1
|
Arrías PN, Osmanli Z, Peralta E, Chinestrad PM, Monzon AM, Tosatto SCE. Diversity and structural-functional insights of alpha-solenoid proteins. Protein Sci 2024; 33:e5189. [PMID: 39465903 PMCID: PMC11514114 DOI: 10.1002/pro.5189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.
Collapse
Affiliation(s)
- Paula Nazarena Arrías
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Zarifa Osmanli
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Estefanía Peralta
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | | | | | - Silvio C. E. Tosatto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research Council (CNR‐IBIOM)BariItaly
| |
Collapse
|
2
|
Osterli E, Ellenbecker M, Wang X, Terzo M, Jacobson K, Cuello D, Voronina E. COP9 signalosome component CSN-5 stabilizes PUF proteins FBF-1 and FBF-2 in Caenorhabditis elegans germline stem and progenitor cells. Genetics 2024; 227:iyae033. [PMID: 38427913 PMCID: PMC11075551 DOI: 10.1093/genetics/iyae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024] Open
Abstract
RNA-binding proteins FBF-1 and FBF-2 (FBFs) are required for germline stem cell maintenance and the sperm/oocyte switch in Caenorhabditis elegans, although the mechanisms controlling FBF protein levels remain unknown. We identified an interaction between both FBFs and CSN-5), a component of the constitutive photomorphogenesis 9 (COP9) signalosome best known for its role in regulating protein degradation. Here, we find that the Mpr1/Pad1 N-terminal metalloprotease domain of CSN-5 interacts with the Pumilio and FBF RNA-binding domain of FBFs and the interaction is conserved for human homologs CSN5 and PUM1. The interaction between FBF-2 and CSN-5 can be detected in vivo by proximity ligation. csn-5 mutation results in the destabilization of FBF proteins, which may explain previously observed decrease in the numbers of germline stem and progenitor cells, and disruption of oogenesis. The loss of csn-5 does not decrease the levels of a related PUF protein PUF-3, and csn-5(lf) phenotype is not enhanced by fbf-1/2 knockdown, suggesting that the effect is specific to FBFs. The effect of csn-5 on oogenesis is largely independent of the COP9 signalosome and is cell autonomous. Surprisingly, the regulation of FBF protein levels involves a combination of COP9-dependent and COP9-independent mechanisms differentially affecting FBF-1 and FBF-2. This work supports a previously unappreciated role for CSN-5 in the stabilization of germline stem cell regulatory proteins FBF-1 and FBF-2.
Collapse
Affiliation(s)
- Emily Osterli
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Mikaya Terzo
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Ketch Jacobson
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - DeAnna Cuello
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| |
Collapse
|
3
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
4
|
Wang Y, Xu C, Liu P, He Q, Zhang S, Liu Z, Ni C, Chen L, Zhi T, Xu L, Cheng L, Lin X, Yao M, Ni H. LncRNA 51325 Alleviates Bone Cancer Induced Hyperalgesia Through Inhibition of Pum2. J Pain Res 2024; 17:265-284. [PMID: 38249568 PMCID: PMC10799577 DOI: 10.2147/jpr.s446635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Background Bone cancer pain (BCP) represents one of the most challenging comorbidities associated with cancer metastasis. Long non-coding RNAs (lncRNAs) have garnered attention as potential therapeutic agents in managing neuropathic pain. However, their role in the regulation of nociceptive information processing remains poorly understood. In this study, we observed a significant down-regulation of the spinal lncRNA ENSRNOG00000051325 (lncRNA51325) in a rat model of bone cancer pain. Our study sought to elucidate the potential involvement of lncRNA51325 in the development of BCP by modulating the expression of molecules associated with pain modulation. Methods We established the BCP model by injecting Walker 256 cells into the tibial plateau of rats. We conducted tests on the pain behaviors and anxiety-like responses of rats through von-Frey test, Gait analysis, and Open Field Test. Spinal lumbar expansion was harvested for molecular biology experiments to explore the relationship between lncRNA51325 and Pumilio RNA binding family member 2 (Pum2). Results Notably, the overexpression of lncRNA51325 effectively attenuated mechanical allodynia in rats afflicted with BCP, whereas the knockdown of lncRNA51325 induced pain behaviors and anxiety-like responses in naïve rats. Additionally, we observed a time-dependent increase in the expression of Pum2 in BCP-afflicted rats, and intrathecal injection of Pum2-siRNA alleviated hyperalgesia. Furthermore, our investigations revealed that lncRNA51325 exerts a negative modulatory effect on Pum2 expression. The overexpression of lncRNA51325 significantly suppressed Pum2 expression in BCP rats, while the knockdown of lncRNA51325 led to elevated Pum2 protein levels in the spinal cord of naïve rats. Subsequent treatment with Pum2-siRNA mitigated the downregulation of lncRNA51325-induced mechanical allodynia in naïve rats. Conclusion Our findings indicate that lncRNA51325 plays a role in regulating bone cancer pain by inhibiting Pum2 expression, offering a promising avenue for novel treatments targeting nociceptive hypersensitivity induced by bone metastatic cancer.
Collapse
Affiliation(s)
- Yahui Wang
- Department of Anesthesiology and Pain Research Center, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People’s Republic of China
- Department of Pain Management, the First Affiliated Hospital of Bengbu Medical College, Bengbu City, 233000, People’s Republic of China
| | - Chengfei Xu
- Department of Anesthesiology, Bengbu Third People’s Hospital, Bengbu City, 233000, People’s Republic of China
| | - Peng Liu
- Department of Pain Management, the First Affiliated Hospital of Bengbu Medical College, Bengbu City, 233000, People’s Republic of China
| | - Qiuli He
- Department of Anesthesiology and Pain Research Center, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Shihua Zhang
- Department of Anesthesiology and Pain Research Center, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Zhihao Liu
- Department of Anesthesiology and Pain Research Center, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Liping Chen
- Department of Anesthesiology and Pain Research Center, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Tong Zhi
- Department of Anesthesiology and Pain Research Center, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Longsheng Xu
- Department of Anesthesiology and Pain Research Center, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Liang Cheng
- Department of Anesthesiology, Bengbu Third People’s Hospital, Bengbu City, 233000, People’s Republic of China
| | - Xuewu Lin
- Department of Pain Management, the First Affiliated Hospital of Bengbu Medical College, Bengbu City, 233000, People’s Republic of China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People’s Republic of China
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, the Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People’s Republic of China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
5
|
Xu J, Jiang Y, Sherrard R, Ikegami K, Conradt B. PUF-8, a C. elegans ortholog of the RNA-binding proteins PUM1 and PUM2, is required for robustness of the cell death fate. Development 2023; 150:dev201167. [PMID: 37747106 PMCID: PMC10565243 DOI: 10.1242/dev.201167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
During C. elegans development, 1090 somatic cells are generated, of which 959 survive and 131 die, many through apoptosis. We present evidence that PUF-8, a C. elegans ortholog of the mammalian RNA-binding proteins PUM1 and PUM2, is required for the robustness of this 'survival and death' pattern. We found that PUF-8 prevents the inappropriate death of cells that normally survive, and we present evidence that this anti-apoptotic activity of PUF-8 is dependent on the ability of PUF-8 to interact with ced-3 (a C. elegans ortholog of caspase) mRNA, thereby repressing the activity of the pro-apoptotic ced-3 gene. PUF-8 also promotes the death of cells that are programmed to die, and we propose that this pro-apoptotic activity of PUF-8 may depend on the ability of PUF-8 to repress the expression of the anti-apoptotic ced-9 gene (a C. elegans ortholog of Bcl2). Our results suggest that stochastic differences in the expression of genes within the apoptosis pathway can disrupt the highly reproducible and robust survival and death pattern during C. elegans development, and that PUF-8 acts at the post-transcriptional level to level out these differences, thereby ensuring proper cell number homeostasis.
Collapse
Affiliation(s)
- Jimei Xu
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Yanwen Jiang
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Ryan Sherrard
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Kyoko Ikegami
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
6
|
Small Extracellular Vesicles and Their Involvement in Cancer Resistance: An Up-to-Date Review. Cells 2022; 11:cells11182913. [PMID: 36139487 PMCID: PMC9496799 DOI: 10.3390/cells11182913] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, tremendous progress has been made in understanding the roles of extracellular vesicles (EVs) in cancer. Thanks to advancements in molecular biology, it has been found that the fraction of EVs called exosomes or small EVs (sEVs) modulates the sensitivity of cancer cells to chemotherapeutic agents by delivering molecularly active non-coding RNAs (ncRNAs). An in-depth analysis shows that two main molecular mechanisms are involved in exosomal modified chemoresistance: (1) translational repression of anti-oncogenes by exosomal microRNAs (miRs) and (2) lack of translational repression of oncogenes by sponging of miRs through long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). At the cellular level, these processes increase the proliferation and survival of cancer cells and improve their ability to metastasize and resist apoptosis. In addition, studies in animal models have shown enhancing tumor size under the influence of exosomal ncRNAs. Ultimately, exosomal ncRNAs are responsible for clinically significant chemotherapy failures in patients with different types of cancer. Preliminary data have also revealed that exosomal ncRNAs can overcome chemotherapeutic agent resistance, but the results are thoroughly fragmented. This review presents how exosomes modulate the response of cancer cells to chemotherapeutic agents. Understanding how exosomes interfere with chemoresistance may become a milestone in developing new therapeutic options, but more data are still required.
Collapse
|
7
|
Ilaslan E, Sajek MP, Jaruzelska J, Kusz-Zamelczyk K. Emerging Roles of NANOS RNA-Binding Proteins in Cancer. Int J Mol Sci 2022; 23:ijms23169408. [PMID: 36012673 PMCID: PMC9409212 DOI: 10.3390/ijms23169408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, growing evidence demonstrates that mammalian Nanos RNA-binding proteins (Nanos1, Nanos2, and Nanos3), known for their indispensable roles in germline development, are overexpressed in a variety of cancers. This overexpression contributes to various oncogenic properties including cancer growth, invasiveness, and metastasis. Here, we highlight recent findings regarding the role of mammalian Nanos RNA-binding proteins and the mechanisms of their overexpression in cancer. In addition, we present expression profiles of human NANOS genes and their oncogenic transcriptional regulators obtained from publicly available cancer and normal tissue RNA-Seq datasets. Altogether, we emphasize the functional significance of NANOS proteins across human cancers as well as highlight the missing links to understanding the full scope of their role in carcinogenesis.
Collapse
Affiliation(s)
- Erkut Ilaslan
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- Correspondence: (E.I.); (K.K.-Z.)
| | - Marcin Piotr Sajek
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jadwiga Jaruzelska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Kamila Kusz-Zamelczyk
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- Correspondence: (E.I.); (K.K.-Z.)
| |
Collapse
|
8
|
Distinct Roles of NANOS1 and NANOS3 in the Cell Cycle and NANOS3-PUM1-FOXM1 Axis to Control G2/M Phase in a Human Primordial Germ Cell Model. Int J Mol Sci 2022; 23:ijms23126592. [PMID: 35743036 PMCID: PMC9223905 DOI: 10.3390/ijms23126592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022] Open
Abstract
Nanos RNA-binding proteins are critical factors of germline development throughout the animal kingdom and their dysfunction causes infertility. During evolution, mammalian Nanos paralogues adopted divergent roles in germ cell biology. However, the molecular basis behind this divergence, such as their target mRNAs, remains poorly understood. Our RNA-sequencing analysis in a human primordial germ cell model-TCam-2 cell line revealed distinct pools of genes involved in the cell cycle process downregulated upon NANOS1 and NANOS3 overexpression. We show that NANOS1 and NANOS3 proteins influence different stages of the cell cycle. Namely, NANOS1 is involved in the G1/S and NANOS3 in the G2/M phase transition. Many of their cell cycle targets are known infertility and cancer-germ cell genes. Moreover, NANOS3 in complex with RNA-binding protein PUM1 causes 3′UTR-mediated repression of FOXM1 mRNA encoding a transcription factor crucial for G2/M phase transition. Interestingly, while NANOS3 and PUM1 act as post-transcriptional repressors of FOXM1, FOXM1 potentially acts as a transcriptional activator of NANOS3, PUM1, and itself. Finally, by utilizing publicly available RNA-sequencing datasets, we show that the balance between FOXM1-NANOS3 and FOXM1-PUM1 expression levels is disrupted in testis cancer, suggesting a potential role in this disease.
Collapse
|
9
|
AGO-RBP crosstalk on target mRNAs: Implications in miRNA-guided gene silencing and cancer. Transl Oncol 2022; 21:101434. [PMID: 35477066 PMCID: PMC9136600 DOI: 10.1016/j.tranon.2022.101434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) and RNA-binding proteins (RBPs) are important regulators of mRNA translation and stability in eukaryotes. While miRNAs can only bind their target mRNAs in association with Argonaute proteins (AGOs), RBPs directly bind their targets either as single entities or in complex with other RBPs to control mRNA metabolism. miRNA binding in 3' untranslated regions (3' UTRs) of mRNAs facilitates an intricate network of interactions between miRNA-AGO and RBPs, thus determining the fate of overlapping targets. Here, we review the current knowledge on the interplay between miRNA-AGO and multiple RBPs in different cellular contexts, the rules underlying their synergism and antagonism on target mRNAs, as well as highlight the implications of these regulatory modules in cancer initiation and progression.
Collapse
|
10
|
Rouse WB, Andrews RJ, Booher NJ, Wang J, Woodman M, Dow E, Jessop TC, Moss WN. Prediction and analysis of functional RNA structures within the integrative genomics viewer. NAR Genom Bioinform 2022; 4:lqab127. [PMID: 35047817 PMCID: PMC8759568 DOI: 10.1093/nargab/lqab127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, interest in RNA secondary structure has exploded due to its implications in almost all biological functions and its newly appreciated capacity as a therapeutic agent/target. This surge of interest has driven the development and adaptation of many computational and biochemical methods to discover novel, functional structures across the genome/transcriptome. To further enhance efforts to study RNA secondary structure, we have integrated the functional secondary structure prediction tool ScanFold, into IGV. This allows users to directly perform structure predictions and visualize results—in conjunction with probing data and other annotations—in one program. We illustrate the utility of this new tool by mapping the secondary structural landscape of the human MYC precursor mRNA. We leverage the power of vast ‘omics’ resources by comparing individually predicted structures with published data including: biochemical structure probing, RNA binding proteins, microRNA binding sites, RNA modifications, single nucleotide polymorphisms, and others that allow functional inferences to be made and aid in the discovery of potential drug targets. This new tool offers the RNA community an easy to use tool to find, analyze, and characterize RNA secondary structures in the context of all available data, in order to find those worthy of further analyses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Walter N Moss
- To whom correspondence should be addressed. Tel: +1 515 294 6116;
| |
Collapse
|
11
|
Winkler L, Dimitrova N. A mechanistic view of long noncoding RNAs in cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1699. [PMID: 34668345 PMCID: PMC9016092 DOI: 10.1002/wrna.1699] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as important modulators of a wide range of biological processes in normal and disease states. In particular, lncRNAs have garnered significant interest as novel players in the molecular pathology of cancer, spurring efforts to define the functions, and elucidate the mechanisms through which cancer‐associated lncRNAs operate. In this review, we discuss the prevalent mechanisms employed by lncRNAs, with a critical assessment of the methodologies used to determine each molecular function. We survey the abilities of cancer‐associated lncRNAs to enact diverse trans functions throughout the nucleus and in the cytoplasm and examine the local roles of cis‐acting lncRNAs in modulating the expression of neighboring genes. In linking lncRNA functions and mechanisms to their roles in cancer biology, we contend that a detailed molecular understanding of lncRNA functionality is key to elucidating their contributions to tumorigenesis and to unlocking their therapeutic potential. This article is categorized under:Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease
Collapse
Affiliation(s)
- Lauren Winkler
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Nadya Dimitrova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Xu L, Zhang B, Li W. Downregulated expression levels of USP46 promote the resistance of ovarian cancer to cisplatin and are regulated by PUM2. Mol Med Rep 2021; 23:263. [PMID: 33576437 PMCID: PMC7893694 DOI: 10.3892/mmr.2021.11902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer (OC) is a major contributor to cancer‑related mortality in women. Despite numerous drugs being available for the treatment and improving the prognosis of OC, resistance to clinical chemotherapy remains a major obstacle for the treatment of advanced OC. Therefore, determining how to reverse the chemoresistance of OC has become a research hotspot in recent years. The present study aimed to reveal the potential mechanism of OC chemoresistance. Reverse transcription‑quantitative PCR and western blot analysis were performed to detect the expression levels of Ubiquitin‑specific peptidase 46 (USP46) and Pumilio 2 (PUM2) in OC. Cell viability and apoptosis were evaluated by Cell Counting Kit‑8 assay and flow cytometry, respectively. The association between USP46 and PUM2 was assessed by RNA immunoprecipitation. The results of the present study revealed that the expression levels of USP46 which is associated with tumor progression, was downregulated, while PUM2 expression levels were upregulated in cisplatin (DDP)‑resistant OC cells and patient tissues. The downregulation of USP46 expression levels in SKOV3 cells significantly inhibited cell apoptosis and increased cell viability. In SKOV3/DDP cells, the upregulation of USP46 expression levels notably suppressed cell viability and increased cell apoptosis. The results of the RNA immunoprecipitation chip assay demonstrated that PUM2 bound to USP46 and regulated its expression. Furthermore, following the knockdown of USP46 expression, the mRNA and protein expression levels of the cell apoptosis‑related protein, Bcl‑2, were upregulated, whereas the expression levels of caspase‑3, caspase‑9 and Bax were significantly downregulated. In addition, phosphorylated AKT expression levels were notably upregulated. Following the overexpression of USP46 in SKOV3/DDP cells, the opposite trends were observed. In SKOV3 cells, the knockdown of PUM2 could reverse the DDP resistance induced by small interfering RNA‑USP46 as the expression levels of Bcl‑2 were downregulated whereas those of caspase‑3, caspase‑9 and Bax were upregulated compared with the small interfering‑USP46 group. Similarly, in SKOV3/DDP cells, the overexpression of PUM2 could reverse DDP sensitivity induced by the overexpression of USP46. In conclusion, the findings of the present study suggested that the downregulation of USP46 expression levels may promote DDP resistance in OC, which may be regulated by PUM2. Therefore, targeting PUM2/USP46 may be an effective way to reverse DDP resistance in OC.
Collapse
Affiliation(s)
- Lei Xu
- Department of Gynecology, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Bin Zhang
- Department of Surgery, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| | - Wenlan Li
- Department of Outpatient Department, People's Hospital of Qingdao West Coast New Area, Qingdao, Shandong 266400, P.R. China
| |
Collapse
|