1
|
Guo F, Sun S, Deng X, Wang Y, Yao W, Yue P, Wu S, Yan J, Zhang X, Zhang Y. Predicting axillary lymph node metastasis in breast cancer using a multimodal radiomics and deep learning model. Front Immunol 2024; 15:1482020. [PMID: 39735531 PMCID: PMC11671510 DOI: 10.3389/fimmu.2024.1482020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Objective To explore the value of combined radiomics and deep learning models using different machine learning algorithms based on mammography (MG) and magnetic resonance imaging (MRI) for predicting axillary lymph node metastasis (ALNM) in breast cancer (BC). The objective is to provide guidance for developing scientifically individualized treatment plans, assessing prognosis, and planning preoperative interventions. Methods A retrospective analysis was conducted on clinical and imaging data from 270 patients with BC confirmed by surgical pathology at the Third Hospital of Shanxi Medical University between November 2022 and April 2024. Multiple sequence images from MG and MRI were selected, and regions of interest in the lesions were delineated. Radiomics and deep learning (3D-Resnet18) features were extracted and fused. The samples were randomly divided into training and test sets in a 7:3 ratio. Dimensionality reduction and feature selection were performed using the least absolute shrinkage and selection operator (LASSO) regression model, and other methods. Various machine learning algorithms were used to construct radiomics, deep learning, and combined models. These models were visualized and evaluated for performance using receiver operating characteristic curves, area under the curve (AUC), calibration curves, and decision curves. Results The highest AUCs in the test set were achieved using radiomics-logistic regression (AUC = 0.759), deep learning-multilayer perceptron (MLP) (AUC = 0.712), and combined-MLP models (AUC = 0.846). The MLP model demonstrated strong classification performance, with the combined model (AUC = 0.846) outperforming both the radiomics (AUC = 0.756) and deep learning (AUC = 0.712) models. Conclusion The multimodal radiomics and deep learning models developed in this study, incorporating various machine learning algorithms, offer significant value for the preoperative prediction of ALNM in BC.
Collapse
Affiliation(s)
- Fuyu Guo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shiwei Sun
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqian Deng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yue Wang
- Department of Urology, Xinzhou People’s Hospital, Xinzhou, China
| | - Wei Yao
- Department of Urology, Datong Fifth People’s Hospital, Datong, China
| | - Peng Yue
- Department of Urology, Handan First Hospital, Handan, China
| | - Shaoduo Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Junrong Yan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangang Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wang Q, Lin Y, Ding C, Guan W, Zhang X, Jia J, Zhou W, Liu Z, Bai G. Multi-modality radiomics model predicts axillary lymph node metastasis of breast cancer using MRI and mammography. Eur Radiol 2024; 34:6121-6131. [PMID: 38337068 DOI: 10.1007/s00330-024-10638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVES We aimed to develop a multi-modality model to predict axillary lymph node (ALN) metastasis by combining clinical predictors with radiomic features from magnetic resonance imaging (MRI) and mammography (MMG) in breast cancer. This model might potentially eliminate unnecessary axillary surgery in cases without ALN metastasis, thereby minimizing surgery-related complications. METHODS We retrospectively enrolled 485 breast cancer patients from two hospitals and extracted radiomics features from tumor and lymph node regions on MRI and MMG images. After feature selection, three random forest models were built using the retained features, respectively. Significant clinical factors were integrated with these radiomics models to construct a multi-modality model. The multi-modality model was compared to radiologists' diagnoses on axillary ultrasound and MRI. It was also used to assist radiologists in making a secondary diagnosis on MRI. RESULTS The multi-modality model showed superior performance with AUCs of 0.964 in the training cohort, 0.916 in the internal validation cohort, and 0.892 in the external validation cohort. It surpassed single-modality models and radiologists' ALN diagnosis on MRI and axillary ultrasound in all validation cohorts. Additionally, the multi-modality model improved radiologists' MRI-based ALN diagnostic ability, increasing the average accuracy from 70.70 to 78.16% for radiologist A and from 75.42 to 81.38% for radiologist B. CONCLUSION The multi-modality model can predict ALN metastasis of breast cancer accurately. Moreover, the artificial intelligence (AI) model also assisted the radiologists to improve their diagnostic ability on MRI. CLINICAL RELEVANCE STATEMENT The multi-modality model based on both MRI and mammography images allows preoperative prediction of axillary lymph node metastasis in breast cancer patients. With the assistance of the model, the diagnostic efficacy of radiologists can be further improved. KEY POINTS • We developed a novel multi-modality model that combines MRI and mammography radiomics with clinical factors to accurately predict axillary lymph node (ALN) metastasis, which has not been previously reported. • Our multi-modality model outperformed both the radiologists' ALN diagnosis based on MRI and axillary ultrasound, as well as single-modality radiomics models based on MRI or mammography. • The multi-modality model can serve as a potential decision support tool to improve the radiologists' ALN diagnosis on MRI.
Collapse
Affiliation(s)
- Qian Wang
- Department of Radiology, The Affiliated Huaian Clinical College of Xuzhou Medical University, Huaian, Jiangsu, China
| | - Yingyu Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China
| | - Cong Ding
- Department of Radiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Wenting Guan
- Department of Radiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xiaoling Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, Guangdong, China
| | - Jianye Jia
- Department of Radiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Wei Zhou
- Department of Radiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Ziyan Liu
- Department of Radiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Genji Bai
- Department of Radiology, The Affiliated Huaian Clinical College of Xuzhou Medical University, Huaian, Jiangsu, China.
- Department of Radiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China.
| |
Collapse
|
3
|
Kocak B, Akinci D'Antonoli T, Ates Kus E, Keles A, Kala A, Kose F, Kadioglu M, Solak S, Sunman S, Temiz ZH. Self-reported checklists and quality scoring tools in radiomics: a meta-research. Eur Radiol 2024; 34:5028-5040. [PMID: 38180530 DOI: 10.1007/s00330-023-10487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To evaluate the use of reporting checklists and quality scoring tools for self-reporting purposes in radiomics literature. METHODS Literature search was conducted in PubMed (date, April 23, 2023). The radiomics literature was sampled at random after a sample size calculation with a priori power analysis. A systematic assessment for self-reporting, including the use of documentation such as completed checklists or quality scoring tools, was conducted in original research papers. These eligible papers underwent independent evaluation by a panel of nine readers, with three readers assigned to each paper. Automatic annotation was used to assist in this process. Then, a detailed item-by-item confirmation analysis was carried out on papers with checklist documentation, with independent evaluation of two readers. RESULTS The sample size calculation yielded 117 papers. Most of the included papers were retrospective (94%; 110/117), single-center (68%; 80/117), based on their private data (89%; 104/117), and lacked external validation (79%; 93/117). Only seven papers (6%) had at least one self-reported document (Radiomics Quality Score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD), or Checklist for Artificial Intelligence in Medical Imaging (CLAIM)), with a statistically significant binomial test (p < 0.001). Median rate of confirmed items for all three documents was 81% (interquartile range, 6). For quality scoring tools, documented scores were higher than suggested scores, with a mean difference of - 7.2 (standard deviation, 6.8). CONCLUSION Radiomic publications often lack self-reported checklists or quality scoring tools. Even when such documents are provided, it is essential to be cautious, as the accuracy of the reported items or scores may be questionable. CLINICAL RELEVANCE STATEMENT Current state of radiomic literature reveals a notable absence of self-reporting with documentation and inaccurate reporting practices. This critical observation may serve as a catalyst for motivating the radiomics community to adopt and utilize such tools appropriately, thereby fostering rigor, transparency, and reproducibility of their research, moving the field forward. KEY POINTS • In radiomics literature, there has been a notable absence of self-reporting with documentation. • Even if such documents are provided, it is critical to exercise caution because the accuracy of the reported items or scores may be questionable. • Radiomics community needs to be motivated to adopt and appropriately utilize the reporting checklists and quality scoring tools.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey.
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Ece Ates Kus
- Department of Neuroradiology, Klinikum Lippe, Lemgo, Germany
| | - Ali Keles
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Ahmet Kala
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Fadime Kose
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Mehmet Kadioglu
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Sila Solak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Seyma Sunman
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Zisan Hayriye Temiz
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| |
Collapse
|
4
|
Azeroual S, Ben-Bouazza FE, Naqi A, Sebihi R. Predicting disease recurrence in breast cancer patients using machine learning models with clinical and radiomic characteristics: a retrospective study. J Egypt Natl Canc Inst 2024; 36:20. [PMID: 38853190 DOI: 10.1186/s43046-024-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/06/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The goal is to use three different machine learning models to predict the recurrence of breast cancer across a very heterogeneous sample of patients with varying disease kinds and stages. METHODS A heterogeneous group of patients with varying cancer kinds and stages, including both triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (non-TNBC), was examined. Three distinct models were created using the following five machine learning techniques: Adaptive Boosting (AdaBoost), Random Under-sampling Boosting (RUSBoost), Extreme Gradient Boosting (XGBoost), support vector machines (SVM), and Logistic Regression. The clinical model used both clinical and pathology data in conjunction with the machine learning algorithms. The machine learning algorithms were combined with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) imaging characteristics in the radiomic model, and the merged model combined the two types of data. Each technique was evaluated using several criteria, including the receiver operating characteristic (ROC) curve, precision, recall, and F1 score. RESULTS The results suggest that the integration of clinical and radiomic data improves the predictive accuracy in identifying instances of breast cancer recurrence. The XGBoost algorithm is widely recognized as the most effective algorithm in terms of performance. CONCLUSION The findings presented in this study offer significant contributions to the field of breast cancer research, particularly in relation to the prediction of cancer recurrence. These insights hold great potential for informing future investigations and clinical interventions that seek to enhance the accuracy and effectiveness of recurrence prediction in breast cancer patients.
Collapse
Affiliation(s)
- Saadia Azeroual
- LPHE-Modeling and Simulations, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco.
| | - Fatima-Ezzahraa Ben-Bouazza
- Faculty of Sciences and Technology, Hassan First University, Settat, Morocco
- LaMSN (La Maison Des Sciences Num´Eriques), Saint-Denis, France
| | - Amine Naqi
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Rajaa Sebihi
- LPHE-Modeling and Simulations, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
5
|
Shimizu H, Mori N, Mugikura S, Maekawa Y, Miyashita M, Nagasaka T, Sato S, Takase K. Application of Texture and Volume Model Analysis to Dedicated Axillary High-resolution 3D T2-weighted MR Imaging: A Novel Method for Diagnosing Lymph Node Metastasis in Patients with Clinically Node-negative Breast Cancer. Magn Reson Med Sci 2024; 23:161-170. [PMID: 36858636 PMCID: PMC11024718 DOI: 10.2463/mrms.mp.2022-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/23/2023] [Indexed: 03/03/2023] Open
Abstract
PURPOSE To evaluate the effectiveness of the texture analysis of axillary high-resolution 3D T2-weighted imaging (T2WI) in distinguishing positive and negative lymph node (LN) metastasis in patients with clinically node-negative breast cancer. METHODS Between December 2017 and May 2021, 242 consecutive patients underwent high-resolution 3D T2WI and were classified into the training (n = 160) and validation cohorts (n = 82). We performed manual 3D segmentation of all visible LNs in axillary level I to extract the texture features. As the additional parameters, the number of the LNs and the total volume of all LNs for each case were calculated. The least absolute shrinkage and selection operator algorithm and Random Forest were used to construct the models. We constructed the texture model using the features from the LN with the largest least axis length in the training cohort. Furthermore, we constructed the 3 models combining the selected texture features of the LN with the largest least axis length, the number of LNs, and the total volume of all LNs: texture-number model, texture-volume model, and texture-number-volume model. As a conventional method, we manually measured the largest cortical diameter. Moreover, we performed the receiver operating curve analysis in the validation cohort and compared area under the curves (AUCs) of the models. RESULTS The AUCs of the texture model, texture-number model, texture-volume model, texture-number-volume model, and conventional method in the validation cohort were 0.7677, 0.7403, 0.8129, 0.7448, and 0.6851, respectively. The AUC of the texture-volume model was higher than those of other models and conventional method. The sensitivity, specificity, positive predictive value, and negative predictive value of the texture-volume model were 90%, 69%, 49%, and 96%, respectively. CONCLUSION The texture-volume model of high-resolution 3D T2WI effectively distinguished positive and negative LN metastasis for patients with clinically node-negative breast cancer.
Collapse
Affiliation(s)
- Hiroaki Shimizu
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Naoko Mori
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Division of Image Statistics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi, Japan
| | - Yui Maekawa
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Minoru Miyashita
- Department of Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tatsuo Nagasaka
- Department of Radiological Technology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Satoko Sato
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
6
|
Lai J, Chen Z, Liu J, Zhu C, Huang H, Yi Y, Cai G, Liao N. A radiogenomic multimodal and whole-transcriptome sequencing for preoperative prediction of axillary lymph node metastasis and drug therapeutic response in breast cancer: a retrospective, machine learning and international multicohort study. Int J Surg 2024; 110:2162-2177. [PMID: 38215256 PMCID: PMC11019980 DOI: 10.1097/js9.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND Axillary lymph nodes (ALN) status serves as a crucial prognostic indicator in breast cancer (BC). The aim of this study was to construct a radiogenomic multimodal model, based on machine learning and whole-transcriptome sequencing (WTS), to accurately evaluate the risk of ALN metastasis (ALNM), drug therapeutic response and avoid unnecessary axillary surgery in BC patients. METHODS In this study, conducted a retrospective analysis of 1078 BC patients from The Cancer Genome Atlas (TCGA), The Cancer Imaging Archive (TCIA), and Foshan cohort. These patients were divided into the TCIA cohort ( N =103), TCIA validation cohort ( N =51), Duke cohort ( N =138), Foshan cohort ( N =106), and TCGA cohort ( N =680). Radiological features were extracted from BC radiological images and differentially expressed gene expression was calibrated using technology. A support vector machine model was employed to screen radiological and genetic features, and a multimodal model was established based on radiogenomic and clinical pathological features to predict ALNM. The accuracy of the model predictions was assessed using the area under the curve (AUC) and the clinical benefit was measured using decision curve analysis. Risk stratification analysis of BC patients was performed by gene set enrichment analysis, differential comparison of immune checkpoint gene expression, and drug sensitivity testing. RESULTS For the prediction of ALNM, rad-score was able to significantly differentiate between ALN- and ALN+ patients in both the Duke and Foshan cohorts ( P <0.05). Similarly, the gene-score was able to significantly differentiate between ALN- and ALN+ patients in the TCGA cohort ( P <0.05). The radiogenomic multimodal nomogram demonstrated satisfactory performance in the TCIA cohort (AUC 0.82, 95% CI: 0.74-0.91) and the TCIA validation cohort (AUC 0.77, 95% CI: 0.63-0.91). In the risk sub-stratification analysis, there were significant differences in gene pathway enrichment between high and low-risk groups ( P <0.05). Additionally, different risk groups may exhibit varying treatment responses ( P <0.05). CONCLUSION Overall, the radiogenomic multimodal model employs multimodal data, including radiological images, genetic, and clinicopathological typing. The radiogenomic multimodal nomogram can precisely predict ALNM and drug therapeutic response in BC patients.
Collapse
Affiliation(s)
- Jianguo Lai
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Yuexiu District, Guangzhou, Guangdong
| | - Zijun Chen
- The Second Clinical School of Southern Medical University, Guangzhou
| | - Jie Liu
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University
| | - Chao Zhu
- Department of Blood Transfusion, The First Affiliated Hospital of Nanchang University
| | - Haoxuan Huang
- Department of Urology, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Ying Yi
- Department of Radiology, The First People's Hospital of Foshan, Foshan, Guangdong
| | - Gengxi Cai
- Department of Breast Surgery, The First People’s Hospital of Foshan, Foshan, Guangdong
| | - Ning Liao
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Yuexiu District, Guangzhou, Guangdong
| |
Collapse
|
7
|
Wang Y, Shang Y, Guo Y, Hai M, Gao Y, Wu Q, Li S, Liao J, Sun X, Wu Y, Wang M, Tan H. Clinical study on the prediction of ALN metastasis based on intratumoral and peritumoral DCE-MRI radiomics and clinico-radiological characteristics in breast cancer. Front Oncol 2024; 14:1357145. [PMID: 38567148 PMCID: PMC10985134 DOI: 10.3389/fonc.2024.1357145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Objective To investigate the value of predicting axillary lymph node (ALN) metastasis based on intratumoral and peritumoral dynamic contrast-enhanced MRI (DCE-MRI) radiomics and clinico-radiological characteristics in breast cancer. Methods A total of 473 breast cancer patients who underwent preoperative DCE-MRI from Jan 2017 to Dec 2020 were enrolled. These patients were randomly divided into training (n=378) and testing sets (n=95) at 8:2 ratio. Intratumoral regions (ITRs) of interest were manually delineated, and peritumoral regions of 3 mm (3 mmPTRs) were automatically obtained by morphologically dilating the ITR. Radiomics features were extracted, and ALN metastasis-related radiomics features were selected by the Mann-Whitney U test, Z score normalization, variance thresholding, K-best algorithm and least absolute shrinkage and selection operator (LASSO) algorithm. Clinico-radiological risk factors were selected by logistic regression and were also used to construct predictive models combined with radiomics features. Then, 5 models were constructed, including ITR, 3 mmPTR, ITR+3 mmPTR, clinico-radiological and combined (ITR+3 mmPTR+ clinico-radiological) models. The performance of models was assessed by sensitivity, specificity, accuracy, F1 score and area under the curve (AUC) of receiver operating characteristic (ROC), calibration curves and decision curve analysis (DCA). Results A total of 2264 radiomics features were extracted from each region of interest (ROI), 3 and 10 radiomics features were selected for the ITR and 3 mmPTR, respectively. 5 clinico-radiological risk factors were selected, including lesion size, human epidermal growth factor receptor 2 (HER2) expression, vascular cancer thrombus status, MR-reported ALN status, and time-signal intensity curve (TIC) type. In the testing set, the combined model showed the highest AUC (0.839), specificity (74.2%), accuracy (75.8%) and F1 Score (69.3%) among the 5 models. DCA showed that it had the greatest net clinical benefit compared to the other models. Conclusion The intra- and peritumoral radiomics models based on DCE-MRI could be used to predict ALN metastasis in breast cancer, especially for the combined model with clinico-radiological characteristics showing promising clinical application value.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Radiology, People’s Hospital of Henan University, Zhengzhou, Henan, China
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Yiyan Shang
- Department of Radiology, People’s Hospital of Henan University, Zhengzhou, Henan, China
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Yaxin Guo
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Menglu Hai
- Department of Radiology, Affiliated Cancer Hospital of Zhengzhou University &Henan Provincial Cancer Hospital, Zhengzhou, China
| | - Yang Gao
- Heart Center, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qingxia Wu
- Beijing United Imaging Research Institute of Intelligent Imaging & United Imaging Intelligence Co., Ltd., Beijing, China
| | - Shunian Li
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Liao
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojuan Sun
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yaping Wu
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongna Tan
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Park S, Kim JH, Cha YK, Chung MJ, Woo JH, Park S. Application of Machine Learning Algorithm in Predicting Axillary Lymph Node Metastasis from Breast Cancer on Preoperative Chest CT. Diagnostics (Basel) 2023; 13:2953. [PMID: 37761320 PMCID: PMC10528867 DOI: 10.3390/diagnostics13182953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Axillary lymph node (ALN) status is one of the most critical prognostic factors in patients with breast cancer. However, ALN evaluation with contrast-enhanced CT (CECT) has been challenging. Machine learning (ML) is known to show excellent performance in image recognition tasks. The purpose of our study was to evaluate the performance of the ML algorithm for predicting ALN metastasis by combining preoperative CECT features of both ALN and primary tumor. This was a retrospective single-institutional study of a total of 266 patients with breast cancer who underwent preoperative chest CECT. Random forest (RF), extreme gradient boosting (XGBoost), and neural network (NN) algorithms were used. Statistical analysis and recursive feature elimination (RFE) were adopted as feature selection for ML. The best ML-based ALN prediction model for breast cancer was NN with RFE, which achieved an AUROC of 0.76 ± 0.11 and an accuracy of 0.74 ± 0.12. By comparing NN with RFE model performance with and without ALN features from CECT, NN with RFE model with ALN features showed better performance at all performance evaluations, which indicated the effect of ALN features. Through our study, we were able to demonstrate that the ML algorithm could effectively predict the final diagnosis of ALN metastases from CECT images of the primary tumor and ALN. This suggests that ML has the potential to differentiate between benign and malignant ALNs.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; (S.P.); (S.P.)
| | - Jong Hee Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (J.H.K.); (J.H.W.)
| | - Yoon Ki Cha
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (J.H.K.); (J.H.W.)
| | - Myung Jin Chung
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (J.H.K.); (J.H.W.)
| | - Jung Han Woo
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (J.H.K.); (J.H.W.)
| | - Subin Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; (S.P.); (S.P.)
| |
Collapse
|
9
|
Vrdoljak J, Krešo A, Kumrić M, Martinović D, Cvitković I, Grahovac M, Vickov J, Bukić J, Božic J. The Role of AI in Breast Cancer Lymph Node Classification: A Comprehensive Review. Cancers (Basel) 2023; 15:cancers15082400. [PMID: 37190328 DOI: 10.3390/cancers15082400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Breast cancer is a significant health issue affecting women worldwide, and accurately detecting lymph node metastasis is critical in determining treatment and prognosis. While traditional diagnostic methods have limitations and complications, artificial intelligence (AI) techniques such as machine learning (ML) and deep learning (DL) offer promising solutions for improving and supplementing diagnostic procedures. Current research has explored state-of-the-art DL models for breast cancer lymph node classification from radiological images, achieving high performances (AUC: 0.71-0.99). AI models trained on clinicopathological features also show promise in predicting metastasis status (AUC: 0.74-0.77), whereas multimodal (radiomics + clinicopathological features) models combine the best from both approaches and also achieve good results (AUC: 0.82-0.94). Once properly validated, such models could greatly improve cancer care, especially in areas with limited medical resources. This comprehensive review aims to compile knowledge about state-of-the-art AI models used for breast cancer lymph node metastasis detection, discusses proper validation techniques and potential pitfalls and limitations, and presents future directions and best practices to achieve high usability in real-world clinical settings.
Collapse
Affiliation(s)
- Josip Vrdoljak
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Ante Krešo
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Marko Kumrić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Dinko Martinović
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Ivan Cvitković
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Marko Grahovac
- Department of Pharmacology, University of Split School of Medicine, 21000 Split, Croatia
| | - Josip Vickov
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Josipa Bukić
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia
| | - Joško Božic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
10
|
Chen D, Liu X, Hu C, Hao R, Wang O, Xiao Y. Radiomics-based signature of breast cancer on preoperative contrast-enhanced MRI to predict axillary metastasis. Future Oncol 2022:1-14. [PMID: 36475996 DOI: 10.2217/fon-2022-0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022] Open
Abstract
Aim: This study aimed to predict axillary metastasis using radiology features in dynamic contrast-enhanced MRI. Methods: This study included 243 breast lesions confirmed as malignant based on axillary status. Most outcome-predictive features were selected using four machine-learning algorithms. Receiver operating characteristic analysis was used to reflect diagnostic performance. Results: Least absolute shrinkage and selection operator was used to dimensionally reduce 1137 radiomics features to three features. Three optimal radiomics features were used to model construction. The logistic regression model achieved an accuracy of 97% and 85% in the training and test groups. Clinical utility was evaluated using decision curve analysis. Conclusion: The novel combination of radiomics analysis and machine-learning algorithm could predict axillary metastasis and prevent invasive manipulation.
Collapse
Affiliation(s)
- Danxiang Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xia Liu
- Department of Anesthesia, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Chunlei Hu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Rutian Hao
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ouchen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yanling Xiao
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
11
|
Tang Y, Che X, Wang W, Su S, Nie Y, Yang C. Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer. Med Phys 2022; 49:7555-7566. [PMID: 35869750 DOI: 10.1002/mp.15873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is among the most common cancers worldwide. Machine learning-based radiomics model could predict axillary lymph node metastasis (ALNM) of BC accurately. PURPOSE The purpose is to develop a machine learning model to predict ALNM of BC by focusing on the radiomics features of axillary lymphatic node (ALN). METHODS A group of 398 BC patients with 800 ALNs were retrospectively collected. A set of patient characteristics were obtained to form clinical factors. Three hundred and twenty-six radiomics features were extracted from each region of interest for ALN in contrast-enhanced computed tomography (CECT) image. A framework composed of four feature selection methods and 14 machine learning classification algorithms was systematically applied. A clinical model, a radiomics model, and a combined model were developed using a cross-validation approach and compared. Metrics of the area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate the performance of these models in the prediction of ALNM in BC. RESULTS Among the 800 cases of ALNs, there were 388 cases of positive metastasis (48.50%) and 412 cases of negative metastasis (51.50%). The baseline clinical model achieved the performance with an AUC = 0.8998 (95% CI [0.8540, 0.9457]). The radiomics model achieved an AUC = 0.9081 (95% CI [0.8640, 0.9523]). The combined model using the clinical factors and radiomics features achieved the best results with an AUC = 0.9305 (95% CI [0.8928, 0.9682]). CONCLUSIONS Combinations of feature selection methods and machine learning-based classification algorithms can develop promising predictive models to predict ALNM in BC using CECT features. The combined model of clinical factors and radiomics features outperforms both the clinical model and the radiomic model.
Collapse
Affiliation(s)
- Yong Tang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaoling Che
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Weijia Wang
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Nie
- Department of Radiology, Luzhou People's Hospital, Luzhou, Sichuan, China
| | - Chunmei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, and Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
12
|
Li X, Yang L, Jiao X. Comparison of Traditional Radiomics, Deep Learning Radiomics and Fusion Methods for Axillary Lymph Node Metastasis Prediction in Breast Cancer. Acad Radiol 2022:S1076-6332(22)00571-2. [DOI: 10.1016/j.acra.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/13/2022]
|
13
|
Wang D, Hu Y, Zhan C, Zhang Q, Wu Y, Ai T. A nomogram based on radiomics signature and deep-learning signature for preoperative prediction of axillary lymph node metastasis in breast cancer. Front Oncol 2022; 12:940655. [PMID: 36338691 PMCID: PMC9633001 DOI: 10.3389/fonc.2022.940655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/07/2022] [Indexed: 10/03/2023] Open
Abstract
PURPOSE To develop a nomogram based on radiomics signature and deep-learning signature for predicting the axillary lymph node (ALN) metastasis in breast cancer. METHODS A total of 151 patients were assigned to a training cohort (n = 106) and a test cohort (n = 45) in this study. Radiomics features were extracted from DCE-MRI images, and deep-learning features were extracted by VGG-16 algorithm. Seven machine learning models were built using the selected features to evaluate the predictive value of radiomics or deep-learning features for the ALN metastasis in breast cancer. A nomogram was then constructed based on the multivariate logistic regression model incorporating radiomics signature, deep-learning signature, and clinical risk factors. RESULTS Five radiomics features and two deep-learning features were selected for machine learning model construction. In the test cohort, the AUC was above 0.80 for most of the radiomics models except DecisionTree and ExtraTrees. In addition, the K-nearest neighbor (KNN), XGBoost, and LightGBM models using deep-learning features had AUCs above 0.80 in the test cohort. The nomogram, which incorporated the radiomics signature, deep-learning signature, and MRI-reported LN status, showed good calibration and performance with the AUC of 0.90 (0.85-0.96) in the training cohort and 0.90 (0.80-0.99) in the test cohort. The DCA showed that the nomogram could offer more net benefit than radiomics signature or deep-learning signature. CONCLUSIONS Both radiomics and deep-learning features are diagnostic for predicting ALN metastasis in breast cancer. The nomogram incorporating radiomics and deep-learning signatures can achieve better prediction performance than every signature used alone.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiqi Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenao Zhan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Lu S, Ling H, Chen J, Tan L, Gao Y, Li H, Tan P, Huang D, Zhang X, Liu Y, Mao Y, Qiu Y. MRI-based radiomics analysis for preoperative evaluation of lymph node metastasis in hypopharyngeal squamous cell carcinoma. Front Oncol 2022; 12:936040. [PMID: 36212477 PMCID: PMC9539826 DOI: 10.3389/fonc.2022.936040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
ObjectiveTo investigate the role of pre-treatment magnetic resonance imaging (MRI) radiomics for the preoperative prediction of lymph node (LN) metastasis in patients with hypopharyngeal squamous cell carcinoma (HPSCC).MethodsA total of 155 patients with HPSCC were eligibly enrolled from single institution. Radiomics features were extracted from contrast-enhanced axial T-1 weighted (CE-T1WI) sequence. The most relevant features of LN metastasis were selected by the least absolute shrinkage and selection operator (LASSO) method. Univariate and multivariate logistic regression analysis was adopted to determine the independent clinical risk factors. Three models were constructed to predict the LN metastasis status: one using radiomics only, one using clinical factors only, and the other one combined radiomics and clinical factors. Receiver operating characteristic (ROC) curves and calibration curve were used to evaluate the discrimination and the accuracy of the models, respectively. The performances were tested by an internal validation cohort (n=47). The clinical utility of the models was assessed by decision curve analysis.ResultsThe nomogram consisted of radiomics scores and the MRI-reported LN status showed satisfactory discrimination in the training and validation cohorts with AUCs of 0.906 (95% CI, 0.840 to 0.972) and 0.853 (95% CI, 0.739 to 0.966), respectively. The nomogram, i.e., the combined model, outperformed the radiomics and MRI-reported LN status in both discrimination and clinical usefulness.ConclusionsThe MRI-based radiomics nomogram holds promise for individual and non-invasive prediction of LN metastasis in patients with HPSCC.
Collapse
Affiliation(s)
- Shanhong Lu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hang Ling
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Chen
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Tan
- College of Computer and Information Engineering, Hunan University of Technology and Business, Changsha, China
| | - Yan Gao
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Huayu Li
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Pingqing Tan
- Department of Head and Neck Surgery, Hunan Cancer Hospital, Xiangya Medical School, Central South University, Changsha, China
| | - Donghai Huang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Liu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yuanzheng Qiu, ; Yitao Mao,
| | - Yuanzheng Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yuanzheng Qiu, ; Yitao Mao,
| |
Collapse
|
15
|
Santucci D, Faiella E, Gravina M, Cordelli E, de Felice C, Beomonte Zobel B, Iannello G, Sansone C, Soda P. CNN-Based Approaches with Different Tumor Bounding Options for Lymph Node Status Prediction in Breast DCE-MRI. Cancers (Basel) 2022; 14:cancers14194574. [PMID: 36230497 PMCID: PMC9558949 DOI: 10.3390/cancers14194574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Breast cancer represents the most frequent cancer in women in the world. The state of the axillary lymph node is considered an independent prognostic factor and is currently evaluated only with invasive methods. Deep learning approaches, especially the ones based on convolutional neural networks, offer a valid, non-invasive alternative, allowing extraction of large amounts of the quantitative data that are used to build predictive models. The aim of our work is to evaluate the influence of the peritumoral parenchyma through different bounding box techniques on the prediction of the axillary lymph node in breast cancer patients using a deep learning artificial intelligence approach. Abstract Background: The axillary lymph node status (ALNS) is one of the most important prognostic factors in breast cancer (BC) patients, and it is currently evaluated by invasive procedures. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), highlights the physiological and morphological characteristics of primary tumor tissue. Deep learning approaches (DL), such as convolutional neural networks (CNNs), are able to autonomously learn the set of features directly from images for a specific task. Materials and Methods: A total of 155 malignant BC lesions evaluated via DCE-MRI were included in the study. For each patient’s clinical data, the tumor histological and MRI characteristics and axillary lymph node status (ALNS) were assessed. LNS was considered to be the final label and dichotomized (LN+ (27 patients) vs. LN− (128 patients)). Based on the concept that peritumoral tissue contains valuable information about tumor aggressiveness, in this work, we analyze the contributions of six different tumor bounding options to predict the LNS using a CNN. These bounding boxes include a single fixed-size box (SFB), a single variable-size box (SVB), a single isotropic-size box (SIB), a single lesion variable-size box (SLVB), a single lesion isotropic-size box (SLIB), and a two-dimensional slice (2DS) option. According to the characteristics of the volumes considered as inputs, three different CNNs were investigated: the SFB-NET (for the SFB), the VB-NET (for the SVB, SIB, SLVB, and SLIB), and the 2DS-NET (for the 2DS). All the experiments were run in 10-fold cross-validation. The performance of each CNN was evaluated in terms of accuracy, sensitivity, specificity, the area under the ROC curve (AUC), and Cohen’s kappa coefficient (K). Results: The best accuracy and AUC are obtained by the 2DS-NET (78.63% and 77.86%, respectively). The 2DS-NET also showed the highest specificity, whilst the highest sensibility was attained by the VB-NET based on the SVB and SIB as bounding options. Conclusion: We have demonstrated that a selective inclusion of the DCE-MRI’s peritumoral tissue increases accuracy in the lymph node status prediction in BC patients using CNNs as a DL approach.
Collapse
Affiliation(s)
- Domiziana Santucci
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University of Rome “Campus Bio-medico”, Via Alvaro del Portillo, 21, 00128 Rome, Italy
- Department of Radiology, Sant’Anna Hospital, Via Ravona, 22042 Como, Italy
- Correspondence:
| | - Eliodoro Faiella
- Department of Radiology, Sant’Anna Hospital, Via Ravona, 22042 Como, Italy
| | - Michela Gravina
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80131 Naples, Italy
| | - Ermanno Cordelli
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University of Rome “Campus Bio-medico”, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Carlo de Felice
- Department of Radiology, University of Rome “Sapienza”, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Bruno Beomonte Zobel
- Department of Radiology, University of Rome “Campus Bio-medico”, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Giulio Iannello
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University of Rome “Campus Bio-medico”, Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Carlo Sansone
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80131 Naples, Italy
| | - Paolo Soda
- Unit of Computer Systems and Bioinformatics, Department of Engineering, University of Rome “Campus Bio-medico”, Via Alvaro del Portillo, 21, 00128 Rome, Italy
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Universitetstorget, 490187 Umeå, Sweden
| |
Collapse
|
16
|
Wang Z, Sun H, Li J, Chen J, Meng F, Li H, Han L, Zhou S, Yu T. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Using CNN Based on Multiparametric MRI. J Magn Reson Imaging 2022; 56:700-709. [PMID: 35108415 DOI: 10.1002/jmri.28082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Multiparametric magnetic resonance imaging (MRI) is widely used in breast cancer screening. Accurate prediction of the axillary lymph nodes metastasis (ALNM) is essential for breast cancer surgery and treatment. However, there is no mature and effective discerning method for ALNM based on multiparametric MRI. PURPOSE To evaluate the ALNM using T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and diffusion-weighted imaging (DWI) sequences, respectively, and construct a quantitative ALNM discerning model of integrated multiparametric MRI. STUDY TYPE Retrospective. POPULATION Three-hundred forty-eight breast cancer patients, 163 with ALNM (99.39% females), and 185 without ALNM (100% females). The dataset was randomly divided into the training set (315 cases) and the testing set (33 cases). FIELD STRENGTH/SEQUENCE 1.5 T; T1WI (VIBRANT), T2WI (FSE), and DWI (echo planar imaging [EPI]). ASSESSMENT The lesion region of interest images were cropped and sent to a pretrained ResNet50 network. Then, the results of different sequences were sent to a classifier for ensemble learning to construct the ALNM model of multiparametric MRI. STATISTICAL TESTS Performance indicators such as accuracy, the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) were calculated. Student's t-test, chi-square test, Fisher's exact test, and Delong test were performed, and P < 0.05 was considered statistically significant. RESULTS T2WI performed the best among the three sequences, and achieved the accuracy and AUC of 0.933/0.989 in the testing set. Compared to T1WI with the accuracy and AUC of 0.691/0.806, the increase is significant. While compared to DWI with the accuracy and AUC of 0.800/0.910, the improvement is not significant (P = 0.126). After integrating three sequences, the accuracy and AUC improved to 0.970 and 0.996. DATA CONCLUSION T2WI performed better than DWI and T1WI in discerning ALNM in this breast cancer dataset. The proposed quantitative model of integrated multiparametric MRI could effectively help the ALNM diagnosis. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Zijian Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Hang Sun
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Jing Li
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jing Chen
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Fancong Meng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Hong Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Lu Han
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shi Zhou
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Yu
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
17
|
Gan L, Ma M, Liu Y, Liu Q, Xin L, Cheng Y, Xu L, Qin N, Jiang Y, Zhang X, Wang X, Ye J. A Clinical–Radiomics Model for Predicting Axillary Pathologic Complete Response in Breast Cancer With Axillary Lymph Node Metastases. Front Oncol 2021; 11:786346. [PMID: 34993145 PMCID: PMC8724774 DOI: 10.3389/fonc.2021.786346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose To develop a clinical–radiomics model based on radiomics features extracted from MRI and clinicopathologic factors for predicting the axillary pathologic complete response (apCR) in breast cancer (BC) patients with axillary lymph node (ALN) metastases. Materials and Methods The MR images and clinicopathologic data of 248 eligible invasive BC patients at the Peking University First Hospital from January 2013 to December 2020 were included in this study. All patients received neoadjuvant chemotherapy (NAC), and the presence of ALN metastases was confirmed through cytology pre-NAC. The data from January 2013 to December 2018 were randomly divided into the training and validation sets in a ratio of 7:3, and the data from January 2019 to December 2020 served as the independent testing set. The following three types of prediction models were investigated in this study. 1) A clinical model: the model was built by independently predicting clinicopathologic factors through logistic regression. 2) Radiomics models: we used an automatic segmentation model based on deep learning to segment the axillary areas, visible ALNs, and breast tumors on post-NAC dynamic contrast-enhanced MRI. Radiomics features were then extracted from the region of interest (ROI). Radiomics models were built based on different ROIs or their combination. 3) A clinical–radiomics model: it was built by integrating radiomics signature and independent predictive clinical factors by logistic regression. All models were assessed using a receiver operating characteristic curve analysis and by calculating the area under the curve (AUC). Results The clinical model yielded AUC values of 0.759, 0.787, and 0.771 in the training, validation, and testing sets, respectively. The radiomics model based on the combination of MRI features of breast tumors and visible ALNs yielded the best AUC values of 0.894, 0.811, and 0.806 in the training, validation, and testing sets, respectively. The clinical–radiomics model yielded AUC values of 0.924, 0.851, and 0.878 in the training, validation, and testing sets, respectively, for predicting apCR. Conclusion We developed a clinical–radiomics model by integrating radiomics signature and clinical factors to predict apCR in BC patients with ALN metastases post-NAC. It may help the clinicians to screen out apCR patients to avoid lymph node dissection.
Collapse
Affiliation(s)
- Liangyu Gan
- Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Mingming Ma
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Yinhua Liu
- Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Qian Liu
- Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Ling Xin
- Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Yuanjia Cheng
- Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Ling Xu
- Breast Disease Center, Peking University First Hospital, Beijing, China
| | - Naishan Qin
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Yuan Jiang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
- *Correspondence: Xiaoying Wang, ; Jingming Ye,
| | - Jingming Ye
- Breast Disease Center, Peking University First Hospital, Beijing, China
- *Correspondence: Xiaoying Wang, ; Jingming Ye,
| |
Collapse
|
18
|
Ibrahim A, Widaatalla Y, Refaee T, Primakov S, Miclea RL, Öcal O, Fabritius MP, Ingrisch M, Ricke J, Hustinx R, Mottaghy FM, Woodruff HC, Seidensticker M, Lambin P. Reproducibility of CT-Based Hepatocellular Carcinoma Radiomic Features across Different Contrast Imaging Phases: A Proof of Concept on SORAMIC Trial Data. Cancers (Basel) 2021; 13:cancers13184638. [PMID: 34572870 PMCID: PMC8468150 DOI: 10.3390/cancers13184638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Radiomics has been reported to have potential for correlating with clinical outcomes. However, handcrafted radiomic features (HRFs)—the quantitative features extracted from medical images—are limited by their sensitivity to variations in scanning parameters. Furthermore, radiomics analyses require big data with good quality to achieve desirable performances. In this study, we investigated the reproducibility of HRFs between scans acquired with the same scanning parameters except for the imaging phase (arterial and portal venous phases) to assess the possibilities of merging scans from different phases or replacing missing scans from a phase with other phases to increase data entries. Additionally, we assessed the potential of ComBat harmonization to remove batch effects attributed to this variation. Our results show that the majority of HRFs were not reproducible between the arterial and portal venous phases before or after ComBat harmonization. We provide a guide for analyzing scans of different imaging phases. Abstract Handcrafted radiomic features (HRFs) are quantitative imaging features extracted from regions of interest on medical images which can be correlated with clinical outcomes and biologic characteristics. While HRFs have been used to train predictive and prognostic models, their reproducibility has been reported to be affected by variations in scan acquisition and reconstruction parameters, even within the same imaging vendor. In this work, we evaluated the reproducibility of HRFs across the arterial and portal venous phases of contrast-enhanced computed tomography images depicting hepatocellular carcinomas, as well as the potential of ComBat harmonization to correct for this difference. ComBat harmonization is a method based on Bayesian estimates that was developed for gene expression arrays, and has been investigated as a potential method for harmonizing HRFs. Our results show that the majority of HRFs are not reproducible between the arterial and portal venous imaging phases, yet a number of HRFs could be used interchangeably between those phases. Furthermore, ComBat harmonization increased the number of reproducible HRFs across both phases by 1%. Our results guide the pooling of arterial and venous phases from different patients in an effort to increase cohort size, as well as joint analysis of the phases.
Collapse
Affiliation(s)
- Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liege and GIGA CRC-In Vivo Imaging, University of Liege, 4000 Liege, Belgium;
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
- Correspondence: (A.I.); (T.R.)
| | - Yousif Widaatalla
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
| | - Turkey Refaee
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (A.I.); (T.R.)
| | - Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Razvan L. Miclea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
| | - Osman Öcal
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Matthias P. Fabritius
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Michael Ingrisch
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liege and GIGA CRC-In Vivo Imaging, University of Liege, 4000 Liege, Belgium;
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, 80336 Munich, Germany; (O.Ö.); (M.P.F.); (M.I.); (J.R.); (M.S.)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (S.P.); (H.C.W.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6200 MD Maastricht, The Netherlands; (R.L.M.); (F.M.M.)
| |
Collapse
|
19
|
Li S, Deng YQ, Zhu ZL, Hua HL, Tao ZZ. A Comprehensive Review on Radiomics and Deep Learning for Nasopharyngeal Carcinoma Imaging. Diagnostics (Basel) 2021; 11:1523. [PMID: 34573865 PMCID: PMC8465998 DOI: 10.3390/diagnostics11091523] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumours of the head and neck, and improving the efficiency of its diagnosis and treatment strategies is an important goal. With the development of the combination of artificial intelligence (AI) technology and medical imaging in recent years, an increasing number of studies have been conducted on image analysis of NPC using AI tools, especially radiomics and artificial neural network methods. In this review, we present a comprehensive overview of NPC imaging research based on radiomics and deep learning. These studies depict a promising prospect for the diagnosis and treatment of NPC. The deficiencies of the current studies and the potential of radiomics and deep learning for NPC imaging are discussed. We conclude that future research should establish a large-scale labelled dataset of NPC images and that studies focused on screening for NPC using AI are necessary.
Collapse
Affiliation(s)
- Song Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Yu-Qin Deng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Zhi-Ling Zhu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Hong-Li Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| | - Ze-Zhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, 238 Jie-Fang Road, Wuhan 430060, China; (S.L.); (Y.-Q.D.); (H.-L.H.)
| |
Collapse
|