1
|
Pawlicka M, Gumbarewicz E, Błaszczak E, Stepulak A. Transcription Factors and Markers Related to Epithelial-Mesenchymal Transition and Their Role in Resistance to Therapies in Head and Neck Cancers. Cancers (Basel) 2024; 16:1354. [PMID: 38611032 PMCID: PMC11010970 DOI: 10.3390/cancers16071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Head and neck cancers (HNCs) are heterogeneous and aggressive tumors of the upper aerodigestive tract. Although various histological types exist, the most common is squamous cell carcinoma (HNSCC). The incidence of HNSCC is increasing, making it an important public health concern. Tumor resistance to contemporary treatments, namely, chemo- and radiotherapy, and the recurrence of the primary tumor after its surgical removal cause huge problems for patients. Despite recent improvements in these treatments, the 5-year survival rate is still relatively low. HNSCCs may develop local lymph node metastases and, in the most advanced cases, also distant metastases. A key process associated with tumor progression and metastasis is epithelial-mesenchymal transition (EMT), when poorly motile epithelial tumor cells acquire motile mesenchymal characteristics. These transition cells can invade different adjacent tissues and finally form metastases. EMT is governed by various transcription factors, including the best-characterized TWIST1 and TWIST2, SNAIL, SLUG, ZEB1, and ZEB2. Here, we highlight the current knowledge of the process of EMT in HNSCC and present the main protein markers associated with it. This review focuses on the transcription factors related to EMT and emphasizes their role in the resistance of HNSCC to current chemo- and radiotherapies. Understanding the role of EMT and the precise molecular mechanisms involved in this process may help with the development of novel anti-cancer therapies for this type of tumor.
Collapse
Affiliation(s)
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (E.G.); (E.B.)
| |
Collapse
|
2
|
Federspiel J, Greier MDC, Ladányi A, Dudas J. p38 Mitogen-Activated Protein Kinase Inhibition of Mesenchymal Transdifferentiated Tumor Cells in Head and Neck Squamous Cell Carcinoma. Biomedicines 2023; 11:3301. [PMID: 38137525 PMCID: PMC10741606 DOI: 10.3390/biomedicines11123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
High mortality in head and neck squamous cell carcinoma (HNSCC) is due to recurrence, metastasis, and radiochemotherapy (RCT) resistance. These phenomena are related to the tumor cell subpopulation undergoing partial epithelial to mesenchymal transition (pEMT). Repeated transforming growth factor-beta (TGF-beta-1) treatment via the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway induces pEMT in SCC-25 HNSCC cells, and activates and stabilizes the pro-EMT transcription factor Slug. We investigated the growth inhibitory, cisplatin-sensitizing, and pro-apoptotic effects of p38 MAPK inhibition in cisplatin-resistant (SCC-25) and -sensitive (UPCI-SCC090) HNSCC cell lines, using two specific p38 MAPK inhibitors, SB202190 and ralimetinib. Cell viability was measured by MTT assay; cell cycle distribution and cell death were evaluated by flow cytometry; p38 MAPK phosphorylation, Slug protein stabilization, and p38 MAPK downstream targets were investigated by Western blot. p-p38 inhibitors achieved sustained phosphorylation of p38 MAPK (Thr180/Tyr182) and inhibition of its function, which resulted in decreased phosphorylation (Thr69/71) of the downstream target pATF2 in pEMT cells. Subsequently, the p-p38 inhibition resulted in reduced Slug protein levels. In accordance, p-p38 inhibition led to sensitization of pEMT cells to cisplatin-induced cell death; moreover, p-p38 inhibitor treatment cycles significantly decreased the viability of cisplatin-surviving cells. In conclusion, clinically relevant p38 inhibitors might be effective for RCT-resistant pEMT cells in HNSCC patients.
Collapse
Affiliation(s)
- Julia Federspiel
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Austria and University Hospital of Tyrol, 6020 Innsbruck, Austria; (J.F.); (M.d.C.G.)
| | - Maria do Carmo Greier
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Austria and University Hospital of Tyrol, 6020 Innsbruck, Austria; (J.F.); (M.d.C.G.)
| | - Andrea Ladányi
- Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Jozsef Dudas
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical University of Innsbruck, Austria and University Hospital of Tyrol, 6020 Innsbruck, Austria; (J.F.); (M.d.C.G.)
| |
Collapse
|
3
|
Arabi TZ, Algheryafi LA, Alodah NA, Enabi HMK, Alshehry AA, Ouban A. Aberrant Expression of Claudins in Head and Neck Carcinomas and Their Prognostic and Therapeutic Value: A Narrative Review. Cancers (Basel) 2023; 15:4208. [PMID: 37686483 PMCID: PMC10486703 DOI: 10.3390/cancers15174208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
Head and neck carcinomas have been associated with poor prognosis. Recent studies have highlighted the role of claudins' expression in tumors throughout the body, and their prognostic and therapeutic role. Understanding the role of claudins and how their expression affects the progression of carcinomas in the head and neck region may allow for advances in the prognosis and management of this type of cancer. Several studies have highlighted the aberrant expression of the proteins in carcinomas in this region. Specifically, the overexpression of claudin-1 and downregulation of claudins-4, -7, and -17 have been linked with poor survival in oral squamous cell carcinoma patients. In laryngeal squamous cell carcinoma, increased levels of claudins-1 and reduced levels of claudins-3, -8, and -11 have been linked with poor outcomes. Targeting these proteins has shown promising outcomes as therapeutic in preclinical studies. However, studies remain extremely limited in nasal and hypopharyngeal carcinomas. In this review, we survey the available literature describing the aberrant expression of various claudins in carcinomas in this region, while highlighting their potential prognostic and therapeutic value. Then, we describe some molecular mechanisms involved in the aberrant expression of claudins and how they can be utilized as therapeutic targets.
Collapse
Affiliation(s)
- Tarek Ziad Arabi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | | | - Nora A Alodah
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | | | | | - Abderrahman Ouban
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
4
|
Clark LE, Dickinson AJG, Lima S. GBA Regulates EMT/MET and Chemoresistance in Squamous Cell Carcinoma Cells by Modulating the Cellular Glycosphingolipid Profile. Cells 2023; 12:1886. [PMID: 37508550 PMCID: PMC10378370 DOI: 10.3390/cells12141886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosphingolipids (GSL) are plasma membrane components that influence molecular processes involved in cancer initiation, progression, and therapeutic responses. They also modulate receptor tyrosine kinases involved in EMT. Therefore, understanding the mechanisms that regulate GSLs in cancer has important therapeutic potential. One critical regulator of GSLs is the lysosomal glucosylceramidase β1 (GBA) that catalyzes the last step in GSL degradation. We show that, in cancer, GBA copy number amplifications and increased expression are widespread. We show that depleting GBA in squamous cell carcinoma cell lines results in a mesenchymal-to-epithelial shift, decreased invasion and migration, increased chemotherapeutic sensitivity, and decreased activation of receptor tyrosine kinases that are involved in regulating EMT. Untargeted lipidomics shows that GBA depletion had significant effects on sphingolipids and GSLs, suggesting that increased GBA activity in cancer sustains EMT and chemoresistance by modulating receptor tyrosine kinase activity and signaling via effects on the cellular lipid profile.
Collapse
Affiliation(s)
- Laura E Clark
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Amanda J G Dickinson
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Santiago Lima
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
- Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
5
|
Interplay between Partial EMT and Cisplatin Resistance as the Drivers for Recurrence in HNSCC. Biomedicines 2022; 10:biomedicines10102482. [PMID: 36289744 PMCID: PMC9598677 DOI: 10.3390/biomedicines10102482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/20/2022] Open
Abstract
This study aims to investigate the role of partial epithelial to mesenchymal transition (pEMT)-related proteins in modulating Cisplatin resistance in head and neck squamous cell carcinoma (HNSCC). SCC-25 cells were pre-treated with TGF-beta1 followed by transient Krüppel-like Factor 4 (KLF4)-overexpression and Cisplatin treatment. Cell growth, cell morphological changes and cell migration were assessed using Juli BR live cell video-microscopy. In addition, Ki-67 and Slug immunostaining and follow-up image cytometric analysis of primary and recurrent HNSCC tumors were performed to evaluate the proliferation index (PI) and the EMT-like phenotype. We observed that proliferating and Slug-positive tumor cells expand after therapy in HNSCC. Subsequently, protein analysis revealed the stabilization of Slug, upregulation of Vimentin and phospho-p38 (p-p38) in Cisplatin-resistant SCC-25 cells. Moreover, KLF4-overexpression contributed to Cisplatin sensitivity by reduction of Slug at the protein level. This work strongly suggests that an pEMT-like pathway is activated in recurrent and Cisplatin-resistant HNSCC. Finally, stable KLF4-overexpression might sensitize HNSCC tumor cells for Cisplatin treatment.
Collapse
|
6
|
Epithelial-to-Mesenchymal Transition-Derived Heterogeneity in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:cancers13215355. [PMID: 34771518 PMCID: PMC8582421 DOI: 10.3390/cancers13215355] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinomas (HNSCC) are common malignancies with considerable morbidity and a high death toll worldwide. Resistance towards multi-modal therapy modalities composed of surgery, irradiation, chemo- and immunotherapy represents a major obstacle in the efficient treatment of HNSCC patients. Patients frequently show nodal metastases at the time of diagnosis and endure early relapses, oftentimes in the form of local recurrences. Differentiation programs such as the epithelial-to-mesenchymal transition (EMT) allow individual tumor cells to adopt cellular functions that are central to the development of metastases and treatment resistance. In the present review article, the molecular basis and regulation of EMT and its impact on the progression of HNSCC will be addressed. Abstract Head and neck squamous cell carcinomas (HNSCC) are common tumors with a poor overall prognosis. Poor survival is resulting from limited response to multi-modal therapy, high incidence of metastasis, and local recurrence. Treatment includes surgery, radio(chemo)therapy, and targeted therapy specific for EGFR and immune checkpoint inhibition. The understanding of the molecular basis for the poor outcome of HNSCC was improved using multi-OMICs approaches, which revealed a strong degree of inter- and intratumor heterogeneity (ITH) at the level of DNA mutations, transcriptome, and (phospho)proteome. Single-cell RNA-sequencing (scRNA-seq) identified RNA-expression signatures related to cell cycle, cell stress, hypoxia, epithelial differentiation, and a partial epithelial-to-mesenchymal transition (pEMT). The latter signature was correlated to nodal involvement and adverse clinical features. Mechanistically, shifts towards a mesenchymal phenotype equips tumor cells with migratory and invasive capacities and with an enhanced resistance to standard therapy. Hence, gradual variations of EMT as observed in HNSCC represent a potent driver of tumor progression that could open new paths to improve the stratification of patients and to innovate approaches to break therapy resistance. These aspects of molecular heterogeneity will be discussed in the present review.
Collapse
|
7
|
Wang HC, Chan LP, Wu CC, Hsiao HH, Liu YC, Cho SF, Du JS, Liu TC, Yang CH, Pan MR, Moi SH. Progression Risk Score Estimation Based on Immunostaining Data in Oral Cancer Using Unsupervised Hierarchical Clustering Analysis: A Retrospective Study in Taiwan. J Pers Med 2021; 11:jpm11090908. [PMID: 34575686 PMCID: PMC8466609 DOI: 10.3390/jpm11090908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate whether the progression risk score (PRS) developed from cytoplasmic immunohistochemistry (IHC) biomarkers is available and applicable for assessing risk and prognosis in oral cancer patients. Participants in this retrospective case-control study were diagnosed between 2012 and 2014 and subsequently underwent surgical intervention. The specimens from surgery were stained by IHC for 16 cytoplasmic target markers. We evaluated the results of IHC staining, clinical and pathological features, progression-free survival (PFS), and overall survival (OS) of 102 oral cancer patients using a novel estimation approach with unsupervised hierarchical clustering analysis. Patients were stratified into high-risk (52) and low-risk (50) groups, according to their PRS; a metric consisting of cytoplasmic PLK1, PhosphoMet, SGK2, and SHC1 expression. Moreover, PRS could be extended for use in the Cox proportional hazard regression model to estimate survival outcomes with associated clinical parameters. Our study findings revealed that the high-risk patients had a significantly increased risk in cancer progression compared with low-risk patients (hazard ratio (HR) = 2.20, 95% confidence interval (CI) = 1.10-2.42, p = 0.026). After considering the influences of demographics, risk behaviors, and tumor characteristics, risk estimation with PRS provided distinct PFS groups for patients with oral cancer (p = 0.017, p = 0.019, and p = 0.020). Our findings support that PRS could serve as an ideal biomarker for clinical use in risk stratification and progression assessment in oral cancer.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (J.-S.D.); (M.-R.P.)
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-H.H.); (Y.-C.L.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Leong-Perng Chan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Municipal Ta-Tung Hospital and Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Hui-Hua Hsiao
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-H.H.); (Y.-C.L.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yi-Chang Liu
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-H.H.); (Y.-C.L.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shih-Feng Cho
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-H.H.); (Y.-C.L.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jeng-Shiun Du
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (J.-S.D.); (M.-R.P.)
- Department of Internal Medicine, Division of Hematology and Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-H.H.); (Y.-C.L.); (S.-F.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ta-Chih Liu
- Department of Hematology-Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan;
| | - Cheng-Hong Yang
- Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan;
- Ph.D. Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-C.W.); (J.-S.D.); (M.-R.P.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sin-Hua Moi
- Center of Cancer Program Development, E-Da Cancer Hospital, I-Shou University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-6150022 (ext. 6135); Fax: +886-7-6150940
| |
Collapse
|
8
|
Schinke H, Pan M, Akyol M, Zhou J, Shi E, Kranz G, Libl D, Quadt T, Simon F, Canis M, Baumeister P, Gires O. SLUG-related partial epithelial-to-mesenchymal transition is a transcriptomic prognosticator of head and neck cancer survival. Mol Oncol 2021; 16:347-367. [PMID: 34382739 PMCID: PMC8763659 DOI: 10.1002/1878-0261.13075] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 11/11/2022] Open
Abstract
Partial epithelial‐to‐mesenchymal transition (pEMT) contributes to cellular heterogeneity that is associated with nodal metastases and unfavorable clinical parameters in head and neck squamous cell carcinomas (HNSCCs). We developed a single‐cell RNA sequencing signature‐based pEMT quantification through cell type‐dependent deconvolution of bulk RNA sequencing and microarray data combined with single‐sample scoring of molecular phenotypes (Singscoring). Clinical pEMT‐Singscores served as molecular classifiers in multivariable Cox proportional hazard models and high scores prognosticated poor overall survival and reduced response to irradiation as independent parameters in large HNSCC cohorts [The Cancer Genome Atlas (TCGA), MD Anderson Cancer Centre (MDACC), Fred Hutchinson Cancer Research Center (FHCRC)]. Differentially expressed genes confirmed enhanced cell motility and reduced oxidative phosphorylation and epithelial differentiation in pEMThigh patients. In patients and cell lines, the EMT transcription factor SLUG correlated most strongly with pEMT‐Singscores and promoted pEMT, enhanced invasion, and resistance to irradiation in vitro. SLUG protein levels in HNSCC predicted disease‐free survival, and its peripheral expression at the interphase to the tumor microenvironment was significantly increased in relapsing patients. Hence, pEMT‐Singscores represent a novel risk predictor for HNSCC stratification regarding clinical outcome and therapy response that is partly controlled by SLUG.
Collapse
Affiliation(s)
- Henrik Schinke
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Germany
| | - Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, China
| | - Merve Akyol
- School of Medicine, Koç University, Istanbul, Turkey
| | - Jiefu Zhou
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Germany
| | - Enxian Shi
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Germany
| | - Darko Libl
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Germany
| | - Tanja Quadt
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Germany
| | - Florian Simon
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, Neuherberg, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, Neuherberg, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|