1
|
Wang Q, Pang B, Bucci J, Jiang J, Li Y. The emerging role of extracellular vesicles and particles in prostate cancer diagnosis, and risk stratification. Biochim Biophys Acta Rev Cancer 2024; 1879:189210. [PMID: 39510450 DOI: 10.1016/j.bbcan.2024.189210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Current approaches for prostate cancer (PCa) diagnosis and risk stratification require greater accuracy. Extracellular vesicles and particles (EVPs) containing diverse cargos from parent cells are released into the extracellular microenvironment and play a critical role in intercellular communication. Accumulating evidence demonstrates that EVPs are emerging as a promising focus for the exploration of cancer biomarkers and therapeutic targets. However, the precise categorisation and nomenclature of EVP subpopulations remains challenging due to their compositional complexity, inherent heterogeneity in molecular composition, and structure. The recent identification of two novel non-vesicular extracellular particle subtypes, exomeres and supermeres, has altered our understanding of the distinct subpopulations of EVPs and their roles in biological and physiological processes. Here, we discuss recent advances in the field of EVPs, describe characteristics of EVP subpopulations, focus on the application and potential of EVPs in PCa diagnosis and risk stratification by liquid biopsy, and highlight the major challenges and prospects of EVP research in PCa area.
Collapse
Affiliation(s)
- Qi Wang
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Bairen Pang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Ningbo Clinical Research Centre for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Translational Research Laboratory for Urology, The Key Laboratory of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Zhejiang Engineering Research Centre of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang 315010, China
| | - Joseph Bucci
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Junhui Jiang
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Ningbo Clinical Research Centre for Urological Disease, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Translational Research Laboratory for Urology, The Key Laboratory of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Zhejiang Engineering Research Centre of Innovative Technologies and Diagnostic and Therapeutic Equipment for Urinary System Diseases, Ningbo, Zhejiang 315010, China.
| | - Yong Li
- St. George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia; Cancer Care Centre, St. George Hospital, Kogarah, NSW 2217, Australia.
| |
Collapse
|
2
|
Wang X, Zhang L, Cheng L, Wang Y, Li M, Yu J, Ma Z, Ho PCL, Sethi G, Chen X, Wang L, Goh BC. Extracellular vesicle-derived biomarkers in prostate cancer care: Opportunities and challenges. Cancer Lett 2024; 601:217184. [PMID: 39142499 DOI: 10.1016/j.canlet.2024.217184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Prostate cancer (PCa) is the second most prevalent cancer in men worldwide, presenting a significant global public health challenge that necessitates early detection and personalized treatment. Recently, non-invasive liquid biopsy methods have emerged as promising tools to provide insights into the genetic landscape of PCa and monitor disease progression, aiding decision-making at all stages. Research efforts have concentrated on identifying liquid biopsy biomarkers to improve PCa diagnosis, prognosis, and treatment prediction. This article reviews recent research advances over the last five years utilizing extracellular vesicles (EVs) as a natural biomarker library for PCa, and discusses the clinical translation of EV biomarkers, including ongoing trials and key implementation challenges. The findings underscore the transformative role of liquid biopsy, particularly EV-based biomarkers, in revolutionizing PCa diagnosis, prediction, and treatment.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, 434000, China; The Third Clinical Medical College of Yangtze University, Jingzhou, 434000, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Yufei Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Paul Chi-Lui Ho
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Malaysia
| | - Gautam Sethi
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China.
| | - Lingzhi Wang
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Boon-Cher Goh
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, 119228, Singapore
| |
Collapse
|
3
|
Sequeira JP, Salta S, Freitas R, López-López R, Díaz-Lagares Á, Henrique R, Jerónimo C. Biomarkers for Pre-Treatment Risk Stratification of Prostate Cancer Patients: A Systematic Review. Cancers (Basel) 2024; 16:1363. [PMID: 38611041 PMCID: PMC11011064 DOI: 10.3390/cancers16071363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most frequently occurring malignancies. Although most cases are not life-threatening, approximately 20% endure an unfavorable outcome. PSA-based screening reduced mortality but at the cost of an increased overdiagnosis/overtreatment of low-risk (lrPCa) and favorable intermediate-risk (firPCa) PCa. PCa risk-groups are usually identified based on serum Prostate-Specific Antigen (PSA), the Gleason score, and clinical T stage, which have consistent although variable specificity or subjectivity. Thus, more effective and specific tools for risk assessment are needed, ideally making use of minimally invasive methods such as liquid biopsies. In this systematic review we assessed the clinical potential and analytical performance of liquid biopsy-based biomarkers for pre-treatment risk stratification of PCa patients. METHODS Studies that assessed PCa pre-treatment risk were retrieved from PubMed, Scopus, and MedLine. PCa risk biomarkers were analyzed, and the studies' quality was assessed using the QUADAS-2 tool. RESULTS The final analysis comprised 24 full-text articles, in which case-control studies predominated, mostly reporting urine-based biomarkers (54.2%) and biomarker quantification by qPCR (41.7%). Categorization into risk groups was heterogeneous, predominantly making use of the Gleason score. CONCLUSION This systematic review unveils the substantial clinical promise of using circulating biomarkers in assessing the risk for prostate cancer patients. However, the standardization of groups, categories, and biomarker validation are mandatory before this technique can be implemented. Circulating biomarkers might represent a viable alternative to currently available tools, obviating the need for tissue biopsies, and allowing for faster and more cost-effective testing, with superior analytical performance, specificity, and reproducibility.
Collapse
Affiliation(s)
- José Pedro Sequeira
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (R.L.-L.); (Á.D.-L.)
- Doctoral Program in Biomedical Sciences, ICBAS-School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Sofia Salta
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Doctoral Program in Pathology and Molecular Genetics, ICBAS-School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Freitas
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Department of Urology & Urology Clinic, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rafael López-López
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (R.L.-L.); (Á.D.-L.)
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Ángel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706 Santiago de Compostela, Spain; (R.L.-L.); (Á.D.-L.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
- Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP @RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (S.S.); (R.F.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
4
|
Lawisch GKDS, Dexheimer GM, Biolchi V, Seewald RA, Chies JAB. Prostate tumor markers: diagnosis, prognosis and management. Genet Mol Biol 2024; 46:e20230136. [PMID: 38407310 PMCID: PMC10895695 DOI: 10.1590/1678-4685-gmb-2023-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Prostate cancer (PCA) is the second most common type of cancer in the world. Nevertheless, diagnosis is still based on nonspecific methods, or invasive methods which makes clinical decision and diagnosis difficult, generating risk of both underdiagnosis and overdiagnosis. Given the high prevalence, morbidity and mortality of PCA, new strategies are needed for its diagnosis. A review of the literature on available biomarkers for PCA was performed, using the following terms: prostate cancer AND marker OR biomarker. The search was carried out in Pubmed, Science Direct, Web of Science and Clinical Trial. A total of 35 articles were used, and PHI (Prostate Health Index) and the 4Kscore tests were identified as the best well-established serum markers. These tests are based on the evaluation of expression levels of several molecules. For analysis of urine samples, Progensa, ExoDXProstate, and Mi Prostate Score Urine Test are available. All these tests have the potential to help diagnosis, avoiding unnecessary biopsies, but they are used only in association with digital rectal examination and PSA level data. The search for biomarkers that can help in the diagnosis and therapeutic management of PCA is still in its initial phase, requiring more efforts for an effective clinical application.
Collapse
Affiliation(s)
- Gabriela Kniphoff da Silva Lawisch
- Universidade do Vale do Taquari (Univates), Lajeado, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brasil
| | | | | | - Rafael Armando Seewald
- Universidade do Vale do Taquari (Univates), Lajeado, RS, Brasil
- Hospital Bruno Born, Centro de Oncologia, Lajeado, RS, Brasil
| | - José Artur Bogo Chies
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brasil
| |
Collapse
|
5
|
Altuna-Coy A, Ruiz-Plazas X, Arreaza-Gil V, Segarra-Tomás J, Chacón MR. In silico analysis of prognostic and diagnostic significance of target genes from prostate cancer cell lines derived exomicroRNAs. Cancer Cell Int 2023; 23:275. [PMID: 37978493 PMCID: PMC10655318 DOI: 10.1186/s12935-023-03123-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Cancer-secreted exovesicles are important for cell-to-cell communication by altering cancer-related signalling pathways. Exovesicles-derived miRNAs (exomiRNAs)-target genes can be useful for diagnostic and prognostic purposes. METHODS ExomiRNA from prostate cancer (PCa) cells (PC-3 and LNCaP) were quantified by qRT-PCR and compared to the healthy cell line RWPE-1 by using miRNome PCR 752 miRNAs Panel. MiRNet database was used to predict exomiRNA-target genes. ExomiRNA-target genes pathway functional enrichment was performed by using Reactome database and Enrichr platform. Protein-protein interaction analysis was carried out by using the STRING database. RNA target-gene sequencing data from The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) database was screened out in 465 PCa patients for candidate gene expression in prostate tumour (PT) tissue and non-pathologic prostate (N-PP) tissue. Signature gene candidates were statistically analysed for diagnosis and prognosis usefulness. RESULTS A total of 36 exomiRNAs were found downregulated when comparing PCa cells vs a healthy cell line; and when comparing PC-3 vs LNCaP, 14 miRNAs were found downregulated and 52 upregulated. Reactome pathway database revealed altered pathways and genes related to miRNA biosynthesis, miRNA-mediated gene silencing (TNRC6B and AGO1), and cell proliferation (CDK6), among others. Results showed that TNRC6B gene expression was up-regulated in PT tissue compared to N-PP (n = 52 paired samples) and could be useful for diagnostic purposes. Likewise, gene expression levels of CDK6, TNRC6B, and AGO1 were down-regulated in high-risk PT (n = 293) compared to low-risk PCa tissue counterparts (n = 172). When gene expression levels of CDK6, TNRC6B, and AGO1 were tested as a prognostic panel, the results showed that these improve the prognostic power of classical biomarkers. CONCLUSION ExomiRNAs-targets genes, TNRC6B, CDK6, and AGO1, showed a deregulated expression profile in PCa tissue and could be useful for PCa diagnosis and prognosis.
Collapse
Affiliation(s)
- Antonio Altuna-Coy
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira I Virgili, C/Dr. Mallafré Guasch, 4,, 43007, Tarragona, Spain
| | - Xavier Ruiz-Plazas
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira I Virgili, C/Dr. Mallafré Guasch, 4,, 43007, Tarragona, Spain
- Urology Unit, Joan XXIII University Hospital, Tarragona, Spain
| | - Verónica Arreaza-Gil
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira I Virgili, C/Dr. Mallafré Guasch, 4,, 43007, Tarragona, Spain
| | - José Segarra-Tomás
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira I Virgili, C/Dr. Mallafré Guasch, 4,, 43007, Tarragona, Spain
- Urology Unit, Joan XXIII University Hospital, Tarragona, Spain
| | - Matilde R Chacón
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira I Virgili, C/Dr. Mallafré Guasch, 4,, 43007, Tarragona, Spain.
| |
Collapse
|
6
|
Dey D, Ghosh S, Mirgh D, Panda SP, Jha NK, Jha SK. Role of exosomes in prostate cancer and male fertility. Drug Discov Today 2023; 28:103791. [PMID: 37777169 DOI: 10.1016/j.drudis.2023.103791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Prostate cancer (PCa) is the second most common and fifth most aggressive neoplasm among men worldwide. In the last decade, extracellular vesicle (EV) research has decoded multiple unsolved cancer-related mysteries. EVs can be classified as microvesicles, apoptotic bodies, and exosomes, among others. Exosomes play a key role in cellular signaling. Their internal cargos (nucleic acids, proteins, lipids) influence the recipient cell. In PCa, the exosome is the regulator of cancer progression. It is also a promising theranostics tool for PCa. Moreover, exosomes have strong participation in male fertility complications. This review aims to highlight the exosome theranostics signature in PCa and its association with male fertility.
Collapse
Affiliation(s)
- Dwaipayan Dey
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, West Bengal 700118, India
| | - Srestha Ghosh
- Department of Microbiology, Lady Brabourne College, Kolkata 700017, West Bengal, India
| | - Divya Mirgh
- Johns Hopkins University, Baltimore, MD 21218, USA
| | - Siva Parsad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal, University, Dehradun, India.
| |
Collapse
|
7
|
Chen TY, Mihalopoulos M, Zuluaga L, Rich J, Ganta T, Mehrazin R, Tsao CK, Tewari A, Gonzalez-Kozlova E, Badani K, Dogra N, Kyprianou N. Clinical Significance of Extracellular Vesicles in Prostate and Renal Cancer. Int J Mol Sci 2023; 24:14713. [PMID: 37834162 PMCID: PMC10573190 DOI: 10.3390/ijms241914713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 10/15/2023] Open
Abstract
Extracellular vesicles (EVs)-including apoptotic bodies, microvesicles, and exosomes-are released by almost all cell types and contain molecular footprints from their cell of origin, including lipids, proteins, metabolites, RNA, and DNA. They have been successfully isolated from blood, urine, semen, and other body fluids. In this review, we discuss the current understanding of the predictive value of EVs in prostate and renal cancer. We also describe the findings supporting the use of EVs from liquid biopsies in stratifying high-risk prostate/kidney cancer and advanced disease, such as castration-resistant (CRPC) and neuroendocrine prostate cancer (NEPC) as well as metastatic renal cell carcinoma (RCC). Assays based on EVs isolated from urine and blood have the potential to serve as highly sensitive diagnostic studies as well as predictive measures of tumor recurrence in patients with prostate and renal cancers. Overall, we discuss the biogenesis, isolation, liquid-biopsy, and therapeutic applications of EVs in CRPC, NEPC, and RCC.
Collapse
Affiliation(s)
- Tzu-Yi Chen
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Meredith Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Laura Zuluaga
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Jordan Rich
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Teja Ganta
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.G.); (C.-K.T.)
| | - Reza Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Che-Kai Tsao
- Department of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.G.); (C.-K.T.)
| | - Ash Tewari
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Ketan Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
| | - Navneet Dogra
- Department of Pathology & Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (T.-Y.C.); (A.T.)
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.M.); (L.Z.); (J.R.); (R.M.); (K.B.)
- The Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
| |
Collapse
|
8
|
Sequeira JP, Barros-Silva D, Ferreira-Torre P, Salta S, Braga I, Carvalho J, Freitas R, Henrique R, Jerónimo C. OncoUroMiR: Circulating miRNAs for Detection and Discrimination of the Main Urological Cancers Using a ddPCR-Based Approach. Int J Mol Sci 2023; 24:13890. [PMID: 37762193 PMCID: PMC10531069 DOI: 10.3390/ijms241813890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The three most common genitourinary malignancies (prostate/kidney/bladder cancers) constitute a substantial proportion of all cancer cases, mainly in the elderly population. Early detection is key to maximizing the patients' survival, but the lack of highly accurate biomarkers that might be used through non-/minimally invasive methods has impaired progress in this domain. Herein, we sought to develop a minimally invasive test to detect and discriminate among those urological cancers based on miRNAs assessment through ddPCR. Plasma samples from 268 patients with renal cell (RCC; n = 119), bladder (BlCa; n = 73), and prostate (PCa; n = 76) carcinomas (UroCancer group), and 74 healthy donors were selected. Hsa-miR-126-3p, hsa-miR-141-3p, hsa-miR-153-5p, hsa-miR-155-5p, hsa-miR-182-5p, hsa-miR-205-5p, and hsa-miR-375-3p levels were assessed. UroCancer cases displayed significantly different circulating hsa-miR-182-5p/hsa-miR-375-3p levels compared to healthy donors. Importantly, the hsa-miR-155-5p/hsa-miR-375-3p panel detected RCC with a high specificity (80.54%) and accuracy (66.04%). Furthermore, the hsa-miR-126-3p/hsa-miR-375-3p panel identified BlCa with a 94.87% specificity and 76.45% NPV whereas higher hsa-miR-126-3p levels were found in PCa patients. We concluded that plasma-derived miRNAs can identify and discriminate among the main genitourinary cancers, with high analytical performance. Although validation in a larger cohort is mandatory, these findings demonstrate that circulating miRNA assessment by ddPCR might provide a new approach for early detection and risk stratification of the most common urological cancers.
Collapse
Affiliation(s)
- José Pedro Sequeira
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Doctoral Programme in Biomedical Sciences, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Daniela Barros-Silva
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
| | - Patrícia Ferreira-Torre
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
| | - Sofia Salta
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Doctoral Programme in Molecular Pathology and Genetics, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Isaac Braga
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Department of Urology & Urology Clinics, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Doctoral Programme in Medical Sciences, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - João Carvalho
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Department of Urology & Urology Clinics, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Doctoral Programme in Medical Sciences, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Freitas
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Department of Urology & Urology Clinics, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Doctoral Programme in Medical Sciences, ICBAS-School of Medicine & Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS–School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (J.P.S.); (D.B.-S.); (P.F.-T.); (S.S.); (I.B.); (J.C.); (R.F.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS–School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
9
|
Almeida B, Dias TR, Teixeira AL, Dias F, Medeiros R. MicroRNAs Derived from Extracellular Vesicles: Keys to Understanding SARS-CoV-2 Vaccination Response in Cancer Patients? Cancers (Basel) 2023; 15:4017. [PMID: 37627045 PMCID: PMC10452664 DOI: 10.3390/cancers15164017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provoked a global pandemic identified as coronavirus disease (COVID-19), with millions of deaths worldwide. However, several important questions regarding its impact on public health remain unanswered, such as the impact of vaccination on vulnerable subpopulations such as cancer patients. Cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, being manifested in most immunocompromised individuals. This strong immunosuppression can lead to a dysfunctional antiviral response to natural viral infection and compromised vaccination response. Extracellular vesicles (EVs) are membrane-bound vesicles released from cells that are involved in intercellular communication. EVs carry various molecules including microRNAs that play a crucial role in COVID-19 pathophysiology, influencing cellular responses. This review summarizes the state of the art concerning the role of EV-derived miRNAs in COVID-19 infection and their potential use as prognosis biomarkers for vaccination response in cancer patients.
Collapse
Affiliation(s)
- Beatriz Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia R. Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (B.A.); (T.R.D.); (A.L.T.); (R.M.)
- Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-513 Porto, Portugal
- Laboratory Medicine, Clinical Pathology Department, Portuguese Oncology Institute of Porto (IPO-Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Biomedicine Research Center (CEBIMED), Research Inovation and Development Institute (FP-I3ID), Faculty of Health Sciences, Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
- Research Department, Portuguese League against Cancer Northern Branch (LPCC-NRN), 4200-172 Porto, Portugal
| |
Collapse
|
10
|
Ying M, Mao J, Sheng L, Wu H, Bai G, Zhong Z, Pan Z. Biomarkers for Prostate Cancer Bone Metastasis Detection and Prediction. J Pers Med 2023; 13:jpm13050705. [PMID: 37240875 DOI: 10.3390/jpm13050705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Prostate cancer (PCa) causes deaths worldwide, ranking second after lung cancer. Bone metastasis (BM) frequently results from advanced PCa, affecting approximately 90% of patients, and it also often results in severe skeletal-related events. Traditional diagnostic methods for bone metastases, such as tissue biopsies and imaging, have substantial drawbacks. This article summarizes the significance of biomarkers in PCa accompanied with BM, including (1) bone formation markers like osteopontin (OPN), pro-collagen type I C-terminal pro-peptide (PICP), osteoprotegerin (OPG), pro-collagen type I N-terminal pro-peptide (PINP), alkaline phosphatase (ALP), and osteocalcin (OC); (2) bone resorption markers, including C-telopeptide of type I collagen (CTx), N-telopeptide of type I collagen (NTx), bone sialoprotein (BSP), tartrate-resistant acid phosphatase (TRACP), deoxypyridinoline (D-PYD), pyridoxine (PYD), and C-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP); (3) prostate-specific antigen (PSA); (4) neuroendocrine markers, such as chromogranin A (CgA), neuron-specific enolase (NSE), and pro-gastrin releasing peptide (ProGRP); (5) liquid biopsy markers, such as circulating tumor cells (CTCs), microRNA (miRNA), circulating tumor DNA (ctDNA), and cell-free DNA (cfDNA) and exosomes. In summary, some of these markers are already in widespread clinical use, while others still require further laboratory or clinical studies to validate their value for clinical application.
Collapse
Affiliation(s)
- Mingshuai Ying
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Jianshui Mao
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Lingchao Sheng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Hongwei Wu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Guangchao Bai
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhuolin Zhong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhijun Pan
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
11
|
Jain G, Das P, Ranjan P, Neha, Valderrama F, Cieza-Borrella C. Urinary extracellular vesicles miRNA-A new era of prostate cancer biomarkers. Front Genet 2023; 14:1065757. [PMID: 36741322 PMCID: PMC9895092 DOI: 10.3389/fgene.2023.1065757] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Prostate cancer is the second most common male cancer worldwide showing the highest rates of incidence in Western Europe. Although the measurement of serum prostate-specific antigen levels is the current gold standard in PCa diagnosis, PSA-based screening is not considered a reliable diagnosis and prognosis tool due to its lower sensitivity and poor predictive score which lead to a 22%-43% overdiagnosis, unnecessary biopsies, and over-treatment. These major limitations along with the heterogeneous nature of the disease have made PCa a very unappreciative subject for diagnostics, resulting in poor patient management; thus, it urges to identify and validate new reliable PCa biomarkers that can provide accurate information in regard to disease diagnosis and prognosis. Researchers have explored the analysis of microRNAs (miRNAs), messenger RNAs (mRNAs), small proteins, genomic rearrangements, and gene expression in body fluids and non-solid tissues in search of lesser invasive yet efficient PCa biomarkers. Although the presence of miRNAs in body fluids like blood, urine, and saliva initially sparked great interest among the scientific community; their potential use as liquid biopsy biomarkers in PCa is still at a very nascent stage with respect to other well-established diagnostics and prognosis tools. Up to date, numerous studies have been conducted in search of PCa miRNA-based biomarkers in whole blood or blood serum; however, only a few studies have investigated their presence in urine samples of which less than two tens involve the detection of miRNAs in extracellular vesicles isolated from urine. In addition, there exists some discrepancy around the identification of miRNAs in PCa urine samples due to the diversity of the urine fractions that can be targeted for analysis such as urine circulating cells, cell-free fractions, and exosomes. In this review, we aim to discuss research output from the most recent studies involving the analysis of urinary EVs for the identification of miRNA-based PCa-specific biomarkers.
Collapse
Affiliation(s)
- Garima Jain
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Prashant Ranjan
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Neha
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ferran Valderrama
- Centre for Biomedical Education, Cell Biology and Genetics Research Centre, St. George’s University of London, London, United Kingdom
| | - Clara Cieza-Borrella
- Centre for Biomedical Education, Cell Biology and Genetics Research Centre, St. George’s University of London, London, United Kingdom
| |
Collapse
|
12
|
Li HM, Wan XY, Zhao JY, Liang XM, Dai Y, Li HG. Promising novel biomarkers and therapy targets: The application of cell-free seminal nucleotides in male reproduction research. Transl Res 2022; 256:73-86. [PMID: 36586533 DOI: 10.1016/j.trsl.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Liquid biopsy has the advantage of diagnosing diseases in a non-invasive manner. Seminal plasma contains secretions from the bilateral testes, epididymides, seminal vesicles, bulbourethral glands, and the prostate. These organs are relatively small and contain delicate tubes that are prone to damage by invasive diagnosis. Cell-free seminal nucleic acids test is a newly emerged item in liquid biopsy. Here, we present a comprehensive overview of all known cell-free DNA and cell-free RNAs (mRNA, miRNA, lncRNA, circRNA, piRNA, YRNA, tsRNA, etc.) and discuss their roles as biomarker candidates in liquid biopsy. With great advantages, including high stability, sensitivity, representability, and non-invasiveness, cell-free DNA/RNAs may be developed as promising biomarkers for the screening, diagnosis, prognosis, and follow-up of diseases in semen-secreting organs. Moreover, RNAs in semen may participate in important processes, including sperm maturation, early embryo development, and transgenerational disease inheritance, which may be developed as potential treatment targets for future clinical use.
Collapse
Affiliation(s)
- Hui-Min Li
- Guilin Medical University, Guilin, 541004, P. R. China
| | - Xiao-Yan Wan
- Department of Obstetrics and gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, P. R. China
| | - Jie-Yi Zhao
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xu-Ming Liang
- Affiliated Hospital of Guilin Medical University, Guilin, 541001, P. R. China
| | - Yun Dai
- Affiliated Hospital of Guilin Medical University, Guilin, 541001, P. R. China
| | - Hong-Gang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China; Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430030, P. R. China.
| |
Collapse
|
13
|
Liquid Biopsy in Diagnosis and Prognosis of Non-Metastatic Prostate Cancer. Biomedicines 2022; 10:biomedicines10123115. [PMID: 36551871 PMCID: PMC9776104 DOI: 10.3390/biomedicines10123115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/10/2022] Open
Abstract
Currently, sensitive and specific methods for the detection and prognosis of early stage PCa are lacking. To establish the diagnosis and further identify an appropriate treatment strategy, prostate specific antigen (PSA) blood test followed by tissue biopsy have to be performed. The combination of tests is justified by the lack of a highly sensitive, specific, and safe single test. Tissue biopsy is specific but invasive and may have severe side effects, and therefore is inappropriate for screening of the disease. At the same time, the PSA blood test, which is conventionally used for PCa screening, has low specificity and may be elevated in the case of noncancerous prostate tumors and inflammatory conditions, including benign prostatic hyperplasia and prostatitis. Thus, diverse techniques of liquid biopsy have been investigated to supplement or replace the existing tests of prostate cancer early diagnosis and prognostics. Here, we provide a review on the advances in diagnosis and prognostics of non-metastatic prostate cancer by means of various biomarkers extracted via liquid biopsy, including circulating tumor cells, exosomal miRNAs, and circulating DNAs.
Collapse
|
14
|
Xu D, Di K, Fan B, Wu J, Gu X, Sun Y, Khan A, Li P, Li Z. MicroRNAs in extracellular vesicles: Sorting mechanisms, diagnostic value, isolation, and detection technology. Front Bioeng Biotechnol 2022; 10:948959. [PMID: 36324901 PMCID: PMC9618890 DOI: 10.3389/fbioe.2022.948959] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of short, single-stranded, noncoding RNAs, with a length of about 18–22 nucleotides. Extracellular vesicles (EVs) are derived from cells and play a vital role in the development of diseases and can be used as biomarkers for liquid biopsy, as they are the carriers of miRNA. Existing studies have found that most of the functions of miRNA are mainly realized through intercellular transmission of EVs, which can protect and sort miRNAs. Meanwhile, detection sensitivity and specificity of EV-derived miRNA are higher than those of conventional serum biomarkers. In recent years, EVs have been expected to become a new marker for liquid biopsy. This review summarizes recent progress in several aspects of EVs, including sorting mechanisms, diagnostic value, and technology for isolation of EVs and detection of EV-derived miRNAs. In addition, the study reviews challenges and future research avenues in the field of EVs, providing a basis for the application of EV-derived miRNAs as a disease marker to be used in clinical diagnosis and even for the development of point-of-care testing (POCT) platforms.
Collapse
Affiliation(s)
- Dongjie Xu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Kaili Di
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinrui Gu
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yifan Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, China
- *Correspondence: Peng Li, ; Zhiyang Li,
| | - Zhiyang Li
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Peng Li, ; Zhiyang Li,
| |
Collapse
|
15
|
K S, T D, M P. Small extracellular vesicles as a multicomponent biomarker platform in urinary tract carcinomas. Front Mol Biosci 2022; 9:916666. [PMID: 36237572 PMCID: PMC9551577 DOI: 10.3389/fmolb.2022.916666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles are a large group of nano-sized vesicles released by all cells. The variety of possible cargo (mRNAs, miRNAs, lncRNAs, proteins, and lipids) and the presence of surface proteins, signaling molecules, and receptor ligands make them a rich source of biomarkers for malignancy diagnosis. One of the groups gathering the most interest in cancer diagnostic applications is small extracellular vesicles (sEVs), with ≤200 nm diameter, mainly composed of exosomes. Many studies were conducted recently, evaluating the diagnostic potential of sEVs in urinary tract carcinomas (UTCs), discovering and clinically evaluating various classes of biomarkers. The amount of research concerning different types of UTCs understandably reflects their incidence. sEV cargos getting the most interest are non-coding RNAs (miRNA and lncRNA). However, implementation of other approaches such as metabolomic and proteomic analysis is also evaluated. The results of many studies indicate that sEVs have an essential role in the cancer process and possess many possible diagnostic and prognostic applications for UTC. The relative ease of obtaining biofluids rich in sEVs (urine and blood) confirms that sEVs are essential for UTC detection in the liquid biopsy approach. A noticeable rise in research quality is observed as more researchers are aware of the research standardization necessity, which is essential for considering the clinical application of their findings.
Collapse
|
16
|
Schitcu VH, Raduly L, Nutu A, Zanoaga O, Ciocan C, Munteanu VC, Cojocneanu R, Petrut B, Coman I, Braicu C, Berindan-Neagoe I. MicroRNA Dysregulation in Prostate Cancer. Pharmgenomics Pers Med 2022; 15:177-193. [PMID: 35300057 PMCID: PMC8923686 DOI: 10.2147/pgpm.s348565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer biology is complex, and needs to be deciphered. The latest evidence reveals the significant role of non-coding RNAs, particularly microRNAs (miRNAs), as key regulatory factors in cancer. Therefore, the identification of altered miRNA patterns involved in prostate cancer will allow them to be used for development of novel diagnostic and prognostic biomarkers. Patients and Methods: We performed a miRNAs transcriptomic analysis, using microarray (10 matched pairs tumor tissue versus normal adjacent tissue, selected based on inclusion criteria), followed by overlapping with TCGA data. A total of 292 miRNAs were differentially expressed, with 125 upregulated and 167 downregulated in TCGA patients’ cohort with PRAD (prostate adenocarcinoma), respectively for the microarray experiments; 16 upregulated and 44 downregulated miRNAs were found in our cohort. To confirm our results obtained for tumor tissue, we performed validation with qRT-PCR at the tissue and plasma level of two selected transcripts, and finally, we focused on the identification of altered miRNAs involved in key biological processes. Results: A common signature identified a panel of 12 upregulated and 1 downregulated miRNA, targeting and interconnected in a network with the TP53, AGO2, BIRC5 gene and EGFR as a core element. Among this signature, the overexpressed transcripts (miR-20b-5p, miR-96-5p, miR-183-5p) and the downregulated miR-542-5p were validated by qRT-PCR in an additional patients’ cohort of 34 matched tumor and normal adjacent paired samples. Further, we performed the validation of the expression level for miR-20b-5p, miR-96-5p, miR-183-5p plasma, on the same patients’ cohort versus a healthy control group, confirming the overexpression of these transcripts in the PRAD group, demonstrating the liquid biopsy as a potential investigational tool in prostate cancer. Conclusion: In this pilot study, we provide evidence on miRNA dysregulation and its association with key functional components of the PRAD landscape, where an important role is acted by miR-20b-5p, miR-542-5p, or the oncogenic cluster miR-183-96-182.
Collapse
Affiliation(s)
- Vlad Horia Schitcu
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
- Department of Urology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Vlad Cristian Munteanu
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
- Department of Urology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| | - Bogdan Petrut
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
- Department of Urology, “Prof. Dr. Ion Chiricuta” Oncology Institute, Cluj-Napoca, Romania
| | - Ioan Coman
- Department of Urology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
- Correspondence: Cornelia Braicu, Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 23 Gh. Marinescu Street, Cluj-Napoca, 400337, Romania, Tel +40-264-597-256, Fax +40-264-597-257, Email ;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400337, Romania
| |
Collapse
|
17
|
Anti-Cancer Role and Therapeutic Potential of Extracellular Vesicles. Cancers (Basel) 2021; 13:cancers13246303. [PMID: 34944923 PMCID: PMC8699603 DOI: 10.3390/cancers13246303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-cell communication is an important mechanism in biological processes. Extracellular vesicles (EVs), also referred to as exosomes, microvesicles, and prostasomes, are microvesicles secreted by a variety of cells. EVs are nanometer-scale vesicles composed of a lipid bilayer and contain biological functional molecules, such as microRNAs (miRNAs), mRNAs, and proteins. In this review, "EVs" is used as a comprehensive term for vesicles that are secreted from cells. EV research has been developing over the last four decades. Many studies have suggested that EVs play a crucial role in cell-cell communication. Importantly, EVs contribute to cancer malignancy mechanisms such as carcinogenesis, proliferation, angiogenesis, metastasis, and escape from the immune system. EVs derived from cancer cells and their microenvironments are diverse, change in nature depending on the condition. As EVs are thought to be secreted into body fluids, they have the potential to serve as diagnostic markers for liquid biopsy. In addition, cells can encapsulate functional molecules in EVs. Hence, the characteristics of EVs make them suitable for use in drug delivery systems and novel cancer treatments. In this review, the potential of EVs as anti-cancer therapeutics is discussed.
Collapse
|
18
|
Tumor Suppressive Circular RNA-102450: Development of a Novel Diagnostic Procedure for Lymph Node Metastasis from Oral Cancer. Cancers (Basel) 2021; 13:cancers13225708. [PMID: 34830863 PMCID: PMC8616294 DOI: 10.3390/cancers13225708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs), which form as covalently closed loop structures, have several biological functions such as regulation of cellular behavior by adsorbing microRNAs. However, there is limited information of circRNAs in oral squamous cell carcinoma (OSCC). Here, we aimed to elucidate the roles of aberrantly expressed circRNAs in OSCC. CircRNA microarray showed that circRNA-102450 was down-regulated in OSCC cells. Clinical validation of circRNA-102450 was performed using highly sensitive droplet digital PCR in preoperative liquid biopsy samples from 30 OSCC patients. Interestingly, none of 16 studied patients with high circRNA-102450 had regional lymph node metastasis (RLNM), whereas 4 of 14 studied patients (28.5%) with low expression had pathologically proven RLNM. Overexpressed circRNA-102450 significantly inhibited the tumor metastatic properties of cell proliferation, migration, and invasion. Furthermore, circRNA-102450 directly bound to, and consequently down-regulated, miR-1178 in OSCC cells. Taken together, circRNA-102450 has a tumor suppressive effect via the circRNA-102450/miR-1178 axis and may be a novel potential marker of RLNM in OSCC patients.
Collapse
|
19
|
Semen as a rich source of diagnostic biomarkers for prostate cancer: latest evidence and implications. Mol Cell Biochem 2021; 477:213-223. [PMID: 34655417 DOI: 10.1007/s11010-021-04273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men and the cause of numerous cancer deaths in the world. Nowadays, based on diagnostic criteria, prostate-specific antigen (PSA) evaluation and rectal examination are used to diagnose prostate-related malignancies. However, due to the different types of PCa, there are several doubts about the diagnostic value of PSA. On the other hand, semen is considered an appropriate source and contains various biomarkers in non-invasive diagnosing several autoimmune disorders and malignancies. Evidence suggests that analysis of semen biomarkers could be helpful in PCa diagnosis. Therefore, due to the invasiveness of most diagnostic methods in PCa, the use of semen as a biologic sample containing various biomarkers can lead to the emergence of novel and non-invasive diagnostic approaches. This review summarized recent studies on the use of various seminal biomarkers for diagnosis, prognosis and prediction of PCa.
Collapse
|
20
|
Wang P, Xiao T, Li J, Wang D, Sun J, Cheng C, Ma H, Xue J, Li Y, Zhang A, Liu Q. miR-21 in EVs from pulmonary epithelial cells promotes myofibroblast differentiation via glycolysis in arsenic-induced pulmonary fibrosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117259. [PMID: 33965804 DOI: 10.1016/j.envpol.2021.117259] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
As an environmental toxicant, arsenic causes damage to various organs and systems of the body and has attracted worldwide attention. It is well-known that exposure to arsenic can induce pulmonary fibrosis, but the molecular mechanisms are elusive. Glycolysis is involved in the process of various diseases, including pulmonary fibrosis. Extracellular vehicles (EVs) are mediators of cell communication through transporting miRNAs. The potential of miRNAs in EVs as liquid biopsy biomarkers for various diseases has been reported, and they have been applied in clinical diagnoses. In the present investigation, we focused on the roles and mechanisms of miR-21 in EVs on arsenic-induced glycolysis and pulmonary fibrosis through experiments with human populations, experimental animals, and cells. The results for arsenicosis populations showed that the serum levels of hydroxyproline, lactate, and EVs-miRNAs were elevated and that EVs-miR-21 levels were positively related to the levels of hydroxyproline and lactate. For mice, chronic exposure to arsenite led to high levels of miR-21, AKT activation, elevated glycolysis, and pulmonary fibrosis; however, these effects were blocked by the depletion of miR-21 in miR-21 knockout (miR-21KO) mice. After MRC-5 cells were co-cultured with arsenite-treated HBE cells, the levels of miR-21, AKT activation, glycolysis, and myofibroblast differentiation were enhanced, effects that were blocked by reducing miR-21 and by inhibiting the EVs in HBE cells. The down-regulation of PTEN in MRC-5 cells and primary lung fibroblasts (PLFs) reversed the blocking effect of inhibiting miR-21 in HBE cells. Thus, miR-21 down-regulates PTEN and promotes glycolysis via activating AKT, which is associated with arsenite-induced myofibroblast differentiation and pulmonary fibrosis. Our results provide a new approach for the construction of clinical diagnosis technology based on analysis of the mechanism of arsenite-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Huimin Ma
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yan Li
- Department of Toxicology, School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Altuna-Coy A, Ruiz-Plazas X, Alves-Santiago M, Segarra-Tomás J, Chacón MR. Serum Levels of the Cytokine TWEAK Are Associated with Metabolic Status in Patients with Prostate Cancer and Modulate Cancer Cell Lipid Metabolism In Vitro. Cancers (Basel) 2021; 13:cancers13184688. [PMID: 34572917 PMCID: PMC8465414 DOI: 10.3390/cancers13184688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022] Open
Abstract
Simple Summary TWEAK is an inflammatory cytokine related to prostate cancer (PCa) progression that exerts its effects by engaging its cognate receptor Fn14. A soluble form of TWEAK (sTWEAK) has been detected in the PCa microenvironment. Altered levels of circulating sTWEAK are associated with aberrant glucose metabolism. We show that reduced serum levels of sTWEAK are associated with the metabolic status in patients with PCa and that the treatment of PC-3 cells with sTWEAK enhances the expression of genes related to lipid, but not to glucose, metabolism. sTWEAK also increases the lipid uptake and lipid accumulation in PC-3 cells. We corroborated that the observed effects were due to TWEAK/Fn14 engagement by silencing Fn14 expression, which attenuated the aberrant gene and protein expression. Additionally, we observed that the phosphorylation of ERK1/2 and AKT (ser473) were required for TWEAK/Fn14 actions. Thus, the contribution of the sTWEAK/Fn14 axis on PCa metabolism supports its potential as a therapeutic target for PCa. Abstract Soluble TWEAK (sTWEAK) has been proposed as a prognostic biomarker of prostate cancer (PCa). We found that reduced serum levels of sTWEAK, together with higher levels of prostate-specific antigen and a higher HOMA-IR index, are independent predictors of PCa. We also showed that sTWEAK stimulus failed to alter the expression of glucose transporter genes (SLC2A4 and SLC2A1), but significantly reduced the expression of glucose metabolism-related genes (PFK, HK1 and PDK4) in PCa cells. The sTWEAK stimulation of PC-3 cells significantly increased the expression of the genes related to lipogenesis (ACACA and FASN), lipolysis (CPT1A and PNPLA2), lipid transport (FABP4 and CD36) and lipid regulation (SREBP-1 and PPARG) and increased the lipid uptake. Silencing the TWEAK receptor (Fn14) in PC-3 cells confirmed the observed lipid metabolic effects, as shown by the downregulation of ACACA, FASN, CPT1A, PNPLA2, FABP4, CD36, SREBP-1 and PPARG expression, which was paralleled by a reduction of FASN, CPT1A and FABP4 protein expression. Specific-signaling inhibitor assays show that ERK1/2 and AKT (ser473) phosphorylation can regulate lipid metabolism-related genes in PCa cells, pointing to the AKT locus as a possible target for PCa. Overall, our data support sTWEAK/Fn14 axis as a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Antonio Altuna-Coy
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
| | - Xavier Ruiz-Plazas
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
- Urology Unit, Joan XXIII University Hospital, 43005 Tarragona, Spain
| | - Marta Alves-Santiago
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
- Urology Unit, Joan XXIII University Hospital, 43005 Tarragona, Spain
| | - José Segarra-Tomás
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
- Urology Unit, Joan XXIII University Hospital, 43005 Tarragona, Spain
- Correspondence: (J.S.-T.); (M.R.C.); Tel.: +34-977295500 (ext. 3406) (J.S.-T. & M.R.C.)
| | - Matilde R. Chacón
- Disease Biomarkers and Molecular Mechanisms Group, IISPV, Joan XXIII University Hospital, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (A.A.-C.); (X.R.-P.); (M.A.-S.)
- Correspondence: (J.S.-T.); (M.R.C.); Tel.: +34-977295500 (ext. 3406) (J.S.-T. & M.R.C.)
| |
Collapse
|
22
|
A New Approach for Prostate Cancer Diagnosis by miRNA Profiling of Prostate-Derived Plasma Small Extracellular Vesicles. Cells 2021; 10:cells10092372. [PMID: 34572021 PMCID: PMC8467918 DOI: 10.3390/cells10092372] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023] Open
Abstract
Vesicular miRNA has emerged as a promising marker for various types of cancer, including prostate cancer (PC). In the advanced stage of PC, the cancer-cell-derived small extracellular vesicles (SEVs) may constitute a significant portion of circulating vesicles and may mediate a detectable change in the plasma vesicular miRNA profile. However, SEVs secreted by small tumor in the prostate gland constitute a tiny fraction of circulating vesicles and cause undetectable miRNA pattern changes. Thus, the isolation and miRNA profiling of a specific prostate-derived fraction of SEVs can improve the diagnostic potency of the methods based on vesicular miRNA analysis. Prostate-specific membrane antigen (PSMA) was selected as a marker of prostate-derived SEVs. Super-paramagnetic beads (SPMBs) were functionalized by PSMA-binding DNA aptamer (PSMA-Apt) via a click reaction. The efficacy of SPMB-PSMA-Apt complex formation and PSMA(+)SEVs capture were assayed by flow cytometry. miRNA was isolated from the total population of SEVs and PSMA(+)SEVs of PC patients (n = 55) and healthy donors (n = 30). Four PC-related miRNAs (miR-145, miR-451a, miR-143, and miR-221) were assayed by RT-PCR. The click chemistry allowed fixing DNA aptamers onto the surface of SPMB with an efficacy of up to 89.9%. The developed method more effectively isolates PSMA(+)SEVs than relevant antibody-based technology. The analysis of PC-related miRNA in the fraction of PSMA(+)SEVs was more sensitive and revealed distinct diagnostic potency (AUC: miR-145, 0.76; miR-221, 0.7; miR-451a, 0.65; and miR-141, 0.64) than analysis of the total SEV population. Thus, isolation of prostate-specific SEVs followed by analysis of vesicular miRNA might be a promising PC diagnosis method.
Collapse
|
23
|
Martínez-González LJ, Sánchez-Conde V, González-Cabezuelo JM, Antunez-Rodríguez A, Andrés-León E, Robles-Fernandez I, Lorente JA, Vázquez-Alonso F, Alvarez-Cubero MJ. Identification of MicroRNAs as Viable Aggressiveness Biomarkers for Prostate Cancer. Biomedicines 2021; 9:biomedicines9060646. [PMID: 34198846 PMCID: PMC8227559 DOI: 10.3390/biomedicines9060646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
MiRNAs play a relevant role in PC (prostate cancer) by the regulation in the expression of several pathways’ AR (androgen receptor), cellular cycle, apoptosis, MET (mesenchymal epithelium transition), or metastasis. Here, we report the role of several miRNAs’ expression patterns, such as miR-93-5p, miR-23c, miR-210-3p, miR-221-3p, miR-592, miR-141, miR-375, and miR-130b, with relevance in processes like cell proliferation and MET. Using Trizol® extraction protocol and TaqMan™ specific probes for amplification, we performed miRNAs’ analysis of 159 PC fresh tissues and 60 plasmas from peripheral blood samples. We had clinical data from all samples including PSA, Gleason, TNM, and D’Amico risk. Moreover, a bioinformatic analysis in TCGA (The Cancer Genome Atlas) was included to analyze the effect of the most relevant miRNAs according to aggressiveness in an extensive cohort (n = 531). We found that miR-210-3p, miR-23c, miR-592, and miR-93-5p are the most suitable biomarkers for PC aggressiveness and diagnosis, respectively. In fact, according with our results, miR-93-5p seems the most promising non-invasive biomarker for PC. To sum up, miR-210-3p, miR-23c, miR-592, and miR-93-5p miRNAs are suggested to be potential biomarkers for PC risk stratification that could be included in non-invasive strategies such as liquid biopsy in precision medicine for PC management.
Collapse
Affiliation(s)
- Luis Javier Martínez-González
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada-Avenida de la Ilustración, 114-18016 Granada, Spain;
- Correspondence: author: (L.J.M.-G.); (M.J.A.-C.); Tel.: +34-958-715-500 (ext. 108) (L.J.M.-G.); +34-958-248-945 (M.J.A.-C.); Fax: +34-958-637-071 (L.J.M.-G.)
| | - Victor Sánchez-Conde
- Urology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain; (V.S.-C.); (F.V.-A.)
| | | | - Alba Antunez-Rodríguez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada-Avenida de la Ilustración, 114-18016 Granada, Spain;
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN), Spanish National Research Council (CSIC), 18016 Granada, Spain;
| | - Inmaculada Robles-Fernandez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, 114-18016 Granada, Spain; (I.R.-F.); (J.A.L.)
| | - Jose Antonio Lorente
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, 114-18016 Granada, Spain; (I.R.-F.); (J.A.L.)
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS Granada, 18016 Granada, Spain
| | - Fernando Vázquez-Alonso
- Urology Department, Hospital Virgen de las Nieves, 18014 Granada, Spain; (V.S.-C.); (F.V.-A.)
| | - María Jesus Alvarez-Cubero
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, 114-18016 Granada, Spain; (I.R.-F.); (J.A.L.)
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS Granada, 18016 Granada, Spain
- Nutrition, Diet and Risk Assessment Group, Bio-Health Research Institute (ibs.GRANADA Instituto de Investigación Biosanitaria), 18014 Granada, Spain
- Correspondence: author: (L.J.M.-G.); (M.J.A.-C.); Tel.: +34-958-715-500 (ext. 108) (L.J.M.-G.); +34-958-248-945 (M.J.A.-C.); Fax: +34-958-637-071 (L.J.M.-G.)
| |
Collapse
|