1
|
Zhang J, Sun W, Yan W, Kong X, Shen T, Laubach K, Chen M, Chen X. TP73 Isoform-specific disruption reveals a critical role of TAp73beta in growth suppression and inflammatory response. Cell Death Dis 2023; 14:14. [PMID: 36631448 PMCID: PMC9834251 DOI: 10.1038/s41419-022-05529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
TP73 is expressed as multiple N- and C-terminal isoforms through two separate promoters or alternative splicing. While N-terminal p73 isoforms have been well studied, very little is known about p73 C-terminal isoforms. Thus, CRISPR was used to delete TP73 Exon13 (E13-KO) to induce p73α to p73β isoform switch. We showed that E13-KO led to decreased cell proliferation and migration and sensitized cells to ferroptosis, which can be reverted by knockdown of TAp73β in E13-KO cells. To understand the biological function of p73β in vivo, we generated a mouse model in that the Trp73 E13 was deleted by CRISPR. We showed that p73α to p73β isoform switch led to increased cellular senescence in mouse embryonic fibroblasts. We also showed that E13-deficient mice exhibited shorter life span and were prone to spontaneous tumors, chronic inflammation and liver steatosis as compared to WT mice. Additionally, we found that the incidence of chronic inflammation and liver steatosis was higher in E13-deficient mice than that in Trp73-deficient mice, suggesting that p73β is a strong inducer of inflammatory response. Mechanistically, we showed that TAp73β was able to induce cysteine dioxygenase 1 (CDO-1), leading to cysteine depletion and subsequently, enhanced ferroptosis and growth suppression. Conversely, knockdown of CDO-1 was able to alleviate the growth suppression and ferroptosis in E13-KO cells. Together, our data suggest that at a physiologically relevant level, TAp73β is a strong inducer of growth suppression but insufficient to compensate for loss of TAp73α in tumor suppression due to aberrant induction of inflammatory response and liver steatosis.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA.
| | - Wenqiang Sun
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA
- Department of Animal Science and Technology, Sichuan Agricultural University, Ya'an, China
| | - Wensheng Yan
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA
- Berkeley Regional Lab, Pathology/Lab-Histology Department, The Permanente Medical group, Berkeley, CA, 94085, USA
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA
| | - Tong Shen
- West Coast Metabolomics Center, UC Davis, Califronia, Davis, USA
| | - Kyra Laubach
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA
| | - Mingyi Chen
- Department of Pathology, Southwestern Medical Center, University of Texas, Dallas, USA
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, UC Davis, California, Davis, USA.
| |
Collapse
|
2
|
Cakan-Akdogan G, Ersoz E, Sozer SC, Gelinci E. An in vivo zebrafish model reveals circulating tumor cell targeting capacity of serum albumin nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Iscan E, Karakülah G, Ekin U, Ozturk M, Uzuner H, Suner A. TAp73α is Upregulated in the Most Common Human Cancers. Mol Biol 2022. [DOI: 10.1134/s0026893322020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
AXL Knock-Out in SNU475 Hepatocellular Carcinoma Cells Provides Evidence for Lethal Effect Associated with G2 Arrest and Polyploidization. Int J Mol Sci 2021; 22:ijms222413247. [PMID: 34948046 PMCID: PMC8708332 DOI: 10.3390/ijms222413247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
AXL, a member of the TAM family, is a promising therapeutic target due to its elevated expression in advanced hepatocellular carcinoma (HCC), particularly in association with acquired drug resistance. Previously, RNA interference was used to study its role in cancer, and several phenotypic changes, including attenuated cell proliferation and decreased migration and invasion, have been reported. The mechanism of action of AXL in HCC is elusive. We first studied the AXL expression in HCC cell lines by real-time PCR and western blot and showed its stringent association with a mesenchymal phenotype. We then explored the role of AXL in mesenchymal SNU475 cells by CRISPR-Cas9 mediated gene knock-out. AXL-depleted HCC cells displayed drastic phenotypic changes, including increased DNA damage response, prolongation of doubling time, G2 arrest, and polyploidization in vitro and loss of tumorigenicity in vivo. Pharmacological inhibition of AXL by R428 recapitulated G2 arrest and polyploidy phenotype. These observations strongly suggest that acute loss of AXL in some mesenchymal HCC cells is lethal and points out that its inhibition may represent a druggable vulnerability in AXL-high HCC patients.
Collapse
|
5
|
Targen S, Konu O. Zebrafish Xenotransplantation Models for Studying Gene Function and Drug Treatment in Hepatocellular Carcinoma. J Gastrointest Cancer 2021; 52:1248-1265. [PMID: 35031971 DOI: 10.1007/s12029-021-00782-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Zebrafish is a promising model organism for human disease including hepatocellular cancer (HCC). Recently, zebrafish has emerged also as a host for xenograft studies of liver cancer cell lines and patient derived tumors of HCC. Zebrafish embryos enable drug screening and gene function studies of xenografted cells via ease of microinjection and visualization of tumor growth and metastasis. OBJECTIVES In this review, we aimed to overview zebrafish HCC and liver cancer xenotransplantation studies focusing on 'gene functional analysis' and 'drug/chemical screening'. METHODS Herein, a comprehensive literature search was performed for liver and HCC xenografts in zebrafish on PubMed using different key words and filters for molecular modifications or drug exposure. RESULTS Our literature search revealed around 250 studies which were filtered and summarized in a table (Table 1) revealing comprehensive collection of experimental and technical details on microinjection, injected cell lines, molecular modifications of injected cells, types and doses of drug treatments as well as biological assessments. CONCLUSION This review provides a platform for HCC and liver xenografts and highlights studies performed to understand gene functionality and drug efficacy in vivo in zebrafish.
Collapse
Affiliation(s)
- Seniye Targen
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
6
|
Gurer DC, Erdogan İ, Ahmadov U, Basol M, Sweef O, Cakan-Akdogan G, Akgül B. Transcriptomics Profiling Identifies Cisplatin-Inducible Death Receptor 5 Antisense Long Non-coding RNA as a Modulator of Proliferation and Metastasis in HeLa Cells. Front Cell Dev Biol 2021; 9:688855. [PMID: 34497804 PMCID: PMC8419520 DOI: 10.3389/fcell.2021.688855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Cisplatin is a well-known cancer chemotherapeutic agent but how extensively long non-coding RNA (lncRNA) expression is modulated by cisplatin is unknown. It is imperative to employ a comprehensive approach to obtain a better account of cisplatin-mediated changes in the expression of lncRNAs. In this study, we used a transcriptomics approach to profile lncRNAs in cisplatin-treated HeLa cells, which resulted in identification of 10,214 differentially expressed lncRNAs, of which 2,500 were antisense lncRNAs. For functional analyses, we knocked down one of the cisplatin inducible lncRNAs, death receptor 5 antisense (DR5-AS) lncRNA, which resulted in a morphological change in HeLa cell shape without inducing any cell death. A second round of transcriptomics-based profiling revealed differential expression of genes associated with immune system, motility and cell cycle in DR5-AS knockdown HeLa cells. Cellular analyses showed that DR5-AS reduced cell proliferation and caused a cell cycle arrest at S and G2/M phases. Moreover, DR5-AS knockdown reduced the invasive capacity of HeLa cells in zebrafish xenograft model. These results suggest that cisplatin-mediated pleiotropic effects, such as reduction in cell proliferation, metastasis and cell cycle arrest, may be mediated by lncRNAs.
Collapse
Affiliation(s)
- Dilek Cansu Gurer
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| | - İpek Erdogan
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| | - Ulvi Ahmadov
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| | - Merve Basol
- Izmir Biomedicine and Genome Center, Ízmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Ízmir, Turkey
| | - Osama Sweef
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| | | | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Ízmir, Institute of Technology, Izmir, Turkey
| |
Collapse
|
7
|
Tonon F, Farra R, Zennaro C, Pozzato G, Truong N, Parisi S, Rizzolio F, Grassi M, Scaggiante B, Zanconati F, Bonazza D, Grassi G, Dapas B. Xenograft Zebrafish Models for the Development of Novel Anti-Hepatocellular Carcinoma Molecules. Pharmaceuticals (Basel) 2021; 14:ph14080803. [PMID: 34451900 PMCID: PMC8400454 DOI: 10.3390/ph14080803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of tumor and the second leading cause of tumor-related death worldwide. Liver cirrhosis is the most important predisposing factor for HCC. Available therapeutic approaches are not very effective, especially for advanced HCC, which is the most common form of the disease at diagnosis. New therapeutic strategies are therefore urgently needed. The use of animal models represents a relevant tool for preclinical screening of new molecules/strategies against HCC. However, several issues, including animal husbandry, limit the use of current models (rodent/pig). One animal model that has attracted the attention of the scientific community in the last 15 years is the zebrafish. This freshwater fish has several attractive features, such as short reproductive time, limited space and cost requirements for husbandry, body transparency and the fact that embryos do not show immune response to transplanted cells. To date, two different types of zebrafish models for HCC have been developed: the transgenic zebrafish and the zebrafish xenograft models. Since transgenic zebrafish models for HCC have been described elsewhere, in this review, we focus on the description of zebrafish xenograft models that have been used in the last five years to test new molecules/strategies against HCC.
Collapse
Affiliation(s)
- Federica Tonon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Rossella Farra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Nhung Truong
- Stem Cell Research and Application Laboratory, VNUHCM, University of Science, Ho Chi Minh City 72711, Vietnam;
| | - Salvatore Parisi
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Doctoral School in Molecular Biomedicine, University of Trieste, I 34127 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, I 30170 Mestre, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I 34127 Trieste, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Grassi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
- Correspondence:
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| |
Collapse
|
8
|
p53/p73 Protein Network in Colorectal Cancer and Other Human Malignancies. Cancers (Basel) 2021; 13:cancers13122885. [PMID: 34207603 PMCID: PMC8227208 DOI: 10.3390/cancers13122885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The p53 family of proteins comprises p53, p63, and p73, which share high structural and functional similarity. The two distinct promoters of each locus, the alternative splicing, and the alternative translation initiation sites enable the generation of numerous isoforms with different protein-interacting domains and distinct activities. The co-expressed p53/p73 isoforms have significant but distinct roles in carcinogenesis. Their activity is frequently impaired in human tumors including colorectal carcinoma due to dysregulated expression and a dominant-negative effect accomplished by some isoforms and p53 mutants. The interactions between isoforms are particularly important to understand the onset of tumor formation, progression, and therapeutic response. The understanding of the p53/p73 network can contribute to the development of new targeted therapies. Abstract The p53 tumor suppressor protein is crucial for cell growth control and the maintenance of genomic stability. Later discovered, p63 and p73 share structural and functional similarity with p53. To understand the p53 pathways more profoundly, all family members should be considered. Each family member possesses two promoters and alternative translation initiation sites, and they undergo alternative splicing, generating multiple isoforms. The resulting isoforms have important roles in carcinogenesis, while their expression is dysregulated in several human tumors including colorectal carcinoma, which makes them potential targets in cancer treatment. Their activities arise, at least in part, from the ability to form tetramers that bind to specific DNA sequences and activate the transcription of target genes. In this review, we summarize the current understanding of the biological activities and regulation of the p53/p73 isoforms, highlighting their role in colorectal tumorigenesis. The analysis of the expression patterns of the p53/p73 isoforms in human cancers provides an important step in the improvement of cancer therapy. Furthermore, the interactions among the p53 family members which could modulate normal functions of the canonical p53 in tumor tissue are described. Lastly, we emphasize the importance of clinical studies to assess the significance of combining the deregulation of different members of the p53 family to define the outcome of the disease.
Collapse
|