1
|
Kudo-Saito C, Imazeki H, Ozawa H, Kawakubo H, Hirano H, Boku N, Kato K, Shoji H. Targeting SNCA in the treatment of malignant ascites in gastrointestinal cancer. Transl Oncol 2024; 48:102075. [PMID: 39098214 PMCID: PMC11345905 DOI: 10.1016/j.tranon.2024.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
Peritoneal tumor dissemination and subsequent malignant tumor ascites (MTA) occur unexpectedly and repeatedly in patients with gastrointestinal (GI) cancers, and worsen quality of life and prognosis of the patients. Various treatments have been clinically developed for these patients, while most of the MTA cases are refractory to the treatments. Thus, effective treatments are urgently needed to improve the clinical outcomes. In this study, we identified α-synuclein (SNCA) as an immunological determinant of MTA progression in GI cancer through translational research using mouse tumor models and clinical specimens collected from gastric cancer patients. We found that the SNCA+ subsets were significantly increased in CD3+ T cells, CD56+ NK cells, and CD11b+ myeloid cells within MTA and peripheral blood cells (PBCs) of MTA cases, albeit almost absent in PBCs of healthy donors, and spleen of naive mice. Of note, the SNCA+ T-cell subset was rarely seen in patients that intraperitoneal lavage fluid without tumor cells was collected before surgery as a tumor-free control, suggesting a possible cancer-induced product, especially within the peritoneal cavity. In vivo treatment with anti-SNCA blocking mAb significantly induced anti-tumor effects in mouse MTA models, and synergistically improved anti-PD1 therapeutic efficacy, providing a significantly better prognosis. These suggest that SNCA is involved in severe immunosuppression in the MTA cases, and that blocking SNCA is effective in dramatically improving the immune status in the hosts. Targeting SNCA will be a promising strategy to improve clinical outcomes in the treatment of GI cancer patients, especially with MTA.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Imazeki
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hiroki Ozawa
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hidekazu Hirano
- Department of Medical Oncology and General Medicine, IMS Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan; Department of Medical Oncology and General Medicine, IMS Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| |
Collapse
|
2
|
Guo Z, Zhuang C, Song Y, Yong J, Li Y, Guo Z, Kong B, Whitelock JM, Wang J, Liang K. Biocatalytic Buoyancy-Driven Nanobots for Autonomous Cell Recognition and Enrichment. NANO-MICRO LETTERS 2023; 15:236. [PMID: 37874411 PMCID: PMC10597912 DOI: 10.1007/s40820-023-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023]
Abstract
Autonomously self-propelled nanoswimmers represent the next-generation nano-devices for bio- and environmental technology. However, current nanoswimmers generate limited energy output and can only move in short distances and duration, thus are struggling to be applied in practical challenges, such as living cell transportation. Here, we describe the construction of biodegradable metal-organic framework based nanobots with chemically driven buoyancy to achieve highly efficient, long-distance, directional vertical motion to "find-and-fetch" target cells. Nanobots surface-functionalized with antibodies against the cell surface marker carcinoembryonic antigen are exploited to impart the nanobots with specific cell targeting capacity to recognize and separate cancer cells. We demonstrate that the self-propelled motility of the nanobots can sufficiently transport the recognized cells autonomously, and the separated cells can be easily collected with a customized glass column, and finally regain their full metabolic potential after the separation. The utilization of nanobots with easy synthetic pathway shows considerable promise in cell recognition, separation, and enrichment.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
- Medical College, Northwest Minzu University, Lanzhou, 730000, People's Republic of China
| | - Chenchen Zhuang
- General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yihang Song
- Medical College, Northwest Minzu University, Lanzhou, 730000, People's Republic of China
| | - Joel Yong
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yi Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Zhong Guo
- Medical College, Northwest Minzu University, Lanzhou, 730000, People's Republic of China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - John M Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kang Liang
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
3
|
Ozaki Y, Kinowaki K, Kawabata H, Kudo-Saito C. IL25 + macrophages are a key determinant of treatment resistance of IL17RB + breast cancer. Am J Cancer Res 2023; 13:4931-4943. [PMID: 37970362 PMCID: PMC10636685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023] Open
Abstract
Recurrence and metastasis are resistant to multimodal treatments, and are the major causes of death in breast cancer. Accumulating evidence suggests that the IL17RB signaling pathway plays a key role in progression and metastasis of breast cancer. Clinical significance of the IL17RB positivity in tumor tissues has been also reported as a poor prognostic factor in breast cancer. However, the molecular mechanisms underlying the poor prognosis of patients with IL17RB+ breast cancer, particularly the immunological aspects, remain to be fully elucidated, and elimination of the IL17RB+ tumors has not been practically achieved in clinical settings. In this study, we identified a distinct molecular mechanism underlying the intractability of the IL17RB+ tumors through tumor biological and immunological investigation using mouse and human breast cancer cells transduced with il17rb gene. IL17RB overexpression in tumor cells confers cancer stemness, including high invasive and self-renewal abilities, and high resistance to CDK4/6 inhibitors that have been considered as a promising agent for treating breast cancer despite the limited efficacy. In the mice implanted with the IL17RB+ tumors, IL25+ macrophages (Møs) are expanded locally in tumor tissues and systemically in spleen, and promote the IL17RB+ tumor progression directly by intensifying the tumor functions, and indirectly via impairment of anti-tumor effector CTLs and NK cells utilizing the secreted IL25. Blocking IL25 with the specific mAb, however, interferes the adverse events, and successfully elicits significant anti-tumor efficacy in combination with CDK4/6 inhibitors providing better survival in murine mammary tumor models. These results suggest that the IL25+ Mø is a key determinant of building the solid treatment resistance of the IL17RB+ breast cancer. Targeting the IL17RB-IL25 axis may be a promising strategy to improve clinical outcomes in the treatment of breast cancer patients, particularly with IL17RB+ tumors.
Collapse
Affiliation(s)
- Yukinori Ozaki
- Department of Immune Medicine, National Cancer Center Research InstituteTokyo 104-0045, Japan
- Department of Medical Oncology, Toranomon HospitalTokyo 105-8470, Japan
- Breast Oncology Center, Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyo 135-8550, Japan
| | - Keiichi Kinowaki
- Department of Pathology, Toranomon HospitalTokyo 105-8470, Japan
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon HospitalTokyo 105-8470, Japan
| | - Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research InstituteTokyo 104-0045, Japan
| |
Collapse
|
4
|
Kudo-Saito C, Boku N, Hirano H, Shoji H. Targeting myeloid villains in the treatment with immune checkpoint inhibitors in gastrointestinal cancer. Front Immunol 2022; 13:1009701. [PMID: 36211375 PMCID: PMC9539086 DOI: 10.3389/fimmu.2022.1009701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the clinical outcomes being extremely limited, blocking immune inhibitory checkpoint pathways has been in the spotlight as a promising strategy for treating gastrointestinal cancer. However, a distinct strategy for the successful treatment is obviously needed in the clinical settings. Myeloid cells, such as neutrophils, macrophages, dendritic cells, and mast cells, are the majority of cellular components in the human immune system, but have received relatively less attention for the practical implementation than T cells and NK cells in cancer therapy because of concentration of the interest in development of the immune checkpoint blocking antibody inhibitors (ICIs). Abnormality of myeloid cells must impact on the entire host, including immune responses, stromagenesis, and cancer cells, leading to refractory cancer. This implies that elimination and reprogramming of the tumor-supportive myeloid villains may be a breakthrough to efficiently induce potent anti-tumor immunity in cancer patients. In this review, we provide an overview of current situation of the IC-blocking therapy of gastrointestinal cancer, including gastric, colorectal, and esophageal cancers. Also, we highlight the possible oncoimmunological components involved in the mechanisms underlying the resistance to the ICI therapy, particularly focusing on myeloid cells, including unique subsets expressing IC molecules. A deeper understanding of the molecular and cellular determinants may facilitate its practical implementation of targeting myeloid villains, and improve the clinical outcomes in the ICI therapy of gastrointestinal cancer.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, Tokyo, Japan
- *Correspondence: Chie Kudo-Saito,
| | - Narikazu Boku
- Department of Oncology and General Medicine, Institute of Medical Science Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
5
|
Wang L, Wang H. Observation on the Effect of Rehabilitative Physical Training on Sports Injuries under Ultrasound Image Examination. SCANNING 2022; 2022:9998265. [PMID: 35832298 PMCID: PMC9259363 DOI: 10.1155/2022/9998265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
In order to observe the effect of rehabilitative physical training on sports injuries under ultrasound examination, this study firstly carried out experiments, induction and analysis of ultrasound examination, and evaluation-related content, especially the diagnosis of ultrasound examination in muscle and tendon injuries caused by various reasons. And the clinical application of treatment (clinical research) is reviewed, in order to provide reference data for clinical stage summary. Then, by determining the fasciculation and location of the tendon rupture injury by ultrasound, the clinic can decide whether or not to proceed with surgery. Small Achilles tendon tears only require conservative treatment to avoid the development of complete Achilles tendon rupture. Finally, 26 patients and 10 healthy adults were examined by ultrasonography, and each subject was segmented to examine 11 muscles, including the tongue muscle. The bilateral trapezius, bilateral biceps brachii, bilateral abductor pollicis brevis, bilateral quadriceps femoris, and bilateral tibialis anterior muscles were evaluated by ultrasound and statistical methods. The experimental results show that if the fasciculation of the Achilles tendon injury does not reach more than 3/11, it indicates that no surgical treatment is required; for those with a complete tear of the Achilles tendon, the distance between the broken ends should be further measured in the toe flexion state to evaluate whether surgical treatment is required. It effectively solves the problem of visual diagnosis of sports injuries.
Collapse
Affiliation(s)
- Lanfeng Wang
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Haoyu Wang
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| |
Collapse
|
6
|
Ozawa H, Imazeki H, Ogiwara Y, Kawakubo H, Fukuda K, Kitagawa Y, Kudo-Saito C. Targeting AURKA in treatment of peritoneal tumor dissemination in gastrointestinal cancer. Transl Oncol 2021; 16:101307. [PMID: 34902741 PMCID: PMC8681022 DOI: 10.1016/j.tranon.2021.101307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 01/16/2023] Open
Abstract
Intraperitoneal (i.p.) tumor dissemination and the consequent malignant ascites remain unpredictable and incurable in patients with gastrointestinal (GI) cancer, and practical advances in diagnosis and treatment are urgently needed in the clinical settings. Here, we explored tumor biological and immunological mechanisms underlying the i.p. tumor progression for establishing more effective treatments. We established mouse tumor ascites models that murine and human colorectal cancer cells were both i.p. and subcutaneously (s.c.) implanted in mice, and analyzed peritoneal exudate cells (PECs) obtained from the mice. We then evaluated anti-tumor efficacy of agents targeting the identified molecular mechanisms using the ascites models. Furthermore, we validated the clinical relevancy of the findings using peritoneal lavage fluids obtained from gastric cancer patients. I.p. tumor cells were giant with large nuclei, and highly express AURKA, but less phosphorylated TP53, as compared to s.c. tumor cells, suggesting polyploidy-like cells. The i.p. tumors impaired phagocytic activity and the consequent T-cell stimulatory activity of CD11b+Gr1+PD1+ myeloid cells by GDF15 that is regulated by AURKA, leading to treatment resistance. Blocking AURKA with MLN8237 or siRNAs, however, abrogated the adverse events, and induced potent anti-tumor immunity in the ascites models. This treatment synergized with anti-PD1 therapy. The CD11b+PD1+ TAMs are also markedly expanded in the PECs of gastric cancer patients. These suggest AURKA is a determinant of treatment resistance of the i.p. tumors. Targeting the AURKA-GDF15 axis could be a promising strategy for improving clinical outcome in the treatment of GI cancer.
Collapse
Affiliation(s)
- Hiroki Ozawa
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroshi Imazeki
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yamato Ogiwara
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
7
|
Kudo-Saito C, Ogiwara Y, Imazeki H, Boku N, Uemura Y, Zhang R, Kawano-Nagatsuma A, Kojima M, Ochiai A. CD11b +DIP2A +LAG3 + cells facilitate immune dysfunction in colorectal cancer. Am J Cancer Res 2021; 11:5428-5439. [PMID: 34873470 PMCID: PMC8640801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors worldwide, and tumor metastasis is the leading cause of death. Targeting immune inhibitory checkpoint inhibitory pathways has attracted great attention, since the therapeutic efficacy induced by the specific blocking antibodies has been demonstrated even in metastatic CRC patients. However, the clinical outcome is low in many cases, and thus more effective treatments are needed in the clinical settings. A SPARC family member follistatin-like 1 (FSTL1) is known as a key driver of tumor metastasis in various types of cancer. However, the immunological roles of the FSTL1 in the CRC pathogenesis remain to be elucidated. In this study, we investigated the molecular mechanisms underlying the refractory FSTL1+ CRC using murine and human FSTL1-transduced CRC cells. Also, based on the results, we evaluated anti-tumor efficacy induced by agents targeting the identified molecules using murine CRC metastasis models, and validated the clinical relevancy of the basic findings using tumor tissues and peripheral blood obtained from CRC patients. FSTL1 transduction conferred EMT-like properties, such as low proliferative (dormant) and high invasive abilities, on tumor cells. When the transfectants were subcutaneously implanted in mice, CD11b+DIP2A+LAG3+ cells were abundantly expanded locally and systemically in the mice. Simultaneously, apoptotic T cells increased and were lastly excluded from the tumor tissues, allowing tumor aggravation leading to resistance to anti-PD1/PDL1 treatment. Blocking FSTL1 and LAG3, however, significantly suppressed the apoptosis induction, and successfully induced anti-tumor immune responses in the CRC metastasis models. Both treatments synergized in providing better prognosis of the mice. FSTL1 was significantly upregulated in tumor tissues and peripheral blood of CRC patients, and the CD11b+DIP2A+LAG3+ cells were significantly expanded in the PBMCs as compared to those of healthy donors. The expansion level was significantly correlated with decrease of potent Ki67+GZMB+ CTLs. These results suggest that the FSTL1-induced CD11b+DIP2A+LAG3+ cells are a key driver of immune dysfunction in CRC. Targeting the FSTL1-LAG3 axis may be a promising strategy for treating metastatic CRC, and anti-FSTL1/LAG3 combination regimen may be practically useful in the clinical settings.
Collapse
Affiliation(s)
- Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research InstituteTokyo, Japan
| | - Yamato Ogiwara
- Department of Immune Medicine, National Cancer Center Research InstituteTokyo, Japan
| | - Hiroshi Imazeki
- Department of Immune Medicine, National Cancer Center Research InstituteTokyo, Japan
- Division of Gastrointestinal Medical Oncology, National Cancer Center HospitalTokyo, Japan
| | - Narikazu Boku
- Division of Gastrointestinal Medical Oncology, National Cancer Center HospitalTokyo, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer CenterChiba, Japan
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research & Clinical Trial Center, National Cancer CenterChiba, Japan
| | - Akiko Kawano-Nagatsuma
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer CenterChiba, Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer CenterChiba, Japan
| | - Atsushi Ochiai
- Division of Biomarker Discovery, Exploratory Oncology Research & Clinical Trial Center, National Cancer CenterChiba, Japan
| |
Collapse
|
8
|
Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multi-tool for tumor progression. EMBO J 2021; 40:e108647. [PMID: 34459003 PMCID: PMC8441439 DOI: 10.15252/embj.2021108647] [Citation(s) in RCA: 356] [Impact Index Per Article: 118.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
The process of epithelial-mesenchymal transition (EMT) is fundamental for embryonic morphogenesis. Cells undergoing it lose epithelial characteristics and integrity, acquire mesenchymal features, and become motile. In cancer, this program is hijacked to confer essential changes in morphology and motility that fuel invasion. In addition, EMT is increasingly understood to orchestrate a large variety of complementary cancer features, such as tumor cell stemness, tumorigenicity, resistance to therapy and adaptation to changes in the microenvironment. In this review, we summarize recent findings related to these various classical and non-classical functions, and introduce EMT as a true tumorigenic multi-tool, involved in many aspects of cancer. We suggest that therapeutic targeting of the EMT process will-if acknowledging these complexities-be a possibility to concurrently interfere with tumor progression on many levels.
Collapse
Affiliation(s)
- Simone Brabletz
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Harald Schuhwerk
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Thomas Brabletz
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| | - Marc P. Stemmler
- Department of Experimental Medicine 1Nikolaus‐Fiebiger Center for Molecular MedicineFriedrich‐Alexander University of Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
9
|
Mediterranean Diet Food Components as Possible Adjuvant Therapies to Counteract Breast and Prostate Cancer Progression to Bone Metastasis. Biomolecules 2021; 11:biom11091336. [PMID: 34572548 PMCID: PMC8470063 DOI: 10.3390/biom11091336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/16/2022] Open
Abstract
Bone metastasis is a serious and often lethal complication of particularly frequent carcinomas, such as breast and prostate cancers, which not only reduces survival but also worsens the patients’ quality of life. Therefore, it is important to find new and/or additional therapeutic possibilities that can counteract the colonization of bone tissue. High adherence to the Mediterranean diet (MD) is effective in the prevention of cancer and improves cancer patients’ health, thus, here, we considered its impact on bone metastasis. We highlighted some molecular events relevant for the development of a metastatic phenotype in cancer cells and the alterations of physiological bone remodeling, which occur during skeleton colonization. We then considered those natural compounds present in MD foods with a recognized role to inhibit or reverse the metastatic process both in in vivo and in vitro systems, and we reported the identified mechanisms of action. The knowledge of this bioactivity by the dietary components of the MD, together with its wide access to all people, could help not only to maintain healthy status but also to improve the quality of life of patients with bone metastases.
Collapse
|
10
|
Li Y, Su Z, Wei B, Liang Z. KRT7 Overexpression is Associated with Poor Prognosis and Immune Cell Infiltration in Patients with Pancreatic Adenocarcinoma. Int J Gen Med 2021; 14:2677-2694. [PMID: 34188523 PMCID: PMC8233003 DOI: 10.2147/ijgm.s313584] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background Pancreatic adenocarcinoma (PAAD) is a deadly tumor with a high recurrence rate and poor prognosis. Keratin 7 (KRT7) is a member of the keratin gene family that is involved in the regulation of cell growth, migration and apoptosis in many cancers. However, the role of KRT7 and its biological functions in PAAD remain unclear. We systemically analyzed the expression and clinical values of KRT7 in PAAD. Methods The Gene Expression Profiling Interactive Analysis (GEPIA), Oncomine and Human Protein Atlas (HPA) databases were used to analyze the mRNA and protein expression of KRT7 in PAAD. The prognosis and subgroup analysis of KRT7 in PAAD patients was performed using the GEPIA, PROGgeneV2 and UALCAN databases. Later, the correlation between KRT7 expression and tumor immune molecules in PAAD was evaluated using the Immune Cell Abundance Identifier (ImmuCellAI) and TISIDB databases. Finally, the functional enrichment pathway of KRT7 and its coexpressed genes were analyzed by the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Metascape databases and Gene Set Enrichment Analysis (GSEA). Results The mRNA and protein expression of KRT7 was increased in PAAD tissues compared with normal tissues. High KRT7 expression was closely associated with tumor grade, TP53 mutations and poor prognosis in PAAD patients. Cox regression analysis proved that overexpressed KRT7 was an important and independent risk factor for poor overall survival (P = 0.006, HR =1.87) and disease-free survival (P = 0.019, HR =1.793) in PAAD. Additionally, KRT7 expression was significantly associated with immune infiltration of tumor immune cells and immunomodulators. Functional enrichment analyses and GSEA indicated that KRT7 might be involved in the regulation of the p53 pathway in PAAD. Conclusion Overexpressed KRT7 could be a promising prognostic and therapeutic target biomarker for PAAD by bioinformatics analysis.
Collapse
Affiliation(s)
- Yuexian Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhou Su
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Biwei Wei
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Zhihai Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
11
|
Xu L, Xu Y, Zheng J, Zhao Y, Wang H, Qi Y. Dacomitinib improves chemosensitivity of cisplatin-resistant human ovarian cancer cells. Oncol Lett 2021; 22:569. [PMID: 34113397 PMCID: PMC8185702 DOI: 10.3892/ol.2021.12830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/28/2021] [Indexed: 01/26/2023] Open
Abstract
Drug resistance hinders effectiveness of human ovarian cancer (OC) therapies, such as cisplatin or paclitaxel therapy. Although dacomitinib, a novel anticancer agent is used against multiple types of cancers, such as non-small cell lung cancer, head and neck cancer, few studies report its effectiveness in drug-resistant human OC cells. In the present study, would healing, microplate spectrophotometer analysis, flow cytometry analysis, western blotting and Gene Expression Omnibus (GEO) analysis were used to detect the synergistic effect of dacomitinib and cisplatin in human OC SKOV-3 or OV-4 cells. Co-administration of dacomitinib and cisplatin significantly reduced viability and promoted cell apoptosis of drug resistant OC cells. In addition, dacomitinib increased Cadherin 1 (CDH1) levels and decreased P-glycoprotein (P-GP) levels in cisplatin-resistant OC cells. In addition, GEO analysis demonstrated that dacomitinib inhibited the epidermal growth factor receptor (EGFR) signaling pathway. In summary, dacomitinib improves chemosensitivity of cisplatin in human OC by regulating CDH1 and P-GP protein levels and inhibiting the EGFR signaling pathway.
Collapse
Affiliation(s)
- Lei Xu
- Obstetrics and Gynecology Department, Maternal and Child Health Hospital of Zibo City, Zibo, Shandong 255022, P.R. China
| | - Ying Xu
- Obstetrics and Gynecology Department, Maternal and Child Health Hospital of Zibo City, Zibo, Shandong 255022, P.R. China
| | - Jianbing Zheng
- Obstetrics and Gynecology Department, Maternal and Child Health Hospital of Zibo City, Zibo, Shandong 255022, P.R. China
| | - Yun Zhao
- Obstetrics and Gynecology Department, Maternal and Child Health Hospital of Zibo City, Zibo, Shandong 255022, P.R. China
| | - Hongcai Wang
- Obstetrics and Gynecology Department, Maternal and Child Health Hospital of Zibo City, Zibo, Shandong 255022, P.R. China
| | - Yushu Qi
- Obstetrics and Gynecology Department, Maternal and Child Health Hospital of Zibo City, Zibo, Shandong 255022, P.R. China
| |
Collapse
|
12
|
Xu F, Wu Q, Li L, Gong J, Huo R, Cui W. Icariside II: Anticancer Potential and Molecular Targets in Solid Cancers. Front Pharmacol 2021; 12:663776. [PMID: 33981241 PMCID: PMC8107468 DOI: 10.3389/fphar.2021.663776] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Icariside II, an active flavonoid, is extracted from the traditional Chinese medicinal herb Epimedii. It possesses multiple biological and pharmacological properties, including anti-inflammatory, anticancer, and anti-osteoporotic properties. In recent years, apoptosis has become the hot spot in anticancer therapies. Icariside II exerts positive effects on inducing apoptosis and inhibiting proliferation in various cancers. The antitumorigenic activity of Icariside II was also proven through cell cycle arrest, triggering autophagy, reducing cellular metabolism, and inhibiting cancer metastasis and tumor-associated angiogenesis. Additionally, Icariside II, as a natural product, contributed to a synergistic effect alongside chemotherapeutic drugs. Due to its poor aqueous solubility and permeability, more strategies were developed to improve its therapeutic effects. This review aimed to summarize the chemopreventive properties of Icariside II in solid tumors and reveal its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiaolan Wu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Gong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Huo
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenqiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Guo K, Feng Y, Zheng X, Sun L, Wasan HS, Ruan S, Shen M. Resveratrol and Its Analogs: Potent Agents to Reverse Epithelial-to-Mesenchymal Transition in Tumors. Front Oncol 2021; 11:644134. [PMID: 33937049 PMCID: PMC8085503 DOI: 10.3389/fonc.2021.644134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), a complicated program through which polarized epithelial cells acquire motile mesothelial traits, is regulated by tumor microenvironment. EMT is involved in tumor progression, invasion and metastasis via reconstructing the cytoskeleton and degrading the tumor basement membrane. Accumulating evidence shows that resveratrol, as a non-flavonoid polyphenol, can reverse EMT and inhibit invasion and migration of human tumors via diverse mechanisms and signaling pathways. In the present review, we will summarize the detailed mechanisms and pathways by which resveratrol and its analogs (e.g. Triacetyl resveratrol, 3,5,4'-Trimethoxystilbene) might regulate the EMT process in cancer cells to better understand their potential as novel anti-tumor agents. Resveratrol can also reverse chemoresistance via EMT inhibition and improvement of the antiproliferative effects of conventional treatments. Therefore, resveratrol and its analogs have the potential to become novel adjunctive agents to inhibit cancer metastasis, which might be partly related to their blocking of the EMT process.
Collapse
Affiliation(s)
- Kaibo Guo
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqian Feng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xueer Zheng
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Leitao Sun
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Harpreet S. Wasan
- Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Shanming Ruan
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minhe Shen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|