelial-mesenchymal transition marker, but not mRNA expression. Furthermore, USP41 interacted with and inhibited ubiquitination of Snail, resulting in the increase in Snail stabilization. Therefore, these data demonstrated that USP41 increases migration of breast cancer cells through Snail stabilization.
Collapse
Affiliation(s)
- Ji-Yun Yoon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Seung-Un Seo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Seon-Min Woo
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Taeg-Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu 42601, Republic of Korea
- Correspondence: ; Tel.: +82-53-258-7358
| |
Collapse
|
6
|
Roca-Lema D, Quiroga M, Khare V, Díaz-Díaz A, Barreiro-Alonso A, Rodríguez-Alonso A, Concha Á, Romay G, Cerdán ME, Gasche C, Figueroa A. Role of the E3 ubiquitin-ligase Hakai in intestinal inflammation and cancer bowel disease. Sci Rep 2022; 12:17571. [PMID: 36266428 PMCID: PMC9584894 DOI: 10.1038/s41598-022-22295-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023] Open
Abstract
The E3 ubiquitin-ligases are important for cellular protein homeostasis and their deregulation is implicated in cancer. The E3 ubiquitin-ligase Hakai is involved in tumour progression and metastasis, through the regulation of the tumour suppressor E-cadherin. Hakai is overexpressed in colon cancer, however, the implication in colitis-associated cancer is unknown. Here, we investigated the potential role of Hakai in intestinal inflammation and cancer bowel disease. Several mouse models of colitis and associated cancer were used to analyse Hakai expression by immunohistochemistry. We also analysed Hakai expression in patients with inflamed colon biopsies from ulcerative colitis and Crohn's disease. By Hakai interactome analysis, it was identified Fatty Acid Synthase (FASN) as a novel Hakai-interacting protein. Moreover, we show that Hakai induces FASN ubiquitination and degradation via lysosome, thus regulating FASN-mediated lipid accumulation. An inverse expression of FASN and Hakai was detected in inflammatory AOM/DSS mouse model. In conclusion, Hakai regulates FASN ubiquitination and degradation, resulting in the regulation of FASN-mediated lipid accumulation, which is associated to the development of inflammatory bowel disease. The interaction between Hakai and FASN may be an important mechanism for the homeostasis of intestinal barrier function and in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Daniel Roca-Lema
- grid.8073.c0000 0001 2176 8535Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias, 15006 A Coruña, Spain
| | - Macarena Quiroga
- grid.8073.c0000 0001 2176 8535Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias, 15006 A Coruña, Spain
| | - Vineeta Khare
- grid.22937.3d0000 0000 9259 8492Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrea Díaz-Díaz
- grid.8073.c0000 0001 2176 8535Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias, 15006 A Coruña, Spain
| | - Aida Barreiro-Alonso
- grid.18886.3fFunctional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK ,grid.8073.c0000 0001 2176 8535EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de BioloxíaFacultade de Ciencias, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - Andrea Rodríguez-Alonso
- grid.8073.c0000 0001 2176 8535Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias, 15006 A Coruña, Spain
| | - Ángel Concha
- grid.411066.40000 0004 1771 0279Pathology Department and A Coruña Biobank From INIBIC, CHUAC, Sergas, UDC, A Coruña, Spain
| | - Gabriela Romay
- grid.8073.c0000 0001 2176 8535Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias, 15006 A Coruña, Spain
| | - M. Esperanza Cerdán
- grid.8073.c0000 0001 2176 8535EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de BioloxíaFacultade de Ciencias, Universidade da Coruña, Campus da Zapateira, A Coruña, Spain
| | - Christoph Gasche
- grid.22937.3d0000 0000 9259 8492Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Angélica Figueroa
- grid.8073.c0000 0001 2176 8535Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), As Xubias, 15006 A Coruña, Spain
| |
Collapse
|
7
|
Quiroga M, Rodríguez-Alonso A, Alfonsín G, Rodríguez JJE, Breijo SM, Chantada V, Figueroa A. Protein Degradation by E3 Ubiquitin Ligases in Cancer Stem Cells. Cancers (Basel) 2022; 14:cancers14040990. [PMID: 35205738 PMCID: PMC8870109 DOI: 10.3390/cancers14040990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The aim of this review was to discuss the fundamental role of E3 ubiquitin ligases in controlling cancer stem cells. It will be surmised that protein degradation controlled by the E3 ubiquitin ligases plays a fundamental role in the self-renewal, maintenance and differentiation of cancer stem cells, highlighting its potential as an effective therapeutic target for anticancer drug development. Abstract Cancer stem cells are a small subpopulation within the tumor with high capacity for self-renewal, differentiation and reconstitution of tumor heterogeneity. Cancer stem cells are major contributors of tumor initiation, metastasis and therapy resistance in cancer. Emerging evidence indicates that ubiquitination-mediated post-translational modification plays a fundamental role in the maintenance of cancer stem cell characteristics. In this review, we will discuss how protein degradation controlled by the E3 ubiquitin ligases plays a fundamental role in the self-renewal, maintenance and differentiation of cancer stem cells, highlighting the possibility to develop novel therapeutic strategies against E3 ubiquitin ligases targeting CSCs to fight cancer.
Collapse
|
8
|
Jin JO, Puranik N, Bui QT, Yadav D, Lee PCW. The Ubiquitin System: An Emerging Therapeutic Target for Lung Cancer. Int J Mol Sci 2021; 22:9629. [PMID: 34502538 PMCID: PMC8431782 DOI: 10.3390/ijms22179629] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
The ubiquitin system, present in all eukaryotes, contributes to regulating multiple types of cellular protein processes such as cell signaling, cell cycle, and receptor trafficking, and it affects the immune response. In most types of cancer, unusual events in ubiquitin-mediated signaling pathway modulation can lead to a variety of clinical outcomes, including tumor formation and metastasis. Similarly, ubiquitination acts as a core component, which contributes to the alteration of cell signaling activity, dictating biosignal turnover and protein fates. As lung cancer acquires the most commonly mutated proteins, changes in the ubiquitination of the proteins contribute to the development of lung cancer. Various inhibitors targeting the ubiquitin system have been developed for clinical applications in lung cancer treatment. In this review, we summarize the current research advances in therapeutics for lung cancer by targeting the ubiquitin system.
Collapse
Affiliation(s)
- Jun-O Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore 641046, Tamil Nadu, India;
| | - Quyen Thu Bui
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| |
Collapse
|