1
|
McIntyre G, Jackson Z, Colina J, Sekhar S, DiFeo A. miR-181a: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential. Expert Opin Ther Targets 2024; 28:1061-1091. [PMID: 39648331 DOI: 10.1080/14728222.2024.2433687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION microRNA-181a (miR-181a) is a crucial post-transcriptional regulator of many mRNA transcripts and noncoding-RNAs, influencing cell proliferation, cancer cell stemness, apoptosis, and immune responses. Its abnormal expression is well-characterized in numerous cancers, establishing it as a significant genomic vulnerability and biomarker in cancer research. AREAS COVERED Here, we summarize miR-181a's correlation with poor patient outcomes across numerous cancers and the mechanisms governing miR-181a's activity and processing. We comprehensively describe miR-181a's involvement in multiple regulatory cancer signaling pathways, cellular processes, and the tumor microenvironment. We also discuss current therapeutic approaches to targeting miR-181a, highlighting their limitations and future potential. EXPERT OPINION miR-181a is a clinically relevant pan-cancer biomarker with potential as a therapeutic target. Its regulatory control of tumorigenic signaling pathways and immune responses positions it as a promising candidate for personalized treatments. The success of miR-181a as a target relies on the development of specific therapeutics platforms. Future research on miR-181a's role in the tumor microenvironment and the RNA binding proteins that regulate its stability will help uncover new techniques to targeting miR-181a. Further research into miR-181a serum levels in patients undergoing therapy will help to better stratify patients and enhance therapeutic success.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zoe Jackson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sreeja Sekhar
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Zanini BM, Ávila BM, Hense JD, Garcia DN, Ashiqueali S, Alves PIC, Oliveira TL, Collares TV, Brieño-Enríquez MA, Mason JB, Masternak MM, Schneider A. EXOSOMES FROM CYCLIC MICE MODULATE LIVER TRANSCRIPTOME IN ESTROUPAUSE MICE INDEPENDENT OF AGE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621842. [PMID: 39574609 PMCID: PMC11580851 DOI: 10.1101/2024.11.04.621842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Background Exosomes are extracellular vesicles secreted by cells that contain microRNAs (miRNAs). These miRNAs can induce changes in gene expression and function of recipient cells. In different cells exosome content can change with age and physiological state affecting tissues function and health. Aims Therefore, the aim of this study was to characterize the miRNA content and role of exosomes from cyclic female mice in the modulation of liver transcriptome in estropausal mice. Main Methods Two-month-old female mice were induced to estropause using 4-vinylcyclohexene diepoxide (VCD). At six months of age VCD-treated mice were divided in control group (VCD) and exosome treated group (VCD+EXO), which received 10 injections at 3-day intervals of exosomes extracted from serum of cyclic female mice (CTL). Key findings Exosome injection in estropausal mice had no effect on body mass, insulin sensitivity or organ weight. We observed ten miRNAs differentially regulated in serum exosomes of VCD compared to CTL mice. In the liver we observed 931 genes differentially expressed in VCD+EXO compared to VCD mice. Interestingly, eight pathways were up-regulated in liver by VCD treatment and down-regulated by exosome treatment, indicating that exosomes from cyclic mice can reverse changes promoted by estropause in liver. Cyp4a12a expression which is male-specific was increased in VCD females and not reversed by exosome treatment. Significance Our findings indicate that miRNAs content in exosomes is regulated by estropause in mice independent of age. Additionally, treatment of estropausal mice with exosomes from cyclic mice can partially reverse changes in liver transcriptome.
Collapse
Affiliation(s)
- Bianka M. Zanini
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas – RS, Brazil
| | - Bianca M. Ávila
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas – RS, Brazil
| | - Jéssica D. Hense
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas – RS, Brazil
| | - Driele N. Garcia
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas – RS, Brazil
| | - Sarah Ashiqueali
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Pâmela I. C. Alves
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade Federal de Pelotas -RS, Brasil
| | - Thais L. Oliveira
- Centro de Biotecnologia, Universidade Federal de Pelotas – RS, Brasil
| | - Tiago V. Collares
- Centro de Biotecnologia, Universidade Federal de Pelotas – RS, Brasil
| | - Miguel A. Brieño-Enríquez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey B. Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Michal M. Masternak
- University of Central Florida, College of Medicine, Burnett School of Biomedical Sciences, Orlando, Florida, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas – RS, Brazil
| |
Collapse
|
3
|
Wang BY, Chang YY, Shiu LY, Lee YJ, Lin YW, Hsu YS, Tsai HT, Hsu SP, Su LJ, Tsai MH, Xiao JH, Lin JA, Chen CH. An integrated analysis of dysregulated SCD1 in human cancers and functional verification of miR-181a-5p/SCD1 axis in esophageal squamous cell carcinoma. Comput Struct Biotechnol J 2023; 21:4030-4043. [PMID: 37664175 PMCID: PMC10468324 DOI: 10.1016/j.csbj.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the most lethal cancers, has become a global health issue. Stearoyl-coA desaturase 1 (SCD1) has been demonstrated to play a crucial role in human cancers. However, pan-cancer analysis has revealed little evidence to date. In the current study, we systematically inspected the expression patterns and potential clinical outcomes of SCD1 in multiple human cancers. SCD1 was dysregulated in several types of cancers, and its aberrant expression acted as a diagnostic biomarker, indicating that SCD1 may play a role in tumorigenesis. We used ESCC as an example to demonstrate that SCD1 was dramatically upregulated in tumor tissues of ESCC and was associated with clinicopathological characteristics in ESCC patients. Furthermore, Kaplan-Meier analysis showed that high SCD1 expression was correlated with poor progression-free survival (PFS) and disease-free survival (DFS) in ESCC patients. The protein-protein interaction (PPI) network and module analysis by PINA database and Gephi were performed to identify the hub targets. Meanwhile, the functional annotation analysis of these hubs was constructed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Functionally, the gain-of-function of SCD1 in ESCC cells promoted cell proliferation, migration, and invasion; in contrast, loss-of-function of SCD1 in ESCC cells had opposite effects. Bioinformatic, QPCR, Western blotting and luciferase assays indicated that SCD1 was a direct target of miR-181a-5p in ESCC cells. In addition, gain-of-function of miR-181a-5p in ESCC cells reduced the cell growth, migratory, and invasive abilities. Conversely, inhibition of miR-181a-5p expression by its inhibitor in ESCC cells had opposite biological effects. Importantly, reinforced SCD1 in miR-181a-5p mimic ESCC transfectants reversed miR-181a-5p mimic-prevented malignant phenotypes of ESCC cells. Taken together, these results indicate that SCD1 expression influences tumor progression in a variety of cancers, and the miR-181a-5p/SCD1 axis may be a potential therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for General Education, Ming Dao University, Changhua, Taiwan
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Li-Yen Shiu
- Cell Therapy Center, E-Da cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- Cell Therapy and Research Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Ju Lee
- Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Wei Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Shen Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsin-Ting Tsai
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sung-Po Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, Taipei, Taiwan
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Taiwan
| | - Meng-Hsiu Tsai
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Taiwan
| | - Jing-Hong Xiao
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Taiwan
| | - Jer-An Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Chang-Han Chen
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Noce B, Di Bello E, Fioravanti R, Mai A. LSD1 inhibitors for cancer treatment: Focus on multi-target agents and compounds in clinical trials. Front Pharmacol 2023; 14:1120911. [PMID: 36817147 PMCID: PMC9932783 DOI: 10.3389/fphar.2023.1120911] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Histone lysine-specific demethylase 1 (LSD1/KDM1A) was first identified in 2004 as an epigenetic enzyme able to demethylate specific lysine residues of histone H3, namely H3K4me1/2 and H3K9me1/2, using FAD as the cofactor. It is ubiquitously overexpressed in many types of cancers (breast, gastric, prostate, hepatocellular, and esophageal cancer, acute myeloid leukemia, and others) leading to block of differentiation and increase of proliferation, migration and invasiveness at cellular level. LSD1 inhibitors can be grouped in covalent and non-covalent agents. Each group includes some hybrid compounds, able to inhibit LSD1 in addition to other target(s) at the same time (dual or multitargeting compounds). To date, 9 LSD1 inhibitors have entered clinical trials, for hematological and/or solid cancers. Seven of them (tranylcypromine, iadademstat (ORY-1001), bomedemstat (IMG-7289), GSK-2879552, INCB059872, JBI-802, and Phenelzine) covalently bind the FAD cofactor, and two are non-covalent LSD1 inhibitors [pulrodemstat (CC-90011) and seclidemstat (SP-2577)]. Another TCP-based LSD1/MAO-B dual inhibitor, vafidemstat (ORY-2001), is in clinical trial for Alzheimer's diseases and personality disorders. The present review summarizes the structure and functions of LSD1, its pathological implications in cancer and non-cancer diseases, and the identification of LSD1 covalent and non-covalent inhibitors with different chemical scaffolds, including those involved in clinical trials, highlighting their potential as potent and selective anticancer agents.
Collapse
Affiliation(s)
- Beatrice Noce
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Di Bello
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy
| | - Rossella Fioravanti
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,*Correspondence: Rossella Fioravanti,
| | - Antonello Mai
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Rome, Italy,Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Ayipo YO, Ajiboye AT, Osunniran WA, Jimoh AA, Mordi MN. Epigenetic oncogenesis, biomarkers and emerging chemotherapeutics for breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194873. [PMID: 36064110 DOI: 10.1016/j.bbagrm.2022.194873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Breast cancer remains one of the leading causes of cancer-related deaths globally and the most prominent among females, yet with limited effective therapeutic options. Most of the current medications are challenged by various factors including low efficacy, incessant resistance, immune evasion and frequent recurrence of the disease. Further understanding of the prognosis and identification of plausible therapeutic channels thus requires multimodal approaches. In this review, epigenetics studies of several pathways to BC oncogenesis via the inducement of oncogenic changes on relevant markers have been overviewed. Similarly, the counter-epigenetic mechanisms to reverse such changes as effective therapeutic strategies were surveyed. The epigenetic oncogenesis occurs through several pathways, notably, DNMT-mediated hypermethylation of DNA, dysregulated expression for ERα, HER2/ERBB and PR, histone modification, overexpression of transcription factors including the CDK9-cyclin T1 complex and suppression of tumour suppressor genes. Scientifically, the regulatory reversal of the mechanisms constitutes effective epigenetic approaches for mitigating BC initiation, progression and metastasis. These were exhibited at various experimental levels by classical chemotherapeutic agents including some repurposable drugs, endocrine inhibitors, monoclonal antibodies and miRNAs, natural products, metal complexes and nanoparticles. Dozens of the potential candidates are currently in clinical trials while others are still at preclinical experimental stages showing promising anti-BC efficacy. The review presents a model for a wider understanding of epigenetic oncogenic pathways to BC and reveals plausible channels for reversing the unpleasant changes through epigenetic modifications. It advances the science of therapeutic designs for ameliorating the global burden of BC upon further translational studies.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia; Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria.
| | - Abdulfatai Temitope Ajiboye
- Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria
| | - Wahab Adesina Osunniran
- Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria
| | - Akeem Adebayo Jimoh
- Department of Chemistry and Industrial Chemistry, Kwara State University, P.M.B., Malete, 1530 Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800 Pulau Pinang, Malaysia
| |
Collapse
|
6
|
Wei ZD, Shetty AK. Can mild cognitive impairment and Alzheimer's disease be diagnosed by monitoring a miRNA triad in the blood? Aging Cell 2022; 21:e13627. [PMID: 35537095 PMCID: PMC9197398 DOI: 10.1111/acel.13627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Objectively diagnosing age‐related cognitive impairment (ACI), mild cognitive impairment (MCI), and early‐stage Alzheimer's disease (AD) is a difficult task, as most cognitive impairment is clinically established via questionnaires, history, and physical examinations. A recent study has suggested that monitoring a miRNA triad, miR‐181a‐5p, miR‐146a‐5p, and miR‐148a‐3p can identify ACI and its progression to MCI and AD (Islam et al., EMBO Mol Med. 13: e14997, 2021). This commentary deliberates findings from this article, such as elevated levels of the miRNA triad in the brain impairing neural plasticity and cognitive function, the efficiency of measuring the miRNA triad in the circulating blood diagnosing MCI and AD, and the promise for improving cognitive function in MCI and AD by inhibiting this miRNA triad. Additional studies required prior to employing this miRNA triad in clinical practice are also discussed.
Collapse
Affiliation(s)
- Zhuang‐Yao D. Wei
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University Health Science Center College of Medicine College Station Texas USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine Department of Molecular and Cellular Medicine Texas A&M University Health Science Center College of Medicine College Station Texas USA
| |
Collapse
|
7
|
MicroRNA-181a-5p Promotes Osteosarcoma Progression via PTEN/AKT Pathway. Anal Cell Pathol 2022; 2022:3421600. [PMID: 35310933 PMCID: PMC8924609 DOI: 10.1155/2022/3421600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 11/18/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor in children and adolescents with poor prognosis. MicroRNA-181a-5p (miR-181a-5p) is involved in the progression of various tumors; however, its role and underlying mechanism in osteosarcoma remains unclear. In this study, we found that miR-181a-5p was upregulated in human osteosarcoma cells and tissues. miR-181a-5p mimic significantly promoted, while miR-181a-5p inhibitor blocked the proliferation, colony formation, migration, invasion, and cell cycle progression of osteosarcoma cells. Mechanistically, miR-181a-5p bound to the 3′-untranslational region of phosphatase and tensin homolog (PTEN) and reduced its protein expression, thereby activating protein kinase B (PKB/AKT) pathway. Either PTEN overexpression or AKT inhibition notably blocked the tumor-promoting effects of miR-181a-5p. Moreover, we observed that miR-181a-5p mimic further inhibited growth of human osteosarcoma cells in the presence of adriamycin or cisplatin. Overall, miR-181a-5p promotes osteosarcoma progression via PTEN/AKT pathway and it is a promising therapeutic target to treat osteosarcoma.
Collapse
|
8
|
Capriglione F, Verrienti A, Celano M, Maggisano V, Sponziello M, Pecce V, Gagliardi A, Giacomelli L, Aceti V, Durante C, Bulotta S, Russo D. Analysis of serum microRNA in exosomal vehicles of papillary thyroid cancer. Endocrine 2022; 75:185-193. [PMID: 34378123 DOI: 10.1007/s12020-021-02847-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE In this study, we investigated the profile of microRNAs (miRNAs) contained in exosomes secreted in the serum of patients with papillary thyroid cancer (PTC). METHODS Exosome were isolated by adding ExoQuick Exosome Precipitation Solution. Dynamic light scattering (DLS) and western blotting analysis were used to ensure the quality of exosomes. The expression levels of miRNAs were investigated using custom-designed TaqMan Advanced miRNA Array Cards in the screening cohort and using specific TaqMan Advanced MicroRNA Assays in the validation cohort. RESULTS We identified miR24-3p, miR146a-5p, miR181a-5p and miR382-5p with different expression levels in two different series of 56 and 58 PTC patients as compared with healthy controls. Significant differences in the expression of three PTC exosomal miRNAs, depending on the presence of lymph node metastasis, were detected in only one PTC series. When comparing the expression levels of some PTC-specific exosomal miRNAs with those of the same miRNAs circulating free of any encapsulation, we found a significant correlation for only miR24-3p, suggesting that only select miRNAs are secreted in exosomes. CONCLUSIONS Our findings demonstrate that four miRNAs are differently secreted in the exosomes of PTC patients, whereas no conclusive results were found to characterize PTCs with lymph node metastasis, suggesting caution in the use of circulating exosomal miRNA expression levels as lymph node metastasis biomarkers. Further investigation into the mechanisms governing miRNA secretion in tumor cells are required.
Collapse
Affiliation(s)
- Francesca Capriglione
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Antonella Verrienti
- Department of translational and precision medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Marilena Celano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Marialuisa Sponziello
- Department of translational and precision medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Valeria Pecce
- Department of translational and precision medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Agnese Gagliardi
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Laura Giacomelli
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Valerio Aceti
- Department of translational and precision medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Cosimo Durante
- Department of translational and precision medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Diego Russo
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
9
|
Zhai Z, Mu T, Zhao L, Li Y, Zhu D, Pan Y. MiR-181a-5p facilitates proliferation, invasion, and glycolysis of breast cancer through NDRG2-mediated activation of PTEN/AKT pathway. Bioengineered 2021; 13:83-95. [PMID: 34951340 PMCID: PMC8805873 DOI: 10.1080/21655979.2021.2006974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is associated with the occurrence and development of breast cancer. In this research, we explored the involvement of miR-181a-5p in the progression of breast cancer and investigated potential molecular mechanisms. Firstly, the miR-181a-5p and N-myc downstream-regulated gene (NDRG) 2 expression was detected by real-time quantitative polymerase chain reaction. Cellular processes were assessed using Cell Counting Kit 8, Bromodeoxyuridine, colony formation and transwell assays. HK2, PKM2 and LDHA activities were assessed by ELISA. The combination between miR-181a-5p was assessed by dual-luciferase reporter assay and RNA pull-down assay. The results indicated that miR-181a-5p levels were upregulated and NDRG2 levels were downregulated in breast cancer, leading to poor prognosis. Silencing of miR-181a-5p inhibited cell proliferation, invasion, glycolysis, and xenograft tumor growth, while enhanced miR-181a-5p got the opposite results. Furthermore, NDRG2 acts as a target of miR-181a-5p. Knockout of NDRG2 facilitated biological behaviors and meanwhile enhanced phosphorylation (p)-PTEN and p-AKT levels. Rescue experiments showed that restoring NDRG2 abolished the effects caused by miR-181a-5p in breast cancer cells. In conclusion, miR-181a-5p facilitated tumor progression through NDRG2-induced activation of PTEN/AKT signaling pathway of breast cancer, suggesting that focusing on miR-181a-5p may provide new insight for breast cancer therapy. Abbreviations Brdu: Bromodeoxyuridine; CCK-8: Cell Counting Kit-8; miRNA: microRNAs; mut: mutant; RT-qPCR: real-time quantitative polymerase chain reaction; UTR: untranslated region; WT: wild-type
Collapse
Affiliation(s)
- Zhen Zhai
- Breast Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Tianlong Mu
- Breast Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
- Pathology Department, Dongfang Hostipal Beijing University of Chinese Medicine, Beijing, China
| | - Lina Zhao
- Breast Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yiliang Li
- Breast Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Dongsheng Zhu
- Breast Department, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yanshu Pan
- Periodical Center, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Zhao X, Wang J, Zhu R, Zhang J, Zhang Y. DLX6-AS1 activated by H3K4me1 enhanced secondary cisplatin resistance of lung squamous cell carcinoma through modulating miR-181a-5p/miR-382-5p/CELF1 axis. Sci Rep 2021; 11:21014. [PMID: 34697393 PMCID: PMC8546124 DOI: 10.1038/s41598-021-99555-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Cisplatin (CDDP) based chemotherapy is widely used as the first-line strategy in treating non-small cell lung cancer (NSCLC), especially lung squamous cell carcinoma (LUSC). However, secondary cisplatin resistance majorly undermines the cisplatin efficacy leading to a worse prognosis. In this respect, we have identified the role of the DLX6-AS1/miR-181a-5p/miR-382-5p/CELF1 axis in regulating cisplatin resistance of LUSC. qRT-PCR and Western blot analysis were applied to detect gene expression. Transwell assay was used to evaluate the migration and invasion ability of LUSC cells. CCK-8 assay was used to investigate the IC50 of LUSC cells. Flow cytometry was used to test cell apoptosis rate. RNA pull-down and Dual luciferase reporter gene assay were performed to evaluate the crosstalk. DLX6-AS1 was aberrantly high expressed in LUSC tissues and cell lines, and negatively correlated with miR-181a-5p and miR-382-5p expression. DLX6-AS1 expression was enhanced by H3K4me1 in cisplatin resistant LUSC cells. Besides, DLX6-AS1 knockdown led to impaired IC50 of cisplatin resistant LUSC cells. Furthermore, DLX6-AS1 interacted with miR-181a-5p and miR-382-5p to regulate CELF1 expression and thereby mediated the cisplatin sensitivity of cisplatin resistant LUSC cells. DLX6-AS1 induced by H3K4me1 played an important role in promoting secondary cisplatin resistance of LUSC through regulating the miR-181a-5p/miR-382-5p/CELF1 axis. Therefore, targeting DLX6-AS1 might be a novel way of reversing secondary cisplatin resistance in LUSC.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jizhao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Rui Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Jing Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Yunfeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|