1
|
Fojnica A, Ljuca K, Akhtar S, Gatalica Z, Vranic S. An Updated Review of the Biomarkers of Response to Immune Checkpoint Inhibitors in Merkel Cell Carcinoma: Merkel Cell Carcinoma and Immunotherapy. Cancers (Basel) 2023; 15:5084. [PMID: 37894451 PMCID: PMC10605355 DOI: 10.3390/cancers15205084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Merkel cell carcinoma (MCC) is primarily a disease of the elderly Caucasian, with most cases occurring in individuals over 50. Immune checkpoint inhibitors (ICI) treatment has shown promising results in MCC patients. Although ~34% of MCC patients are expected to exhibit at least one of the predictive biomarkers (PD-L1, high tumor mutational burden/TMB-H/, and microsatellite instability), their clinical significance in MCC is not fully understood. PD-L1 expression has been variably described in MCC, but its predictive value has not been established yet. Our literature survey indicates conflicting results regarding the predictive value of TMB in ICI therapy for MCC. Avelumab therapy has shown promising results in Merkel cell polyomavirus (MCPyV)-negative MCC patients with TMB-H, while pembrolizumab therapy has shown better response in patients with low TMB. A study evaluating neoadjuvant nivolumab therapy found no significant difference in treatment response between the tumor etiologies and TMB levels. In addition to ICI therapy, other treatments that induce apoptosis, such as milademetan, have demonstrated positive responses in MCPyV-positive MCC, with few somatic mutations and wild-type TP53. This review summarizes current knowledge and discusses emerging and potentially predictive biomarkers for MCC therapy with ICI.
Collapse
Affiliation(s)
- Adnan Fojnica
- Institute of Virology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
| | - Kenana Ljuca
- Health Center of Sarajevo Canton, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Saghir Akhtar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
| | - Zoran Gatalica
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73019, USA;
- Reference Medicine, Phoenix, AZ 85040, USA
| | - Semir Vranic
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
2
|
Gambichler T, Majchrzak-Stiller B, Peters I, Becker JC, Strotmann J, Abu Rached N, Müller T, Uhl W, Buchholz M, Braumann C. The effect of GP-2250 on cultured virus-negative Merkel cell carcinoma cells: preliminary results. J Cancer Res Clin Oncol 2023; 149:10831-10840. [PMID: 37311987 PMCID: PMC10423113 DOI: 10.1007/s00432-023-04960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Even in the novel immunotherapy era, Merkel cell carcinoma (MCC) remains challenging in its treatment. Apart from Merkel cell polyomavirus (MCPyV) associated MCC, this cancer is linked in about 20% of cases to ultraviolet-induced mutational burden frequently causing aberrations in Notch and PI3K/AKT/mTOR signalling pathways. The recently developed agent GP-2250 is capable to inhibit growth of cells of different cancers, including pancreatic neuroendocrine tumors. The objective of the present study was to investigate the effects of GP-2250 on MCPyV-negative MCC cells. METHODS Methods We employed three cell lines (MCC13, MCC14.2, MCC26) which were exposed to different GP-2250doses. GP-2250's effects on cell viability, proliferation, and migration were evaluated by means of MTT, BrdU, and scratch assays, respectively. Flow cytometry was performed for the evaluation of apoptosis and necrosis. Western blotting was implemented for the determination of AKT, mTOR, STAT3, and Notch1 protein expression. RESULTS Cell viability, proliferation, and migration decreased with increasing GP-2250 doses. Flow cytometry revealed a dose response to GP-2250 in all three MCC cell lines. While the viable fraction decreased, the share of necrotic and in a smaller amount the apoptotic cells increased. Regarding Notch1, AKT, mTOR, and STAT3 expression a comparatively time- and dose-dependent decrease of protein expression in the MCC13 and MCC26 cell lines was observed. By contrast, Notch1, AKT, mTOR, and STAT3 expression in MCC14.2 was scarcely altered or even increased by the three dosages of GP-2250 applied. CONCLUSIONS The present study indicates GP-2250 having anti-neoplastic effects in MCPyV-negative tumor cells in regard to viability, proliferation, and migration. Moreover, the substance is capable of downregulating protein expression of aberrant tumorigenic pathways in MCPyV-negative MCC cells.
Collapse
Affiliation(s)
- Thilo Gambichler
- Skin Cancer Center Ruhr-University, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | - Britta Majchrzak-Stiller
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Ilka Peters
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Department of Dermatology, University Duisburg-Essen, Essen, Germany
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Johanna Strotmann
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Nessr Abu Rached
- Skin Cancer Center Ruhr-University, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Bochum, Germany
| | | | - Waldemar Uhl
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Marie Buchholz
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Chris Braumann
- Department of General and Visceral Surgery, Division of Molecular and Clinical Research, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of General, Visceral and Vascular Surgery, Evangelische Kliniken Gelsenkirchen, Akademisches Lehrkrankenhaus der Universität Duisburg-Essen, 45878 Gelsenkirchen, Germany
| |
Collapse
|
3
|
Robb TJ, Ward Z, Houseman P, Woodhouse B, Patel R, Fitzgerald S, Tsai P, Lawrence B, Parker K, Print CG, Blenkiron C. Chromosomal Aberrations Accumulate during Metastasis of Virus-Negative Merkel Cell Carcinoma. J Invest Dermatol 2023; 143:1168-1177.e2. [PMID: 36736454 DOI: 10.1016/j.jid.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 01/01/2023] [Indexed: 02/04/2023]
Abstract
Merkel cell carcinoma is a rare, aggressive skin tumor initiated by polyomavirus integration or UV light DNA damage. In New Zealand, there is a propensity toward the UV-driven form (31 of 107, 29% virus positive). Using archival formalin-fixed, paraffin-embedded tissues, we report targeted DNA sequencing covering 246 cancer genes on 71 tumor tissues and 38 nonmalignant tissues from 37 individuals, with 33 of 37 being negative for the virus. Somatic variants of New Zealand virus-negative Merkel cell carcinomas partially overlapped with those reported overseas, including TP53 variants in all tumors and RB1, LRP1B, NOTCH1, and EPHA3/7 variants each found in over half of the cohort. Variants in genes not analyzed or reported in previous studies were also found. Cataloging variants in TP53 and RB1 from published datasets revealed a broad distribution across these genes. Chr 1p gain and Chr 3p loss were identified in around 50% of New Zealand virus-negative Merkel cell carcinomas, and RB1 loss of heterozygosity was found in 90% of cases. Copy number variants accumulate in most metastases. Virus-negative Merkel cell carcinomas have complex combinations of somatic DNA-sequence variants and copy number variants. They likely carry the small genomic changes permissive for metastasis from early tumor development; however, chromosomal alterations may contribute to driving metastatic progression.
Collapse
Affiliation(s)
- Tamsin J Robb
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand
| | - Zoe Ward
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Pascalene Houseman
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Braden Woodhouse
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Department of Oncology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Rachna Patel
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Sandra Fitzgerald
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand
| | - Ben Lawrence
- Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand; Department of Oncology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kate Parker
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Department of Oncology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Cristin G Print
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Hosted by the University of Auckland, Auckland, New Zealand; Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Gambichler T, Horny K, Mentzel T, Stricker I, Tannapfel A, Scheel CH, Behle B, Quast DR, Lee YP, Stücker M, Susok L, Becker JC. Undifferentiated pleomorphic sarcoma of the breast with neoplastic fever: case report and genomic characterization. J Cancer Res Clin Oncol 2023; 149:1465-1471. [PMID: 35501497 PMCID: PMC10020307 DOI: 10.1007/s00432-022-04000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Primary breast sarcomas are extraordinary rare, in particular undifferentiated pleomorphic sarcoma (UPS). UPS with neoplastic fever (UPS-NF) of the breast has not been reported yet. Here, we present an extended UPS-NF of the breast including its comprehensive molecular workup. METHODS A 58-year-old female presented with general malaise, fever spikes, weight loss, and a massively swollen left breast. C-reactive protein and blood leucocytes were significantly increased. However, repeated blood cultures and smears were all sterile. Histopathology of the abscess-forming tumor revealed an undifferentiated malignancy with numerous of tumor giant cells as well as spindle-shaped cells with nuclear pleomorphism and hyperchromasia. Immunohistochemistry demonstrated partial, patchy desmin staining and weak heterogonous neuron-specific enolase immunoreactivity of tumor cells, but a focal staining for Melan-A. RESULTS Neither common melanoma driver mutations nor an ultraviolet mutational signature was detected by whole genome sequencing. Using FISH and RT-PCR we also excluded translocations characteristic for clear cell sarcoma. Thus, the diagnosis of inflammatory UPS-NF of the breast was considered highly probable. Despite a complete mastectomy, the tumor recurred after only three months. This recurrence was treated with a combination of ipilimumab and nivolumab based on the primary tumor's TPS score for PD-L1 of 30%. After an initial response, however, the tumor was progressive again. CONCLUSION We describe here the first case of UPS-NF of the breast, which shows great clinical and histopathologic resemblances to previously reported UPS-NF of other anatomic localizations.
Collapse
Affiliation(s)
- Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany.
- Department of Dermatology, Christian Hospital Unna, Unna, Germany.
| | - Kai Horny
- Translational Skin Cancer Research, DKTK Partner Site Essen/Düsseldorf, West German Cancer Center, Dermatology, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Ingo Stricker
- Institute of Pathology, Ruhr-University Bochum, Bochum, Germany
| | | | - Christina H Scheel
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Bertold Behle
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Department of Internal Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Yi-Pei Lee
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Markus Stücker
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Laura Susok
- Skin Cancer Center, Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Jürgen C Becker
- Translational Skin Cancer Research, DKTK Partner Site Essen/Düsseldorf, West German Cancer Center, Dermatology, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Gambichler T, Brüggestrat LG, Skrygan M, Scheel CH, Susok L, Becker JC. The Antineoplastic Effect of Dimethyl Fumarate on Virus-Negative Merkel Cell Carcinoma Cell Lines: Preliminary Results. Cancers (Basel) 2023; 15:cancers15020547. [PMID: 36672496 PMCID: PMC9857057 DOI: 10.3390/cancers15020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare, difficult-to-treat skin cancer once immunotherapy has failed. MCC is associated either with the clonal integration of the Merkel cell polyomavirus (MCPyV) or mutagenic UV-radiation. Fumaric acid esters, including dimethyl fumarate (DMF), have been shown to inhibit cell growth in cutaneous melanoma and lymphoma. We aimed to explore the effects of DMF on MCPyV-negative MCC cell lines. Three MCC cell lines (MCC13, MCC14.2, and MCC26) were treated with different doses of DMF. The cytotoxic effects and cell proliferation were assessed by the MTT cytotoxicity assay and BrdU proliferation assay at different time points. A significant reduction in cell viability and proliferation were demonstrated for all the cell lines used, with DMF proving to be effective.
Collapse
Affiliation(s)
- Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
- Correspondence:
| | - Lyn G. Brüggestrat
- Skin Cancer Center, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Marina Skrygan
- Skin Cancer Center, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Christina H. Scheel
- Skin Cancer Center, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Laura Susok
- Skin Cancer Center, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen, Düsseldorf, Department of Dermatology, University Duisburg-Essen, 45117 Essen, Germany
- Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Ouyang K, Zheng DX, Agak GW. T-Cell Mediated Immunity in Merkel Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14246058. [PMID: 36551547 PMCID: PMC9775569 DOI: 10.3390/cancers14246058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and frequently lethal skin cancer with neuroendocrine characteristics. MCC can originate from either the presence of MCC polyomavirus (MCPyV) DNA or chronic ultraviolet (UV) exposure that can cause DNA mutations. MCC is predominant in sun-exposed regions of the body and can metastasize to regional lymph nodes, liver, lungs, bone, and brain. Older, light-skinned individuals with a history of significant sun exposure are at the highest risk. Previous studies have shown that tumors containing a high number of tumor-infiltrating T-cells have favorable survival, even in the absence of MCPyV DNA, suggesting that MCPyV infection enhances T-cell infiltration. However, other factors may also play a role in the host antitumor response. Herein, we review the impact of tumor infiltrating lymphocytes (TILs), mainly the CD4+, CD8+, and regulatory T-cell (Tregs) responses on the course of MCC, including their role in initiating MCPyV-specific immune responses. Furthermore, potential research avenues related to T-cell biology in MCC, as well as relevant immunotherapies are discussed.
Collapse
Affiliation(s)
- Kelsey Ouyang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - David X. Zheng
- Department of Dermatology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - George W. Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Correspondence:
| |
Collapse
|
7
|
Dimitraki MG, Sourvinos G. Merkel Cell Polyomavirus (MCPyV) and Cancers: Emergency Bell or False Alarm? Cancers (Basel) 2022; 14:cancers14225548. [PMID: 36428641 PMCID: PMC9688650 DOI: 10.3390/cancers14225548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV), the sole member of Polyomavirus associated with oncogenesis in humans, is the major causative factor of Merkel cell carcinoma (MCC), a rare, neuroendocrine neoplasia of the skin. Many aspects of MCPyV biology and oncogenic mechanisms remain poorly understood. However, it has been established that oncogenic transformation is the outcome of the integration of the viral genome into the host DNA. The high prevalence of MCPyV in the population, along with the detection of the virus in various human tissue samples and the strong association of MCPyV with the emergence of MCC, have prompted researchers to further investigate the role of MCPyV in malignancies other than MCC. MCPyV DNA has been detected in several different non-MCC tumour tissues but with significantly lower prevalence, viral load and protein expression. Moreover, the two hallmarks of MCPyV MCC have rarely been investigated and the studies have produced generally inconsistent results. Therefore, the outcomes of the studies are inadequate and unable to clearly demonstrate a direct correlation between cellular transformation and MCPyV. This review aims to present a comprehensive recapitulation of the available literature regarding the association of MCPyV with oncogenesis (MCC and non-MCC tumours).
Collapse
|
8
|
Muralidharan S, Kervarrec T, Weiss GJ, Samimi M. Glypican-3 (GPC3) is associated with MCPyV-negative status and impaired outcome in Merkel cell carcinoma. Oncotarget 2022; 13:960-967. [PMID: 35937502 PMCID: PMC9348696 DOI: 10.18632/oncotarget.28260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction: Merkel cell carcinoma (MCC) is an aggressive skin cancer, related to the Merkel Cell Polyomavirus (MCPyV) in 80% of cases. Immune checkpoint inhibitors provide sustained benefit in about 50% of MCC patients with advanced disease. Glypican-3 (GPC3) is an oncofetal tumor antigen that is an attractive target for chimeric antigen receptor T cell therapy due to its highly restricted expression on normal tissue and high prevalence in several solid tumors. GPC3 is known to be expressed in MCC but its association with tumor characteristics or prognosis has not been reported. We investigated MCC GPC3 expression by immunohistochemistry (IHC) and its association with tumor characteristics, MCPyV status, and patient outcome. Methods: The GC33 antibody clone was validated for GPC3 IHC staining of tumor specimens in comparison to an established GPC3 IHC antibody. An MCC tissue microarray was stained for GPC3 by IHC using GC33 antibody. Association of GPC3+ IHC with baseline characteristics, MCPyV status (qPCR) and outcome (death from MCC/recurrence) were assessed. Results: Forty-two of 62 samples (67.7%) were GPC3+. GPC3 expression was more frequently observed in females (p = 0.048) and MCPyV-negative tumors (p = 0.021). By multivariate analysis, GPC3 expression was associated with increased death from disease (CSS) (hazard ratio [HR] 4.05, 95% CI 1.06–15.43), together with advanced age (HR 4.85, 95% CI 1.39–16.9) and male gender (HR 4.64, 95% CI 1.31–16.41). Conclusions: GPC3 expression is frequent in MCC tumors, especially MCPyV-negative cases, and is associated with increased risk of death. High prevalence of surface GPC3 makes it a putative drug target.
Collapse
Affiliation(s)
- Sujatha Muralidharan
- SOTIO Biotech Inc., Cambridge, MA 02140, USA
- These authors contributed equally to this work
| | - Thibault Kervarrec
- Department of Dermatology, University Hospital of Tours, Tours 37170, France
- These authors contributed equally to this work
| | | | - Mahtab Samimi
- Department of Dermatology, University Hospital of Tours, Tours 37170, France
| |
Collapse
|
9
|
Gravemeyer J, Spassova I, Verhaegen ME, Dlugosz AA, Hoffmann D, Lange A, Becker JC. DNA-methylation patterns imply a common cellular origin of virus- and UV-associated Merkel cell carcinoma. Oncogene 2022; 41:37-45. [PMID: 34667274 PMCID: PMC8724008 DOI: 10.1038/s41388-021-02064-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Merkel cell carcinoma (MCC) is a neuroendocrine tumor either induced by integration of the Merkel cell polyomavirus into the cell genome or by accumulation of UV-light-associated mutations (VP-MCC and UV-MCC). Whether VP- and UV-MCC have the same or different cellular origins is unclear; with mesenchymal or epidermal origins discussed. DNA-methylation patterns have a proven utility in determining cellular origins of cancers. Therefore, we used this approach to uncover evidence regarding the cell of origin of classical VP- and UV-MCC cell lines, i.e., cell lines with a neuroendocrine growth pattern (n = 9 and n = 4, respectively). Surprisingly, we observed high global similarities in the DNA-methylation of UV- and VP-MCC cell lines. CpGs of lower methylation in VP-MCC cell lines were associated with neuroendocrine marker genes such as SOX2 and INSM1, or linked to binding sites of EZH2 and SUZ12 of the polycomb repressive complex 2, i.e., genes with an impact on carcinogenesis and differentiation of neuroendocrine cancers. Thus, the observed differences appear to be rooted in viral compared to mutation-driven carcinogenesis rather than distinct cells of origin. To test this hypothesis, we used principal component analysis, to compare DNA-methylation data from different epithelial and non-epithelial neuroendocrine cancers and established a scoring model for epithelial and neuroendocrine characteristics. Subsequently, we applied this scoring model to the DNA-methylation data of the VP- and UV-MCC cell lines, revealing that both clearly scored as epithelial cancers. In summary, our comprehensive analysis of DNA-methylation suggests a common epithelial origin of UV- and VP-MCC cell lines.
Collapse
Affiliation(s)
- Jan Gravemeyer
- Translational Skin Cancer Research (TSCR), University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) & German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivelina Spassova
- Translational Skin Cancer Research (TSCR), University Duisburg-Essen, Essen, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | | | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel Hoffmann
- Bioinformatics & Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Anja Lange
- Bioinformatics & Computational Biophysics, University Duisburg-Essen, Essen, Germany
| | - Jürgen C Becker
- Translational Skin Cancer Research (TSCR), University Duisburg-Essen, Essen, Germany.
- German Cancer Consortium (DKTK) & German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Dermatology, University Hospital Essen, Essen, Germany.
| |
Collapse
|
10
|
Tanda ET, d'Amato AL, Rossi G, Croce E, Boutros A, Cecchi F, Spagnolo F, Queirolo P. Merkel Cell Carcinoma: An Immunotherapy Fairy-Tale? Front Oncol 2021; 11:739006. [PMID: 34631574 PMCID: PMC8495203 DOI: 10.3389/fonc.2021.739006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare, highly aggressive, neuroendocrine cutaneous tumor. The incidence of MCC is growing worldwide, and the disease-related mortality is about three-fold higher than melanoma. Since a few years ago, very little has been known about this disease, and chemotherapy has been the standard of care. Nowadays, new discoveries about the pathophysiology of this neoplasm and the introduction of immunotherapy allowed to completely rewrite the history of these patients. In this review, we provide a summary of the most important changes in the management of Merkel cell carcinoma, with a focus on immunotherapy and a landscape of future treatment strategies.
Collapse
Affiliation(s)
- Enrica Teresa Tanda
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties, University of Genoa, Genova, Italy.,Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Agostina Lagodin d'Amato
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Giovanni Rossi
- Medical Oncology, Ospedale Padre Antero Micone, Genova, Italy.,Department on Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Elena Croce
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Andrea Boutros
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Federica Cecchi
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Spagnolo
- Medical Oncology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Queirolo
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, Istituto Europeo di Oncologia (IEO), European Institute of Oncology IRCCS, Milano, Italy
| |
Collapse
|
11
|
Ricco G, Andrini E, Siepe G, Mosconi C, Ambrosini V, Ricci C, Casadei R, Campana D, Lamberti G. Multimodal Strategy in Localized Merkel Cell Carcinoma: Where Are We and Where Are We Heading? Int J Mol Sci 2021; 22:ijms221910629. [PMID: 34638968 PMCID: PMC8508588 DOI: 10.3390/ijms221910629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive neuroendocrine tumor of the skin whose incidence is rising. Multimodal treatment is crucial in the non-metastatic, potentially curable setting. However, the optimal management of patients with non-metastatic MCC is still unclear. In addition, novel insights into tumor biology and newly developed treatments (e.g., immune checkpoint inhibitors) that dramatically improved outcomes in the advanced setting are being investigated in earlier stages with promising results. Nevertheless, the combination of new strategies with consolidated ones needs to be clarified. We reviewed available evidence supporting the current treatment recommendations of localized MCC with a focus on potentially ground-breaking future strategies. Advantages and disadvantages of the different treatment modalities, including surgery, radiotherapy, chemotherapy, and immunotherapy in the non-metastatic setting, are analyzed, as well as those of different treatment modalities (adjuvant as opposed to neoadjuvant). Lastly, we provide an outlook of remarkable ongoing studies and of promising agents and strategies in the treatment of patients with non-metastatic MCC.
Collapse
Affiliation(s)
- Gianluca Ricco
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (G.R.); (E.A.); (V.A.); (G.L.)
- NET Team Bologna—ENETS Center of Excellence, 40138 Bologna, Italy; (C.M.); (C.R.); (R.C.)
| | - Elisa Andrini
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (G.R.); (E.A.); (V.A.); (G.L.)
- NET Team Bologna—ENETS Center of Excellence, 40138 Bologna, Italy; (C.M.); (C.R.); (R.C.)
| | - Giambattista Siepe
- Radiation Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy;
| | - Cristina Mosconi
- NET Team Bologna—ENETS Center of Excellence, 40138 Bologna, Italy; (C.M.); (C.R.); (R.C.)
- Department of Radiology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Valentina Ambrosini
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (G.R.); (E.A.); (V.A.); (G.L.)
- NET Team Bologna—ENETS Center of Excellence, 40138 Bologna, Italy; (C.M.); (C.R.); (R.C.)
- IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40139 Bologna, Italy
| | - Claudio Ricci
- NET Team Bologna—ENETS Center of Excellence, 40138 Bologna, Italy; (C.M.); (C.R.); (R.C.)
- IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40139 Bologna, Italy
- Department of Internal Medicine and Surgery (DIMEC), Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Riccardo Casadei
- NET Team Bologna—ENETS Center of Excellence, 40138 Bologna, Italy; (C.M.); (C.R.); (R.C.)
- IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40139 Bologna, Italy
- Department of Internal Medicine and Surgery (DIMEC), Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Davide Campana
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (G.R.); (E.A.); (V.A.); (G.L.)
- NET Team Bologna—ENETS Center of Excellence, 40138 Bologna, Italy; (C.M.); (C.R.); (R.C.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-2142886
| | - Giuseppe Lamberti
- Department of Experimental Diagnostic and Specialized Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (G.R.); (E.A.); (V.A.); (G.L.)
- NET Team Bologna—ENETS Center of Excellence, 40138 Bologna, Italy; (C.M.); (C.R.); (R.C.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
12
|
Gao CH, Yu G, Cai P. ggVennDiagram: An Intuitive, Easy-to-Use, and Highly Customizable R Package to Generate Venn Diagram. Front Genet 2021; 12:706907. [PMID: 34557218 PMCID: PMC8452859 DOI: 10.3389/fgene.2021.706907] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Venn diagrams are widely used diagrams to show the set relationships in biomedical studies. In this study, we developed ggVennDiagram, an R package that could automatically generate high-quality Venn diagrams with two to seven sets. The ggVennDiagram is built based on ggplot2, and it integrates the advantages of existing packages, such as venn, RVenn, VennDiagram, and sf. Satisfactory results can be obtained with minimal configurations. Furthermore, we designed comprehensive objects to store the entire data of the Venn diagram, which allowed free access to both intersection values and Venn plot sub-elements, such as set label/edge and region label/filling. Therefore, high customization of every Venn plot sub-element can be fulfilled without increasing the cost of learning when the user is familiar with ggplot2 methods. To date, ggVennDiagram has been cited in more than 10 publications, and its source code repository has been starred by more than 140 GitHub users, suggesting a great potential in applications. The package is an open-source software released under the GPL-3 license, and it is freely available through CRAN (https://cran.r-project.org/package=ggVennDiagram).
Collapse
Affiliation(s)
- Chun-Hui Gao
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Goff PH, Bhakuni R, Pulliam T, Lee JH, Hall ET, Nghiem P. Intersection of Two Checkpoints: Could Inhibiting the DNA Damage Response Checkpoint Rescue Immune Checkpoint-Refractory Cancer? Cancers (Basel) 2021; 13:3415. [PMID: 34298632 PMCID: PMC8307089 DOI: 10.3390/cancers13143415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022] Open
Abstract
Metastatic cancers resistant to immunotherapy require novel management strategies. DNA damage response (DDR) proteins, including ATR (ataxia telangiectasia and Rad3-related), ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent protein kinase), have been promising therapeutic targets for decades. Specific, potent DDR inhibitors (DDRi) recently entered clinical trials. Surprisingly, preclinical studies have now indicated that DDRi may stimulate anti-tumor immunity to augment immunotherapy. The mechanisms governing how DDRi could promote anti-tumor immunity are not well understood; however, early evidence suggests that they can potentiate immunogenic cell death to recruit and activate antigen-presenting cells to prime an adaptive immune response. Merkel cell carcinoma (MCC) is well suited to test these concepts. It is inherently immunogenic as ~50% of patients with advanced MCC persistently benefit from immunotherapy, making MCC one of the most responsive solid tumors. As is typical of neuroendocrine cancers, dysfunction of p53 and Rb with upregulation of Myc leads to the very rapid growth of MCC. This suggests high replication stress and susceptibility to DDRi and DNA-damaging agents. Indeed, MCC tumors are particularly radiosensitive. Given its inherent immunogenicity, cell cycle checkpoint deficiencies and sensitivity to DNA damage, MCC may be ideal for testing whether targeting the intersection of the DDR checkpoint and the immune checkpoint could help patients with immunotherapy-refractory cancers.
Collapse
Affiliation(s)
- Peter H. Goff
- Department of Radiation Oncology, University of Washington, Seattle, WA 98195, USA;
| | - Rashmi Bhakuni
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.B.); (T.P.); (J.H.L.)
| | - Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.B.); (T.P.); (J.H.L.)
| | - Jung Hyun Lee
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.B.); (T.P.); (J.H.L.)
- Institute for Stem Cell and Regenerative Medicine, Department of Bioengineering, University of Washington, Seattle, WA 98109, USA
| | - Evan T. Hall
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98109, USA;
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; (R.B.); (T.P.); (J.H.L.)
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
14
|
Dellambra E, Carbone ML, Ricci F, Ricci F, Di Pietro FR, Moretta G, Verkoskaia S, Feudi E, Failla CM, Abeni D, Fania L. Merkel Cell Carcinoma. Biomedicines 2021; 9:718. [PMID: 34201709 PMCID: PMC8301416 DOI: 10.3390/biomedicines9070718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and extremely aggressive neuroendocrine carcinoma of the skin, with increasing incidence worldwide. This review intends to propose a comprehensive evaluation of MCC epidemiology, clinical features, pathogenetic mechanisms, diagnosis, and therapies. A section is dedicated to immunological aspects and another to the involvement of angiogenesis and angiogenic growth factors in MCC progression, proposing novel diagnostic and therapeutic approaches. Advanced MCC tumors have been treated with immune checkpoint inhibitors with effective results. Therefore, the state of art of this immunotherapy is also examined, reporting on the most recent clinical trials in the field. We conclude by underlining the achievements in the understanding of MCC pathology and indicating the present needs for effective diagnosis and therapeutic management of the disease.
Collapse
Affiliation(s)
- Elena Dellambra
- Molecular and Cell Biology Laboratory, IDI-IRCCS, 00167 Rome, Italy;
| | - Maria Luigia Carbone
- Experimental Immunology Laboratory, IDI-IRCCS, 00167 Rome, Italy; (E.F.); (C.M.F.)
| | | | - Francesco Ricci
- Dermatology Department, IDI-IRCCS, 00167 Rome, Italy; (F.R.); (G.M.); (L.F.)
| | | | - Gaia Moretta
- Dermatology Department, IDI-IRCCS, 00167 Rome, Italy; (F.R.); (G.M.); (L.F.)
| | - Sofia Verkoskaia
- Oncology Department, IDI-IRCCS, 00167 Rome, Italy; (F.R.D.P.); (S.V.)
| | - Elisa Feudi
- Experimental Immunology Laboratory, IDI-IRCCS, 00167 Rome, Italy; (E.F.); (C.M.F.)
| | - Cristina M. Failla
- Experimental Immunology Laboratory, IDI-IRCCS, 00167 Rome, Italy; (E.F.); (C.M.F.)
| | - Damiano Abeni
- Clinical Epidemiology Unit, IDI-IRCCS, 00167 Rome, Italy;
| | - Luca Fania
- Dermatology Department, IDI-IRCCS, 00167 Rome, Italy; (F.R.); (G.M.); (L.F.)
| |
Collapse
|
15
|
Koljonen V, Lui WO, Becker JC. New Insights into the Biological and Clinical Aspects of Merkel Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13092259. [PMID: 34066728 PMCID: PMC8125810 DOI: 10.3390/cancers13092259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Virve Koljonen
- Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland
- Correspondence: (V.K.); (W.-O.L.); (J.C.B.)
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, BioClinicum, Karolinska University Hospital, 171 64 Solna, Sweden
- Correspondence: (V.K.); (W.-O.L.); (J.C.B.)
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), 45151 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: (V.K.); (W.-O.L.); (J.C.B.)
| |
Collapse
|