1
|
Kohler KT, Kim J, Villadsen R, Rønnov-Jessen L, Petersen OW. Oncogene activated human breast luminal progenitors contribute basally located myoepithelial cells. Breast Cancer Res 2024; 26:183. [PMID: 39695857 DOI: 10.1186/s13058-024-01939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Basal-like breast cancer originates in luminal progenitors, frequently with an altered PI3K pathway, and focally in close association with genetically altered myoepithelial cells at the site of tumor initiation. The exact trajectory behind this bi-lineage phenomenon remains poorly understood. METHODS AND RESULTS Here we used a breast cancer relevant transduction protocol including hTERT, shp16, shp53, and PIK3CAH1047R to immortalize FACS isolated luminal cells, and we identified a candidate multipotent progenitor. Specifically, we identified a keratin 23 (K23)+/ALDH1A3+/CALML5- ductal-like progenitor with the potential to differentiate into CALML5+ lobular-like cells. We found that the apparent luminal phenotype of these oncogene transduced progenitors was metastable giving rise to basal-like cells dependent on culture conditions. In 3D organoid culture and upon transplantation to mice the bipotent progenitor cell line organized into a bi-layered acinus-like structure reminiscent of that of the normal breast gland. CONCLUSIONS These findings provide proof of principle that progenitors within the human breast luminal epithelial compartment may serve as a source of correctly positioned myoepithelial cells. This may prove useful in assessing the role of myoepithelial cells in breast tumor progression.
Collapse
Affiliation(s)
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Tkáčiková S, Marcin M, Bober P, Kacírová M, Šuliková M, Parnica J, Tóth D, Lenárt M, Radoňak J, Urdzík P, Fedačko J, Sabo J. B Cell Lymphocytes as a Potential Source of Breast Carcinoma Marker Candidates. Int J Mol Sci 2024; 25:7351. [PMID: 39000458 PMCID: PMC11242293 DOI: 10.3390/ijms25137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Despite advances in the genomic classification of breast cancer, current clinical tests and treatment decisions are commonly based on protein-level information. Nowadays breast cancer clinical treatment selection is based on the immunohistochemical (IHC) determination of four protein biomarkers: Estrogen Receptor 1 (ESR1), Progesterone Receptor (PGR), Human Epidermal Growth Factor Receptor 2 (HER2), and proliferation marker Ki-67. The prognostic correlation of tumor-infiltrating T cells has been widely studied in breast cancer, but tumor-infiltrating B cells have not received so much attention. We aimed to find a correlation between immunohistochemical results and a proteomic approach in measuring the expression of proteins isolated from B-cell lymphocytes in peripheral blood samples. Shotgun proteomic analysis was chosen for its key advantage over other proteomic methods, which is its comprehensive and untargeted approach to analyzing proteins. This approach facilitates better characterization of disease-associated changes at the protein level. We identified 18 proteins in B cell lymphocytes with a significant fold change of more than 2, which have promising potential to serve as breast cancer biomarkers in the future.
Collapse
Affiliation(s)
- Soňa Tkáčiková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Miroslav Marcin
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Mária Kacírová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.K.); (J.F.)
| | - Michaela Šuliková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Jozef Parnica
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Dávid Tóth
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.T.); (P.U.)
| | - Marek Lenárt
- 1st Department of Surgery, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.L.); (J.R.)
| | - Jozef Radoňak
- 1st Department of Surgery, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.L.); (J.R.)
| | - Peter Urdzík
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.T.); (P.U.)
| | - Ján Fedačko
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.K.); (J.F.)
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| |
Collapse
|
3
|
Mazzucchelli S, Signati L, Messa L, Franceschini A, Bonizzi A, Castagnoli L, Gasparini P, Consolandi C, Mangano E, Pelucchi P, Cifola I, Camboni T, Severgnini M, Villani L, Tagliaferri B, Carelli S, Pupa SM, Cereda C, Corsi F. Breast cancer patient-derived organoids for the investigation of patient-specific tumour evolution. Cancer Cell Int 2024; 24:220. [PMID: 38926706 PMCID: PMC11210105 DOI: 10.1186/s12935-024-03375-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND A reliable preclinical model of patient-derived organoids (PDOs) was developed in a case study of a 69-year-old woman diagnosed with breast cancer (BC) to investigate the tumour evolution before and after neoadjuvant chemotherapy and surgery. The results were achieved due to the development of PDOs from tissues collected before (O-PRE) and after (O-POST) treatment. METHODS PDO cultures were characterized by histology, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), confocal microscopy, flow cytometry, real-time PCR, bulk RNA-seq, single-cell RNA sequencing (scRNA-seq) and drug screening. RESULTS Both PDO cultures recapitulated the histological and molecular profiles of the original tissues, and they showed typical mammary gland organization, confirming their reliability as a personalized in vitro model. Compared with O-PRE, O-POST had a greater proliferation rate with a significant increase in the Ki67 proliferation index. Moreover O-POST exhibited a more stem-like and aggressive phenotype, with increases in the CD24low/CD44low and EPCAMlow/CD49fhigh cell populations characterized by increased tumour initiation potential and multipotency and metastatic potential in invasive lobular carcinoma. Analysis of ErbB receptor expression indicated a decrease in HER-2 expression coupled with an increase in EGFR expression in O-POST. In this context, deregulation of the PI3K/Akt signalling pathway was assessed by transcriptomic analysis, confirming the altered transcriptional profile. Finally, transcriptomic single-cell analysis identified 11 cell type clusters, highlighting the selection of the luminal component and the decrease in the number of Epithelial-mesenchymal transition cell types in O-POST. CONCLUSION Neoadjuvant treatment contributed to the enrichment of cell populations with luminal phenotypes that were more resistant to chemotherapy in O-POST. PDOs represent an excellent 3D cell model for assessing disease evolution.
Collapse
Affiliation(s)
- Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Via G. B. Grassi 74, 20157, Milan, Italy.
| | - Lorena Signati
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Via G. B. Grassi 74, 20157, Milan, Italy
| | - Letizia Messa
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133, Milan, Italy
- Pediatric Research Center "Romeo and Enrica Invernizzi", Università di Milano, 20157, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, 20154, Milan, Italy
| | - Alma Franceschini
- Microenvironment and Biomarkers of Solid Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Arianna Bonizzi
- Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Lorenzo Castagnoli
- Microenvironment and Biomarkers of Solid Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Patrizia Gasparini
- Epigenomics and Biomarkers of Solid Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Clarissa Consolandi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via F. lli Cervi 93, 20054, Segrate, Italy
| | - Eleonora Mangano
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via F. lli Cervi 93, 20054, Segrate, Italy
| | - Paride Pelucchi
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via F. lli Cervi 93, 20054, Segrate, Italy
| | - Ingrid Cifola
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via F. lli Cervi 93, 20054, Segrate, Italy
| | - Tania Camboni
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via F. lli Cervi 93, 20054, Segrate, Italy
| | - Marco Severgnini
- Institute for Biomedical Technologies, National Research Council (ITB-CNR), Via F. lli Cervi 93, 20054, Segrate, Italy
| | - Laura Villani
- Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | | | - Stephana Carelli
- Pediatric Research Center "Romeo and Enrica Invernizzi", Università di Milano, 20157, Milan, Italy
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, 20154, Milan, Italy
| | - Serenella M Pupa
- Microenvironment and Biomarkers of Solid Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133, Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, 20154, Milan, Italy
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Via G. B. Grassi 74, 20157, Milan, Italy.
- Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
4
|
Shih JW, Wu ATH, Mokgautsi N, Wei PL, Huang YJ. Preclinical Repurposing of Sitagliptin as a Drug Candidate for Colorectal Cancer by Targeting CD24/ CTNNB1/ SOX4-Centered Signaling Hub. Int J Mol Sci 2024; 25:609. [PMID: 38203779 PMCID: PMC10778938 DOI: 10.3390/ijms25010609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Despite significant advances in treatment modalities, colorectal cancer (CRC) remains a poorly understood and highly lethal malignancy worldwide. Cancer stem cells (CSCs) and the tumor microenvironment (TME) have been shown to play critical roles in initiating and promoting CRC progression, metastasis, and treatment resistance. Therefore, a better understanding of the underlying mechanisms contributing to the generation and maintenance of CSCs is crucial to developing CSC-specific therapeutics and improving the current standard of care for CRC patients. To this end, we used a bioinformatics approach to identify increased CD24/SOX4 expression in CRC samples associated with poor prognosis. We also discovered a novel population of tumor-infiltrating CD24+ cancer-associated fibroblasts (CAFs), suggesting that the CD24/SOX4-centered signaling hub could be a potential therapeutic target. Pathway networking analysis revealed a connection between the CD24/SOX4-centered signaling, β-catenin, and DPP4. Emerging evidence indicates that DPP4 plays a role in CRC initiation and progression, implicating its involvement in generating CSCs. Based on these bioinformatics data, we investigated whether sitagliptin, a DPP4 inhibitor and diabetic drug, could be repurposed to inhibit colon CSCs. Using a molecular docking approach, we demonstrated that sitagliptin targeted CD24/SOX4-centered signaling molecules with high affinity. In vitro experimental data showed that sitagliptin treatment suppressed CRC tumorigenic properties and worked in synergy with 5FU and this study thus provided preclinical evidence to support the alternative use of sitagliptin for treating CRC.
Collapse
Affiliation(s)
- Jing-Wen Shih
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (J.-W.S.); (N.M.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Alexander T. H. Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; (J.-W.S.); (N.M.)
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Yan-Jiun Huang
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
5
|
Liu J, Wu R, Yuan S, Kelleher R, Chen S, Chen R, Zhang T, Obaidi I, Sheridan H. Pharmacogenomic Analysis of Combined Therapies against Glioblastoma Based on Cell Markers from Single-Cell Sequencing. Pharmaceuticals (Basel) 2023; 16:1533. [PMID: 38004399 PMCID: PMC10675611 DOI: 10.3390/ph16111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/01/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is the most common and aggressive form of primary brain cancer and the lack of viable treatment options has created an urgency to develop novel treatments. Personalized or predictive medicine is still in its infancy stage at present. This research aimed to discover biomarkers to inform disease progression and to develop personalized prophylactic and therapeutic strategies by combining state-of-the-art technologies such as single-cell RNA sequencing, systems pharmacology, and a polypharmacological approach. As predicted in the pyroptosis-related gene (PRG) transcription factor (TF) microRNA (miRNA) regulatory network, TP53 was the hub gene in the pyroptosis process in glioblastoma (GBM). A LASSO Cox regression model of pyroptosis-related genes was built to accurately and conveniently predict the one-, two-, and three-year overall survival rates of GBM patients. The top-scoring five natural compounds were parthenolide, rutin, baeomycesic acid, luteolin, and kaempferol, which have NFKB inhibition, antioxidant, lipoxygenase inhibition, glucosidase inhibition, and estrogen receptor agonism properties, respectively. In contrast, the analysis of the cell-type-specific differential expression-related targets of natural compounds showed that the top five subtype cells targeted by natural compounds were endothelial cells, microglia/macrophages, oligodendrocytes, dendritic cells, and neutrophil cells. The current approach-using the pharmacogenomic analysis of combined therapies-serves as a model for novel personalized therapeutic strategies for GBM treatment.
Collapse
Affiliation(s)
- Junying Liu
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (T.Z.); (I.O.); (H.S.)
| | - Ruixin Wu
- Preclinical Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274, Zhijiang Road, Jing’an District, Shanghai 200071, China;
| | - Shouli Yuan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
| | - Robbie Kelleher
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | - Siying Chen
- The Second Affiliated Hospital, Nanchang University, Nanchang 330031, China;
| | - Rongfeng Chen
- National Center for Occupational Safety and Health, NHC, Beijing 102308, China;
| | - Tao Zhang
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (T.Z.); (I.O.); (H.S.)
- School of Food Science & Environmental Health, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Ismael Obaidi
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (T.Z.); (I.O.); (H.S.)
| | - Helen Sheridan
- NatPro Center, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (T.Z.); (I.O.); (H.S.)
| |
Collapse
|
6
|
Lin TC. RUNX2 and Cancer. Int J Mol Sci 2023; 24:ijms24087001. [PMID: 37108164 PMCID: PMC10139076 DOI: 10.3390/ijms24087001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Runt-related transcription factor 2 (RUNX2) is critical for the modulation of chondrocyte osteoblast differentiation and hypertrophy. Recently discovered RUNX2 somatic mutations, expressional signatures of RUNX2 in normal tissues and tumors, and the prognostic and clinical significance of RUNX2 in many types of cancer have attracted attention and led RUNX2 to be considered a biomarker for cancer. Many discoveries have illustrated the indirect and direct biological functions of RUNX2 in orchestrating cancer stemness, cancer metastasis, angiogenesis, proliferation, and chemoresistance to anticancer compounds, warranting further exploration of the associated mechanisms to support the development of a novel therapeutic strategy. In this review, we focus mainly on critical and recent research developments, including RUNX2's oncogenic activities, by summarizing and integrating the findings on somatic mutations of RUNX2, transcriptomic studies, clinical information, and discoveries about how the RUNX2-induced signaling pathway modulates malignant progression in cancer. We also comprehensively discuss RUNX2 RNA expression in a pancancer panel and in specific normal cell types at the single-cell level to indicate the potential cell types and sites for tumorigenesis. We expect this review to shed light on the recent mechanistical findings and modulatory role of RUNX2 in cancer progression and provide biological information that can guide new research in this field.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 333, Taiwan
| |
Collapse
|
7
|
Fang WB, Medrano M, Cote P, Portsche M, Rao V, Hong Y, Behbod F, Knapp JR, Bloomer C, Noel-Macdonnell J, Cheng N. Transcriptome analysis reveals differences in cell cycle, growth and migration related genes that distinguish fibroblasts derived from pre-invasive and invasive breast cancer. Front Oncol 2023; 13:1130911. [PMID: 37091166 PMCID: PMC10118028 DOI: 10.3389/fonc.2023.1130911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Background/Introduction As the most common form of pre-invasive breast cancer, ductal carcinoma in situ (DCIS) affects over 50,000 women in the US annually. Despite standardized treatment involving lumpectomy and radiation therapy, up to 25% of patients with DCIS experience disease recurrence often with invasive ductal carcinoma (IDC), indicating that a subset of patients may be under-treated. As most DCIS cases will not progress to invasion, many patients may experience over-treatment. By understanding the underlying processes associated with DCIS to IDC progression, we can identify new biomarkers to determine which DCIS cases may become invasive and improve treatment for patients. Accumulation of fibroblasts in IDC is associated with disease progression and reduced survival. While fibroblasts have been detected in DCIS, little is understood about their role in DCIS progression. Goals We sought to determine 1) whether DCIS fibroblasts were similar or distinct from normal and IDC fibroblasts at the transcriptome level, and 2) the contributions of DCIS fibroblasts to breast cancer progression. Methods Fibroblasts underwent transcriptome profiling and pathway analysis. Significant DCIS fibroblast-associated genes were further analyzed in existing breast cancer mRNA databases and through tissue array immunostaining. Using the sub-renal capsule graft model, fibroblasts from normal breast, DCIS and IDC tissues were co-transplanted with DCIS.com breast cancer cells. Results Through transcriptome profiling, we found that DCIS fibroblasts were characterized by unique alterations in cell cycle and motility related genes such as PKMYT1, TGF-α, SFRP1 and SFRP2, which predicted increased cell growth and invasion by Ingenuity Pathway Analysis. Immunostaining analysis revealed corresponding increases in expression of stromal derived PKMYT1, TGF-α and corresponding decreases in expression of SFRP1 and SFRP2 in DCIS and IDC tissues. Grafting studies in mice revealed that DCIS fibroblasts enhanced breast cancer growth and invasion associated with arginase-1+ cell recruitment. Conclusion DCIS fibroblasts are phenotypically distinct from normal breast and IDC fibroblasts, and play an important role in breast cancer growth, invasion, and recruitment of myeloid cells. These studies provide novel insight into the role of DCIS fibroblasts in breast cancer progression and identify some key biomarkers associated with DCIS progression to IDC, with important clinical implications.
Collapse
Affiliation(s)
- Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marcela Medrano
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paige Cote
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mike Portsche
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Vinamratha Rao
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Yan Hong
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer R. Knapp
- Center for Genes Environment and Health, National Jewish Health, Denver, CO, United States
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Clark Bloomer
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Janelle Noel-Macdonnell
- Biostatistics and Epidemiology Core, Health Services and Outcomes Research Children’s Mercy Hospital, Kansas City, MO, United States
- Department of Pediatrics, University of Missouri-Kansas City (UMKC) School of Medicine, Kansas City, MO, United States
| | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
8
|
Li M, Quintana A, Alberts E, Hung MS, Boulat V, Ripoll MM, Grigoriadis A. B Cells in Breast Cancer Pathology. Cancers (Basel) 2023; 15:1517. [PMID: 36900307 PMCID: PMC10000926 DOI: 10.3390/cancers15051517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
B cells have recently become a focus in breast cancer pathology due to their influence on tumour regression, prognosis, and response to treatment, besides their contribution to antigen presentation, immunoglobulin production, and regulation of adaptive responses. As our understanding of diverse B cell subsets in eliciting both pro- and anti-inflammatory responses in breast cancer patients increases, it has become pertinent to address the molecular and clinical relevance of these immune cell populations within the tumour microenvironment (TME). At the primary tumour site, B cells are either found spatially dispersed or aggregated in so-called tertiary lymphoid structures (TLS). In axillary lymph nodes (LNs), B cell populations, amongst a plethora of activities, undergo germinal centre reactions to ensure humoral immunity. With the recent approval for the addition of immunotherapeutic drugs as a treatment option in the early and metastatic settings for triple-negative breast cancer (TNBC) patients, B cell populations or TLS may resemble valuable biomarkers for immunotherapy responses in certain breast cancer subgroups. New technologies such as spatially defined sequencing techniques, multiplex imaging, and digital technologies have further deciphered the diversity of B cells and the morphological structures in which they appear in the tumour and LNs. Thus, in this review, we comprehensively summarise the current knowledge of B cells in breast cancer. In addition, we provide a user-friendly single-cell RNA-sequencing platform, called "B singLe cEll rna-Seq browSer" (BLESS) platform, with a focus on the B cells in breast cancer patients to interrogate the latest publicly available single-cell RNA-sequencing data collected from diverse breast cancer studies. Finally, we explore their clinical relevance as biomarkers or molecular targets for future interventions.
Collapse
Affiliation(s)
- Mengyuan Li
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| | | | - Elena Alberts
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Miu Shing Hung
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| | - Victoire Boulat
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Mercè Martí Ripoll
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
- Breast Cancer Now Unit, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, UK
| |
Collapse
|
9
|
Oxidative Stress Response Biomarkers of Ovarian Cancer Based on Single-Cell and Bulk RNA Sequencing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1261039. [PMID: 36743693 PMCID: PMC9897923 DOI: 10.1155/2023/1261039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 01/28/2023]
Abstract
Background The occurrence and development of ovarian cancer (OV) are significantly influenced by increased levels of oxidative stress (OS) byproducts and the lack of an antioxidant stress repair system. Hence, it is necessary to explore the markers related to OS in OV, which can aid in predicting the prognosis and immunotherapeutic response in patients with OV. Methods The single-cell RNA-sequencing (scRNA-seq) dataset GSE146026 was retrieved from the Gene Expression Omnibus (GEO) database, and Bulk RNA-seq data were obtained from TCGA and GTEx databases. The Seurat R package and SingleR package were used to analyze scRNA-seq and to identify OS response-related clusters based on ROS markers. The "limma" R package was used to identify the differentially expressed genes (DEGs) between normal and ovarian samples. The risk model was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. The immune cell infiltration, genomic mutation, and drug sensitivity of the model were analyzed using the CIBERSORT algorithm, the "maftools," and the "pRRophetic" R packages, respectively. Results Based on scRNA-seq data, we identified 12 clusters; OS response-related genes had the strongest specificity for cluster 12. A total of 151 genes were identified from 2928 DEGs to be significantly correlated with OS response. Finally, nine prognostic genes were used to construct the risk score (RS) model. The risk score model was an independent prognostic factor for OV. The gene mutation frequency and tumor immune microenvironment in the high- and low-risk score groups were significantly different. The value of the risk score model in predicting immunotherapeutic outcomes was confirmed. Conclusions OS response-related RS model could predict the prognosis and immune responses in patients with OV and provide new strategies for cancer treatment.
Collapse
|
10
|
Li M, Yan T, Wang M, Cai Y, Wei Y. Advances in Single-Cell Sequencing Technology and Its Applications in Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:465-474. [PMID: 36540278 PMCID: PMC9760048 DOI: 10.2147/bctt.s388534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/07/2022] [Indexed: 09/10/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and is mainly treated with chemotherapy-based combination therapy. In recent years, with the increasing development of global precision medicine, single-cell sequencing (SCS) has become one of the most promising technologies in the field of biotechnology. Moreover, the related application of this technology in TNBC has been applied and developed. By using SCS to study the heterogeneity of TNBC tumor cells, metastasis, drug resistance mechanisms, mutations, and cloning; it can further guide clinical chemotherapy, targeted therapy, and immunotherapy. To further reflect the importance of SCS in TNBC, this paper elaborated on and summarized the research and application progress of SCS in TNBC.
Collapse
Affiliation(s)
- Meng Li
- Graduate School of Qinghai University, Qinghai University, Xining, Qinghai Province, People’s Republic of China
| | - Tingting Yan
- Graduate School of Qinghai University, Qinghai University, Xining, Qinghai Province, People’s Republic of China
| | - Miaozhou Wang
- Graduate School of Qinghai University, Qinghai University, Xining, Qinghai Province, People’s Republic of China
| | - Yanqiu Cai
- Graduate School of Qinghai University, Qinghai University, Xining, Qinghai Province, People’s Republic of China
| | - Yingyuan Wei
- Graduate School of Qinghai University, Qinghai University, Xining, Qinghai Province, People’s Republic of China
| |
Collapse
|
11
|
Ductal keratin 15 + luminal progenitors in normal breast exhibit a basal-like breast cancer transcriptomic signature. NPJ Breast Cancer 2022; 8:81. [PMID: 35821504 PMCID: PMC9276673 DOI: 10.1038/s41523-022-00444-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Normal breast luminal epithelial progenitors have been implicated as cell of origin in basal-like breast cancer, but their anatomical localization remains understudied. Here, we combine collection under the microscope of organoids from reduction mammoplasties and single-cell mRNA sequencing (scRNA-seq) of FACS-sorted luminal epithelial cells with multicolor imaging to profile ducts and terminal duct lobular units (TDLUs) and compare them with breast cancer subtypes. Unsupervised clustering reveals eleven distinct clusters and a differentiation trajectory starting with keratin 15+ (K15+) progenitors enriched in ducts. Spatial mapping of luminal progenitors is confirmed at the protein level by staining with critical duct markers. Comparison of the gene expression profiles of normal luminal cells with those of breast cancer subtypes suggests a strong correlation between normal breast ductal progenitors and basal-like breast cancer. We propose that K15+ basal-like breast cancers originate in ductal progenitors, which emphasizes the importance of not only lineages but also cellular position within the ductal-lobular tree.
Collapse
|
12
|
Lavie D, Ben-Shmuel A, Erez N, Scherz-Shouval R. Cancer-associated fibroblasts in the single-cell era. NATURE CANCER 2022; 3:793-807. [PMID: 35883004 PMCID: PMC7613625 DOI: 10.1038/s43018-022-00411-z] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/14/2022] [Indexed: 01/28/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are central players in the microenvironment of solid tumors, affecting cancer progression and metastasis. CAFs have diverse phenotypes, origins and functions and consist of distinct subpopulations. Recent progress in single-cell RNA-sequencing technologies has enabled detailed characterization of the complexity and heterogeneity of CAF subpopulations in multiple tumor types. In this Review, we discuss the current understanding of CAF subsets and functions as elucidated by single-cell technologies, their functional plasticity, and their emergent shared and organ-specific features that could potentially be harnessed to design better therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Dor Lavie
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Ben-Shmuel
- Department of Biomolecular Sciences, the Weizmann Institute of Science, Rehovot, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Updated Functional Roles of NAMPT in Carcinogenesis and Therapeutic Niches. Cancers (Basel) 2022; 14:cancers14092059. [PMID: 35565188 PMCID: PMC9103253 DOI: 10.3390/cancers14092059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The advantages and applications of using the non-invasive way to detect serum biomarkers for assessing cancer diagnosis and prognosis have been explored. Nicotinamide phosphoribosyltransferase (NAMPT), also designated as pre-B-cell colony-enhancing factor (PBEF) or visfatin, is a secreted adipokine known to modulate tumor malignancies. Its significance in predicting cancer patient’s survival outcome further renders the implementation of NAMPT in clinical practice. In this review, recent discoveries of NAMPT in cancer studies were focused and integrated. We aim to provide updates for researchers who are proposing relevant objectives. Abstract Nicotinamide phosphoribosyltransferase (NAMPT) is notable for its regulatory roles in tumor development and progression. Emerging evidence regarding NAMPT somatic mutations in cancer patients, NAMPT expressional signatures in normal tissues and cancers, and the prognostic significance of NAMPT in many cancer types has attracted attention, and NAMPT is considered a potential biomarker of cancer. Recent discoveries have demonstrated the indirect association and direct biological functions of NAMPT in modulating cancer metastasis, proliferation, angiogenesis, cancer stemness, and chemoresistance to anticancer drugs. These findings warrant further investigation of the underlying mechanisms to provide knowledge for developing novel cancer therapeutics. In this review article, we explore recent research developments involving the oncogenic activities of NAMPT by summarizing current knowledge regarding NAMPT somatic mutations, clinical trials, transcriptome data, and clinical information and discoveries related to the NAMPT-induced signaling pathway in modulating hallmarks of cancer. Furthermore, the comprehensive representation of NAMPT RNA expression in a pancancer panel as well as in specific normal cell types at single-cell level are demonstrated. The results suggest potential sites and cell types that could facilitate NAMPT-related tumorigenesis. With this review, we aim to shed light on the regulatory roles of NAMPT in tumor development and progression, and provide information to guide future research directions in this field.
Collapse
|
14
|
Gudd CLC, Possamai LA. The Role of Myeloid Cells in Hepatotoxicity Related to Cancer Immunotherapy. Cancers (Basel) 2022; 14:1913. [PMID: 35454819 PMCID: PMC9027811 DOI: 10.3390/cancers14081913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Drug-related hepatotoxicity is an emerging clinical challenge with the widening use of immunotherapeutic agents in the field of oncology. This is an important complication to consider as more immune oncological targets are being identified to show promising results in clinical trials. The application of these therapeutics may be complicated by the development of immune-related adverse events (irAEs), a serious limitation often requiring high-dose immunosuppression and discontinuation of cancer therapy. Hepatoxicity presents one of the most frequently encountered irAEs and a better understanding of the underlying mechanism is crucial for the development of alternative therapeutic interventions. As a novel drug side effect, the immunopathogenesis of the condition is not completely understood. In the liver, myeloid cells play a central role in the maintenance of homeostasis and promotion of inflammation. Recent research has identified myeloid cells to be associated with hepatic adverse events of various immune modulatory monoclonal antibodies. In this review article, we provide an overview of the role of myeloid cells in the immune pathogenesis during hepatoxicity related to cancer immunotherapies and highlight potential treatment options.
Collapse
Affiliation(s)
- Cathrin L. C. Gudd
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Lucia A. Possamai
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
15
|
Lin TC. RUNX1 and cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188715. [DOI: 10.1016/j.bbcan.2022.188715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
16
|
Huang RH, Wang LX, He J, Gao W. Application and prospects of single cell sequencing in tumors. Biomark Res 2021; 9:88. [PMID: 34895349 PMCID: PMC8665603 DOI: 10.1186/s40364-021-00336-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is an intricate disease with inherent intra-tumor heterogeneity at the cellular level because of genetic changes and environmental differences. Cellular heterogeneity exists even within the same tumor type. Small deviations in a genome or transcriptome can lead to significant differences in function. Conventional bulk population sequencing, which produces admixed populations of cells, can only provide an average expression signal for one cell population, ignoring differences between individual cells. Important advances in sequencing have been made in recent years. Single cell sequencing starts in a single cell, thereby increasing our capability to characterize intratumor heterogeneity. This technology has been used to analyze genetic variation, specific metabolic activity, and evolutionary processes in tumors, which may help us understand tumor occurrence and development and improve our understanding of the tumor microenvironment. In addition, it provides a theoretical basis for the development of clinical treatments, especially for personalized medicine. In this article, we briefly introduce Single cell sequencing technology, summarize the application of Single cell sequencing to study the tumor microenvironment, as well as its therapeutic application in different clinical procedures.
Collapse
Affiliation(s)
- Ruo Han Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Le Xin Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
17
|
Lin TC. Functional Roles of SPINK1 in Cancers. Int J Mol Sci 2021; 22:ijms22083814. [PMID: 33916984 PMCID: PMC8067593 DOI: 10.3390/ijms22083814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Serine Peptidase Inhibitor Kazal Type 1 (SPINK1) is a secreted protein known as a protease inhibitor of trypsin in the pancreas. However, emerging evidence shows its function in promoting cancer progression in various types of cancer. SPINK1 modulated tumor malignancies and induced the activation of the downstream signaling of epidermal growth factor receptor (EGFR) in cancer cells, due to the structural similarity with epidermal growth factor (EGF). The discoverable SPINK1 somatic mutations, expressional signatures, and prognostic significances in various types of cancer have attracted attention as a cancer biomarker in clinical applications. Emerging findings further clarify the direct and indirect biological effects of SPINK1 in regulating cancer proliferation, metastasis, drug resistance, transdifferentiation, and cancer stemness, warranting the exploration of the SPINK1-mediated molecular mechanism to identify a therapeutic strategy. In this review article, we first integrate the transcriptomic data of different types of cancer with clinical information and recent findings of SPINK1-mediated malignant phenotypes. In addition, a comprehensive summary of SPINK1 expression in a pan-cancer panel and individual cell types of specific organs at the single-cell level is presented to indicate the potential sites of tumorigenesis, which has not yet been reported. This review aims to shed light on the roles of SPINK1 in cancer and provide guidance and potential directions for scientists in this field.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou 333, Taoyuan City, Taiwan
| |
Collapse
|
18
|
Lin TC, Hsiao M. Leptin and Cancer: Updated Functional Roles in Carcinogenesis, Therapeutic Niches, and Developments. Int J Mol Sci 2021; 22:ijms22062870. [PMID: 33799880 PMCID: PMC8002181 DOI: 10.3390/ijms22062870] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Leptin is an obesity-associated adipokine that is known to regulate energy metabolism and reproduction and to control appetite via the leptin receptor. Recent work has identified specific cell types other than adipocytes that harbor leptin and leptin receptor expression, particularly in cancers and tumor microenvironments, and characterized the role of this signaling axis in cancer progression. Furthermore, the prognostic significance of leptin in various types of cancer and the ability to noninvasively detect leptin levels in serum samples have attracted attention for potential clinical applications. Emerging findings have demonstrated the direct and indirect biological effects of leptin in regulating cancer proliferation, metastasis, angiogenesis and chemoresistance, warranting the exploration of the underlying molecular mechanisms to develop a novel therapeutic strategy. In this review article, we summarize and integrate transcriptome and clinical data from cancer patients together with the recent findings related to the leptin signaling axis in the aforementioned malignant phenotypes. In addition, a comprehensive analysis of leptin and leptin receptor distribution in a pancancer panel and in individual cell types of specific organs at the single-cell level is presented, identifying those sites that are prone to leptin-mediated tumorigenesis. Our results shed light on the role of leptin in cancer and provide guidance and potential directions for further research for scientists in this field.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou 333, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-27871243; Fax: +886-2-27899931
| |
Collapse
|