1
|
Mo Y, Feng X, Su J, Chen G, Xian L. BZW2 is a potential regulator of non-small cell lung cancer progression. Gene 2025; 935:149055. [PMID: 39490647 DOI: 10.1016/j.gene.2024.149055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Personalized targeted therapy has become an important strategy for cancer treatment owing to its remarkable therapeutic efficacy and safety. However, drug resistance remains the primary cause of treatment failure. Basic leucine zipper and W2 domain 2 (BZW2), which is aberrantly expressed in cancer, has been implicated in tumor progression and may serve as a new therapeutic target. Therefore, the role of BZW2 in non-small cell lung cancer (NSCLC) requires further investigation. METHODS The expression and genetic alterations of BZW2 in pan-cancers were explored using The Cancer Genome Atlas (TCGA) PanCancer databases. The mRNA and protein levels of BZW2 in patients with NSCLC were verified in our cohort. Functional experiments including CCK8, colony formation, and transwell assays were performed to evaluate the impact of BZW2 on the proliferative, migratory, and invasive capacities of SK-MES-1 cells. Gene Set Enrichment Analysis was used to identify underlying biological processes and pathways. Single-cell RNA (scRNA) sequencing data were employed to investigate the tumor microenvironment of NSCLC and the co-expression of BZW2 and stemness-related genes. RESULTS Dysregulated BZW2 expression was observed in various malignant tumors. BZW2 expression was found to be significantly elevated in NSCLC. BZW2 depletion inhibited the growth, mobility, and invasive abilities of lung squamous cell carcinoma SK-MES-1 cells. BZW2 may be related to signaling pathways such as nucleotide excision repair, ubiquitin-mediated proteolysis, and the P53 signaling pathway. Biological processes, including translational initiation, tRNA processing, and RNA methylation, were observed to be enriched in the high-BZW2 group. Furthermore, there was a positive correlation between BZW2 and the m6A- and m5C-related genes. scRNA analysis revealed a co-expression relationship between BZW2 and stemness-related genes such as CD44, SOX9, and CD133. CONCLUSIONS Elevated BZW2 expression is associated with the proliferation, migration, and invasion of NSCLC, and BZW2 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yan Mo
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xueyong Feng
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jincheng Su
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guoyong Chen
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lei Xian
- Department of Cardiovascular Thoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Shah A, Apple J, Aslam S, Engel-Nitz NM, Le L, Terpenning M. Complications, Costs, and Health Care Resource Use with Tissue Biopsy Followed by Liquid Biopsy Versus Tissue Re-biopsy in Patients With Newly Diagnosed Metastatic Nonsmall-cell Lung Cancer. Am J Clin Oncol 2024:00000421-990000000-00240. [PMID: 39498908 DOI: 10.1097/coc.0000000000001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
OBJECTIVES We compared complications, costs, and health care resource utilization (HCRU) of patients with newly diagnosed metastatic nonsmall-cell lung cancer (mNSCLC) who had a tissue biopsy followed by either liquid biopsy (TFLB) (identified with a novel algorithm) or tissue re-biopsy (TRB). METHODS This claims-based retrospective analysis included commercial and Medicare Advantage members in the Optum Research Database with mNSCLC (January 2017 to June 2021) and ≥2 tissue biopsy claims (7 to 90 d apart) (TRB) or ≥1 tissue and ≥1 liquid biopsy claim within 90 days (TFLB). Patients in the TFLB group were matched 1:1 to patients in the TRB group using propensity score matching. Surgical biopsy-related complications and complication-related and all-cause medical costs and HCRU during the 6-month follow-up were compared. RESULTS Both groups had 235 patients post-match. During the follow-up, the surgical biopsy-related complication rate was lower in the TFLB group than the TRB group (65.1% [153/235] vs. 84.7% [199/235], P<0.001). Mean complication-related medical costs were significantly lower with TFLB ($8494 vs. $19,741, P<0.001) during the follow-up; mean (SD) duration of complication-related inpatient stays was significantly lower with TFLB (3.5 [7.0] vs. 6.6 [13.3] d, P=0.002). Mean all-cause medical costs were not significantly different between the groups; the TFLB group had fewer all-cause inpatient stays, inpatient days, and outpatient visits. CONCLUSIONS Multiple tissue biopsy procedures may be associated with significantly higher biopsy complication rates, higher complication-related medical costs, and longer complication-related inpatient stays than TFLB. All-cause medical costs were similar between groups.
Collapse
Affiliation(s)
- Anne Shah
- AstraZeneca Pharmaceuticals, PLC, Gaithersburg, MD
| | - Jon Apple
- AstraZeneca Pharmaceuticals, PLC, Gaithersburg, MD
| | | | | | | | | |
Collapse
|
3
|
Awidi M, Mier-Hicks A, Perimbeti S, Attwood K, Chen H, Jain P, Yau E, Early A, Dy GK. Patients' Preferences for Adjuvant Osimertinib in Non-Small-Cell Lung Cancer After Complete Surgical Resection: What Makes It Worth It to Patients? Clin Lung Cancer 2024; 25:509-518. [PMID: 38879394 DOI: 10.1016/j.cllc.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 08/31/2024]
Abstract
BACKGROUND The ADAURA trial confirmed adjuvant Osimertinib's efficacy in EGFR-mutated Non-small-cell lung cancer (NSCLC), yet the limited mature overall survival (OS) data at approval poses a challenge. This study explores patient preferences in the absence of complete OS information, hypothesizing that disease-free survival (DFS) benefit alone may influence adjuvant Osimertinib pursuit. METHODS At Roswell Park Comprehensive Cancer Center (Jan-Dec 2021), patients assessed for adjuvant therapy received a survey probing OS and DFS preferences. Scenarios were (a) minimum OS justifying Osimertinib, (b) minimum DFS improvement justifying 3-years of adjuvant Osimertinib, (c) minimum 5-year DFS percent change, and (d) minimum OS justifying copay changes. Results were analyzed. RESULTS Of 524 NSCLC patients, 51 participated. Scenario 1 saw 56% requiring a 12-month OS benefit for Osimertinib justification. In scenario 2, 72% deemed a 12-month DFS benefit sufficient. Scenario 3 revealed 31% opting out despite a 10% OS increase. Scenario 4 showed varied willingness to pay, with 33% unwilling to any shoulder copayment even with a 10-year OS benefit. CONCLUSION This study explores patient preferences without complete OS data, revealing diverse thresholds. Factors include employment, education, and willingness to pay. Findings underscore shared decision-making importance. Limitations include sample size, potential biases, and regional focus; larger cohorts are needed for validation.
Collapse
Affiliation(s)
| | | | | | | | - Hongbin Chen
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Prantesh Jain
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Edwin Yau
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Amy Early
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Grace K Dy
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| |
Collapse
|
4
|
Malapelle U, Leighl N, Addeo A, Hershkovitz D, Hochmair MJ, Khorshid O, Länger F, de Marinis F, Peled N, Sheffield BS, Smit EF, Viteri S, Wolf J, Venturini F, O'Hara RM, Rolfo C. Recommendations for reporting tissue and circulating tumour (ct)DNA next-generation sequencing results in non-small cell lung cancer. Br J Cancer 2024; 131:212-219. [PMID: 38750115 PMCID: PMC11263606 DOI: 10.1038/s41416-024-02709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 07/24/2024] Open
Abstract
Non-small cell lung cancer is a heterogeneous disease and molecular characterisation plays an important role in its clinical management. Next-generation sequencing-based panel testing enables many molecular alterations to be interrogated simultaneously, allowing for comprehensive identification of actionable oncogenic drivers (and co-mutations) and appropriate matching of patients with targeted therapies. Despite consensus in international guidelines on the importance of broad molecular profiling, adoption of next-generation sequencing varies globally. One of the barriers to its successful implementation is a lack of accepted standards and guidelines specifically for the reporting and clinical annotation of next-generation sequencing results. Based on roundtable discussions between pathologists and oncologists, we provide best practice recommendations for the reporting of next-generation sequencing results in non-small cell lung cancer to facilitate its use and enable easy interpretation for physicians. These are intended to complement existing guidelines related to the use of next-generation sequencing (solid and liquid). Here, we discuss next-generation sequencing workflows, the structure of next-generation sequencing reports, and our recommendations for best practice thereof. The aim of these recommendations and considerations is ultimately to ensure that reports are fully interpretable, and that the most appropriate treatment options are selected based on robust molecular profiles in well-defined reports.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Natasha Leighl
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Alfredo Addeo
- Oncology Unit, Geneva University Hospital, Geneva, Switzerland
| | | | - Maximilian J Hochmair
- Department of Respiratory & Critical Care Medicine, Karl Landsteiner Institute of Lung Research & Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Ola Khorshid
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Florian Länger
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Filippo de Marinis
- Division of Thoracic Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Nir Peled
- Helmesely Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Brandon S Sheffield
- Division of Advanced Diagnostics, William Osler Health System, Brampton, ON, Canada
| | - Egbert F Smit
- Department of Pulmonary Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Santiago Viteri
- UOMI Cancer Center, Clínica Mi Tres Torres, Barcelona, Spain
| | - Jürgen Wolf
- Lung Cancer Group Cologne, Center for Integrated Oncology, University Hospital of Cologne, Cologne, Germany
| | | | | | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Medical System & Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Ramos R, Moura CS, Costa M, Lamas NJ, Correia R, Garcez D, Pereira JM, Sousa C, Vale N. Enhancing Lung Cancer Care in Portugal: Bridging Gaps for Improved Patient Outcomes. J Pers Med 2024; 14:446. [PMID: 38793028 PMCID: PMC11121920 DOI: 10.3390/jpm14050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Lung cancer has the highest incidence and cancer-related mortality worldwide. In Portugal, it ranks as the fourth most common cancer, with nearly 6000 new cases being diagnosed every year. Lung cancer is the main cause of cancer-related death among males and the third cause of cancer-related death in females. Despite the globally accepted guidelines and recommendations for what would be the ideal path for a lung cancer patient, several challenges occur in real clinical management across the world. The recommendations emphasize the importance of adequate screening of high-risk individuals, a precise tumour biopsy, and an accurate final diagnosis to confirm the neoplastic nature of the nodule. A detailed histological classification of the lung tumour type and a comprehensive molecular characterization are of utmost importance for the selection of an efficacious and patient-directed therapeutic approach. However, in the context of the Portuguese clinical organization and the national healthcare system, there are still several gaps in the ideal pathway for a lung cancer patient, involving aspects ranging from the absence of a national lung cancer screening programme through difficulties in histological diagnosis and molecular characterization to challenges in therapeutic approaches. In this manuscript, we address the most relevant weaknesses, presenting several proposals for potential solutions to improve the management of lung cancer patients, helping to decisively improve their overall survival and quality of life.
Collapse
Affiliation(s)
- Raquel Ramos
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
| | - Conceição Souto Moura
- Pathology Laboratory, Unilabs Portugal, Rua Manuel Pinto de Azevedo 173, 4100-321 Porto, Portugal;
| | - Mariana Costa
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
| | - Nuno Jorge Lamas
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
- Anatomic Pathology Service, Pathology Department, Centro Hospitalar Universitário de Santo António (CHUdSA), Largo Professor Abel Salazar, 4099-001 Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, Rua da Universidade, 4710-057 Braga, Portugal
| | - Renato Correia
- Technology & Innovation Department, Unilabs Portugal, Rua Manuel Pinto de Azevedo 173, 4100-321 Porto, Portugal; (R.C.); (D.G.)
| | - Diogo Garcez
- Technology & Innovation Department, Unilabs Portugal, Rua Manuel Pinto de Azevedo 173, 4100-321 Porto, Portugal; (R.C.); (D.G.)
| | - José Miguel Pereira
- Radiology Department, Unilabs Portugal, Rua de Diogo Botelho 485, 4150-255 Porto, Portugal;
| | - Carlos Sousa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- Molecular Diagnostics Laboratory, Unilabs Portugal, Centro Empresarial Lionesa Porto, Rua Lionesa, 4465-671 Leça do Balio, Portugal; (M.C.); (N.J.L.)
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal; (R.R.); (C.S.)
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
6
|
Li D, Zhu Y, Song J, Yang D, Cui S, Liu X, Wang L, Zhang J, Pan E, Dai Z. Rapid response to fifth-line brigatinib plus entrectinib in an ALK-rearranged lung adenocarcinoma with an acquired ETV6- NTRK3 fusion: a case report. Front Oncol 2024; 14:1339511. [PMID: 38699646 PMCID: PMC11063249 DOI: 10.3389/fonc.2024.1339511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
The management of non-small cell lung cancer (NSCLC), specifically targeting the anaplastic lymphoma kinase (ALK) with tyrosine kinase inhibitors (TKIs), is challenged by the emergence of therapeutic resistance. Resistance mechanisms to ALK TKIs can be broadly classified into ALK-dependent and ALK-independent pathways. Here, we present a case with lung adenocarcinoma (LUAD) harboring an ALK rearrangement. The patient had developed resistance to sequential ALK TKI therapies, with an acquired ETV6-NTRK3 (E4:N14) fusion as a potential mechanism of ALK-independent resistance to lorlatinib. Subsequently, the patient was treated with the combination of brigatinib plus entrectinib and demonstrated a positive response, achieving an 8-month progression-free survival. Our case provides a potential treatment option for LUAD patients with ALK rearrangements and highlights the utility of next-generation sequencing (NGS) in uncovering genetic alterations that can guide the selection of effective treatment strategies.
Collapse
Affiliation(s)
- Dan Li
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yue Zhu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jincheng Song
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dafu Yang
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Saiqiong Cui
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xin Liu
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Le Wang
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jiangyan Zhang
- Department of Medical Services, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Evenki Pan
- Department of Medical Services, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Zhaoxia Dai
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Chen W, Liao C, Xiang X, Li H, Wu Q, Li W, Ma Q, Chen N, Chen B, Li G. A novel tumor mutation-related long non-coding RNA signature for predicting overall survival and immunotherapy response in lung adenocarcinoma. Heliyon 2024; 10:e28670. [PMID: 38586420 PMCID: PMC10998135 DOI: 10.1016/j.heliyon.2024.e28670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Background Immunotherapy has changed the treatment landscape for lung cancer. This study aims to construct a tumor mutation-related model that combines long non-coding RNA (lncRNA) expression levels and tumor mutation levels in tumor genomes to detect the possibilities of the lncRNA signature as an indicator for predicting the prognosis and response to immunotherapy in lung adenocarcinoma (LUAD). Methods We downloaded the tumor mutation profiles and RNA-seq expression database of LUAD from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were extracted based on the cumulative number of mutations. Cox regression analyses were used to identify the prognostic lncRNA signature, and the prognostic value of the five selected lncRNAs was validated by using survival analysis and the receiver operating characteristic (ROC) curve. We used qPCR to validate the expression of five selected lncRNAs between human lung epithelial and human lung adenocarcinoma cell lines. The ImmuCellAI, immunophenoscore (IPS) scores and Tumor Immune Dysfunction and Exclusion (TIDE) analyses were used to predict the response to immunotherapy for this mutation related lncRNA signature. Results A total of 162 lncRNAs were detected among the differentially expressed lncRNAs between the Tumor mutational burden (TMB)-high group and the TMB-low group. Then, five lncRNAs (PLAC4, LINC01116, LINC02163, MIR223HG, FAM83A-AS1) were identified as tumor mutation-related candidates for constructing the prognostic prediction model. Kaplan‒Meier curves showed that the overall survival of the low-risk group was significantly better than that of the high-risk group, and the results of the GSE50081 set were consistent. The expression levels of PD1, PD-L1 and CTLA4 in the low-risk group were higher than those in the high-risk group. The IPS scores and TIDE scores of patients in the low-risk group were significantly higher than those in the high-risk group. Conclusion Our findings demonstrated that the five lncRNAs (PLAC4, LINC01116, LINC02163, MIR223HG, FAM83A-AS1) were identified as candidates for constructing the tumor mutation-related model which may serve as an indicator of tumor mutation levels and have important implications for predicting the response to immunotherapy in LUAD.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Chen Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xudong Xiang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Heng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Qiang Wu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Li
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qianli Ma
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Nan Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Benchao Chen
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Gaofeng Li
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
8
|
Mori S, Izumi H, Araki M, Liu J, Tanaka Y, Kagawa Y, Sagae Y, Ma B, Isaka Y, Sasakura Y, Kumagai S, Sakae Y, Tanaka K, Shibata Y, Udagawa H, Matsumoto S, Yoh K, Okuno Y, Goto K, Kobayashi SS. LTK mutations responsible for resistance to lorlatinib in non-small cell lung cancer harboring CLIP1-LTK fusion. Commun Biol 2024; 7:412. [PMID: 38575808 PMCID: PMC10995188 DOI: 10.1038/s42003-024-06116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
The CLIP1-LTK fusion was recently discovered as a novel oncogenic driver in non-small cell lung cancer (NSCLC). Lorlatinib, a third-generation ALK inhibitor, exhibited a dramatic clinical response in a NSCLC patient harboring CLIP1-LTK fusion. However, it is expected that acquired resistance will inevitably develop, particularly by LTK mutations, as observed in NSCLC induced by oncogenic tyrosine kinases treated with corresponding tyrosine kinase inhibitors (TKIs). In this study, we evaluate eight LTK mutations corresponding to ALK mutations that lead to on-target resistance to lorlatinib. All LTK mutations show resistance to lorlatinib with the L650F mutation being the highest. In vitro and in vivo analyses demonstrate that gilteritinib can overcome the L650F-mediated resistance to lorlatinib. In silico analysis suggests that introduction of the L650F mutation may attenuate lorlatinib-LTK binding. Our study provides preclinical evaluations of potential on-target resistance mutations to lorlatinib, and a novel strategy to overcome the resistance.
Collapse
Affiliation(s)
- Shunta Mori
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, 277-8577, Japan
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, 277-8577, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jie Liu
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8577, Japan
| | - Yu Tanaka
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, 277-8577, Japan
| | - Yosuke Kagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, 277-8577, Japan
| | - Yukari Sagae
- Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Biao Ma
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| | - Yuta Isaka
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| | - Yoko Sasakura
- RIKEN Center for Computational Science, Kobe, Hyogo, 650-0047, Japan
| | - Shogo Kumagai
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa, 277-8577, Japan
| | - Yuta Sakae
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8577, Japan
| | - Kosuke Tanaka
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8577, Japan
| | - Yuji Shibata
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, 277-8577, Japan
| | - Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, 277-8577, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, 277-8577, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, 277-8577, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, 277-8577, Japan
| | - Susumu S Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, 277-8577, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan.
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Oudart JB, Garinet S, Leger C, Barlesi F, Mazières J, Jeannin G, Audigier-Valette C, Morot-Sibilot D, Langlais A, Amour E, Mathiot N, Birsen G, Blons H, Wislez M. STK11/LKB1 alterations worsen the poor prognosis of KRAS mutated early-stage non-squamous non-small cell lung carcinoma, results based on the phase 2 IFCT TASTE trial. Lung Cancer 2024; 190:107508. [PMID: 38428265 DOI: 10.1016/j.lungcan.2024.107508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND STK11/LKB1 mutations have been associated with primary resistance to PD-1 axis inhibitors and poor prognosis in advanced KRAS-mutant lung adenocarcinoma. This study aimed to assess the prognostic significance of STK11/LKB1 alterations in localized non-squamous non-small cell lung carcinoma (non-sq NSCLC). PATIENTS AND METHODS Surgical samples from patients undergoing complete resection for stage IIa, IIb, or IIIa (N2 excluded) non-sq NSCLC in the randomized adjuvant phase II trial (NCT00775385 IFCT-1801 TASTE trial) were examined. Patients received either standard chemotherapy (Pemetrexed Cisplatin) or personalized treatment based on EGFR mutation (Erlotinib) and ERCC1 expression. Tumor molecular profiles were analyzed using targeted NGS and correlated with overall survival (OS) and disease-free survival (DFS), adjusting for relevant clinical variables. Additionally, interactions between treatment groups and molecular alterations on OS, PD-L1 expression, and tumor-circulating DNA in post-operative plasma samples were evaluated. RESULTS Among 134 patients (predominantly male smokers with adenocarcinoma), KRAS mutations were associated with shorter DFS (HR: 1.95, 95 % CI: 1.1-3.4, p = 0.02) and OS (HR: 2.32, 95 % CI: 1.2-4.6, p = 0.014). Isolated STK11/LKB1 mutations (n = 18) did not significantly impact DFS or OS. However, within KRAS-mutated samples (n = 53), patients with concurrent STK11/LKB1 mutations (n = 10) exhibited significantly shorter DFS (HR: 3.85, CI: 1.5-10.2, p = 0.006) and a trend towards shorter OS (HR: 1.80, CI: 0.6-5.3, p = 0.28). No associations were found between PD-L1 expression, other gene mutations, progression-free survival (PFS), or OS. CONCLUSION This analysis reinforces KRAS mutations as predictive factors for relapse and poor survival in localized non-sq NSCLC. Furthermore, the presence of concomitant STK11/LKB1 mutations exacerbated the prognosis within the KRAS-mutated subset. These findings emphasize the clinical relevance of these molecular markers and their potential impact on treatment strategies in non-sq NSCLC.
Collapse
Affiliation(s)
- Jean Baptiste Oudart
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Somatic Oncology and pharmacogenomics Unit, Paris Cancer Institute CARPEM, Paris, France
| | - Simon Garinet
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Somatic Oncology and pharmacogenomics Unit, Paris Cancer Institute CARPEM, Paris, France; Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université Paris Cité, Paris, France
| | - Caroline Leger
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Somatic Oncology and pharmacogenomics Unit, Paris Cancer Institute CARPEM, Paris, France
| | - Fabrice Barlesi
- Medical Oncology Department, Gustave Roussy, Villejuif, France
| | - Julien Mazières
- Thoracic Oncology Department, CHU Toulouse - Hôpital Larrey, Toulouse, France
| | | | | | | | | | - Elodie Amour
- French Cooperative Thoracic Intergroup (IFCT), Paris, France
| | - Nathalie Mathiot
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Team Inflammation, Complement, and Cancer, Université Paris cité, Paris, France
| | - Gary Birsen
- Oncology Thoracic Unit Pulmonology Department, AP-HP, Hôpital Cochin, F-75014 Paris, France
| | - Hélène Blons
- Assistance publique-hôpitaux de Paris, European Georges Pompidou Hospital, Department of Biochemistry, Somatic Oncology and pharmacogenomics Unit, Paris Cancer Institute CARPEM, Paris, France; Centre de Recherche des Cordeliers, INSERM, CNRS SNC 5096, Sorbonne Université, Université Paris Cité, Paris, France
| | - Marie Wislez
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Team Inflammation, Complement, and Cancer, Université Paris cité, Paris, France; Oncology Thoracic Unit Pulmonology Department, AP-HP, Hôpital Cochin, F-75014 Paris, France.
| |
Collapse
|
10
|
Abbasi HQ, Oduoye MO, Goyal A. Celebrating a breakthrough: FDA endorses encorafenib plus binimetinib alongside two companion diagnostics for BRAV600E mutant metastatic non-small cell lung cancer. Int J Surg 2024; 110:1894-1895. [PMID: 38668653 PMCID: PMC11020023 DOI: 10.1097/js9.0000000000001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/21/2023] [Indexed: 04/29/2024]
Affiliation(s)
| | | | - Aman Goyal
- Department of Internal Medicine, Seth GS Medical College and KEM Hospital, Mumbai, India
| |
Collapse
|
11
|
Chen X, Zeng C. Pioneering the Way: The Revolutionary Potential of Antibody-Drug Conjugates in NSCLC. Curr Treat Options Oncol 2024; 25:556-584. [PMID: 38520605 DOI: 10.1007/s11864-024-01196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
OPINION STATEMENT Despite targeted therapy and immunotherapy being recognized as established frontline treatments for advanced non-small cell lung cancer (NSCLC), the unavoidable development of resistance and disease progression poses ongoing challenges. Antibody-drug conjugates (ADCs) offer a potent treatment option for NSCLC through the specific delivery of cytotoxic agents to tumor cells that display distinct antigens. This review delves into the latest evidence regarding promising ADC agents for NSCLC, focusing on their targets, effectiveness, and safety assessments. Additionally, our study provides insights into managing toxicities, identifying biomarkers, devising methods to counter resistance mechanisms, tackling prevailing challenges, and outlining prospects for the clinical implementation of these innovative ADCs and combination regimens in NSCLC.
Collapse
Affiliation(s)
- Xiehui Chen
- Department of Geriatric Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China.
| |
Collapse
|
12
|
Xie M, Gao J, Ma X, Song J, Wu C, Zhou Y, Jiang T, Liang Y, Yang C, Bao X, Zhang X, Yao J, Jing Y, Wu J, Wang J, Xue X. The radiological characteristics, tertiary lymphoid structures, and survival status associated with EGFR mutation in patients with subsolid nodules like stage I-II LUAD. BMC Cancer 2024; 24:372. [PMID: 38528507 DOI: 10.1186/s12885-024-12136-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/17/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) recommended for the patients with subsolid nodule in early lung cancer stage is not routinely. The clinical value and impact in patients with EGFR mutation on survival outcomes is further needed to be elucidated to decide whether the application of EGFR-TKIs was appropriate in early lung adenocarcinoma (LUAD) stage appearing as subsolid nodules. MATERIALS AND METHODS The inclusion of patients exhibiting clinical staging of IA-IIB subsolid nodules. Clinical information, computed tomography (CT) features before surgical resection and pathological characteristics including tertiary lymphoid structures of the tumors were recorded for further exploration of correlation with EGFR mutation and prognosis. RESULTS Finally, 325 patients were enrolled into this study, with an average age of 56.8 ± 9.8 years. There are 173 patients (53.2%) harboring EGFR mutation. Logistic regression model analysis showed that female (OR = 1.944, p = 0.015), mix ground glass nodule (OR = 2.071, p = 0.003, bubble-like lucency (OR = 1.991, p = 0.003) were significant risk factors of EGFR mutations. Additionally, EGFR mutations were negatively correlated with TLS presence and density. Prognosis analysis showed that the presence of TLS was associated with better recurrence-free survival (RFS)(p = 0.03) while EGFR mutations were associated with worse RFS(p = 0.01). The RFS in patients with TLS was considerably excel those without TLS within EGFR wild type group(p = 0.018). Multivariate analyses confirmed that EGFR mutation was an independent prognostic predictor for RFS (HR = 3.205, p = 0.037). CONCLUSIONS In early-phase LUADs, subsolid nodules with EGFR mutation had specific clinical and radiological signatures. EGFR mutation was associated with worse survival outcomes and negatively correlated with TLS, which might weaken the positive impact of TLS on prognosis. Highly attention should be paid to the use of EGFR-TKI for further treatment as agents in early LUAD patients who carrying EGFR mutation.
Collapse
Affiliation(s)
- Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, the First Medical Centre, 100835, Beijing, People's Republic of China
| | - Jie Gao
- Department of Pathology, Chinese PLA General Hospital, the First Medical Centre, 100835, Beijing, People's Republic of China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, People's Republic of China
| | - Jialin Song
- Department of Respiratory and Critical Care, Weifang Medical College, 261053, Weifang, People's Republic of China
| | - Chongchong Wu
- Department of Radiology, Chinese PLA General Hospital, the First Medical Centre, 100835, Beijing, People's Republic of China
| | - Yangyu Zhou
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, People's Republic of China
| | - Tianjiao Jiang
- Department of Radiology, Affiliated Hospital of Qingdao University, 266500, Qingdao, People's Republic of China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, People's Republic of China
| | - Chen Yang
- Department of Laboratory Medicine, Chinese PLA General Hospital, the First Medical Centre, 100835, Beijing, People's Republic of China
| | - Xinyu Bao
- Department of Respiratory and Critical Care, Weifang Medical College, 261053, Weifang, People's Republic of China
| | - Xin Zhang
- Department of Respiratory and Critical Care, Weifang Medical College, 261053, Weifang, People's Republic of China
| | - Jie Yao
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, People's Republic of China
| | - Ying Jing
- Center for Intelligent Medicine, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, 510000, Guangzhou, People's Republic of China.
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, 116001, Dalian, People's Republic of China.
| | - Jianxin Wang
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, the First Medical Centre, 100835, Beijing, People's Republic of China.
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Choi SJ, Lee JB, Kim JH, Hong MH, Cho BC, Lim SM. Analysis of tumor mutational burden and mutational landscape comparing whole-exome sequencing and comprehensive genomic profiling in patients with resectable early-stage non-small-cell lung cancer. Ther Adv Med Oncol 2024; 16:17588359241240657. [PMID: 38523846 PMCID: PMC10958800 DOI: 10.1177/17588359241240657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Background Identifying actionable driver mutations via tissue-based comprehensive genomic profiling (CGP) is paramount in treatment decisions for metastatic non-squamous, non-small-cell lung cancer (NSCLC). However, the role of CGP remains elusive in resectable NSCLC. Here, we elucidate the feasibility of CGP in early-stage NSCLC Korean patients and compare the tumor mutational burden (TMB) and mutation landscape using three different platforms. Methods All surgically resected NSCLC samples (N = 96) were analyzed to assess the concordance in TMB calculation and targetable mutations using whole-exome sequencing (WES) and TruSight Oncology 500 (TSO500). In all, 26 samples were analyzed with Foundation One CDx Assay (F1CDx). Programmed death-ligand 1 (PD-L1) expression was evaluated using Vectra Polaris. Results Stage distribution post-surgery was 80% I (N = 77) and 20% II (N = 19). Ninety-nine percent (N = 95) were adenocarcinoma. The median TMB with WES and TSO500 was 1.6 and 4.7 mut/Mb, respectively (p < 0.05). Using all three platforms, the median TMB was 1.9, 5.5, and 4 mut/Mb for WES, TSO500, and F1CDx, respectively (p = 0.0048). Linear regression analysis of TMB values calculated between WES and TSO500 resulted in a concordance correlation coefficient of 0.83. For the PD-L1 tumor proportion score of <1% (negative, N = 18), 1-49% (low, N = 68), and ⩾50% (high, N = 10), the R2 values were 0.075, 0.79, and 0.95, respectively. The R2 values for TMB concordance were variable between the three platforms. Mutation landscape revealed EGFR mutation (51%, N = 49) as the most common actionable driver mutation, comprising L858R (N = 22), E19del (N = 20), and other non-common EGFR mutations (N = 7). Conclusion TSO500 and F1CDx showed robust analytical performance for TMB assessment with TSO500 showing stronger concordance of TMB with high PD-L1 expression. As the paradigm for the management of early-resected NSCLC continues to evolve, understanding TMB and the mutation landscape may help advance clinical outcomes for this subset of patients.
Collapse
Affiliation(s)
- Su-Jin Choi
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Hee Hong
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, South Korea
| |
Collapse
|
14
|
Pan X, Shi M. Successful therapy of a critically ill non-small cell lung cancer patient with compound mutations in EGFR G719X and S768I genes using furmonertinib: A case report. Heliyon 2024; 10:e27106. [PMID: 38439894 PMCID: PMC10909768 DOI: 10.1016/j.heliyon.2024.e27106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Background Somatic mutations in epidermal growth factor receptor (EGFR) genes, such as G719X and S768I, and tyrosine kinase inhibitors (TKIs) have been confirmed to be promising for developing new targeted therapies against advanced non-small-cell lung cancer (NSCLC). The G719X and S768I mutations are uncommon and often occur in the form of compound mutations. However, the efficacy of furmonertinib in patients with these uncommon compound mutations has not yet been elucidated. Case presentation In this study, the G719X/S768I compound mutations were detected in a critically ill NSCLC patient. This patient received furmonertinib for 14 months and successfully responded to the treatment. The present case report highlights the ideal clinical response, with ongoing follow-up. Conclusion We report the successful treatment of a critically ill NSCLC patient carrying rare compound EGFR G719X and S768I mutations using furmonertinib. To the best of our knowledge, this is the first reported case of a successful furmonertinib treatment of compound EGFR G719X and S768I mutations. Furmonertinib, a third-generation EGFR-TKI, may be effective in controlling the EGFR G719X and S768I compound mutations in NSCLC.
Collapse
Affiliation(s)
- Xue Pan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Minhua Shi
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| |
Collapse
|
15
|
Choi YJ, Choi M, Park J, Park M, Kim MJ, Lee JS, Oh SJ, Lee YJ, Shim WS, Kim JW, Kim MJ, Kim YC, Kang KW. Therapeutic strategy using novel RET/YES1 dual-target inhibitor in lung cancer. Biomed Pharmacother 2024; 171:116124. [PMID: 38198957 DOI: 10.1016/j.biopha.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Lung cancer represents a significant global health concern and stands as the leading cause of cancer-related mortality worldwide. The identification of specific genomic alterations such as EGFR and KRAS in lung cancer has paved the way for the development of targeted therapies. While targeted therapies for lung cancer exhibiting EGFR, MET and ALK mutations have been well-established, the options for RET mutations remain limited. Importantly, RET mutations have been found to be mutually exclusive from other genomic mutations and to be related with high incidences of brain metastasis. Given these facts, it is imperative to explore the development of RET-targeting therapies and to elucidate the mechanisms underlying metastasis in RET-expressing lung cancer cells. In this study, we investigated PLM-101, a novel dual-target inhibitor of RET/YES1, which exhibits notable anti-cancer activities against CCDC6-RET-positive cancer cells and anti-metastatic effects against YES1-positive cancer cells. Our findings shed light on the significance of the YES1-Cortactin-actin remodeling pathway in the metastasis of lung cancer cells, establishing YES1 as a promising target for suppression of metastasis. This paper unveils a novel inhibitor that effectively targets both RET and YES1, thereby demonstrating its potential to impede the growth and metastasis of RET rearrangement lung cancer.
Collapse
Affiliation(s)
- Yong June Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Munkyung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaewoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myung Jun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Sun Lee
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Su-Jin Oh
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Young Joo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Wan Seob Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Won Kim
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Myung Jin Kim
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea
| | - Yong-Chul Kim
- R&D Center, PeLeMed, Co. Ltd., Seoul 06100, Republic of Korea; School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
16
|
Mang A, Zou W, Rolny V, Reck M, Cigoianu D, Schulze K, Holdenrieder S, Socinski MA, Shames DS, Wehnl B, Patil NS. Combined use of CYFRA 21-1 and CA 125 predicts survival of patients with metastatic NSCLC and stable disease in IMpower150. Tumour Biol 2024; 46:S177-S190. [PMID: 37545290 DOI: 10.3233/tub-230001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer (NSCLC) and stable disease (SD) have an unmet clinical need to help guide early treatment adjustments. OBJECTIVE To evaluate the potential of tumor biomarkers to inform on survival outcomes in NSCLC SD patients. METHODS This post hoc analysis included 480 patients from the IMpower150 study with metastatic NSCLC, treated with chemotherapy, atezolizumab and bevacizumab combinations, who had SD at first CT scan (post-treatment initiation). Patients were stratified into high- and low-risk groups (overall survival [OS] and progression-free survival [PFS] outcomes) based on serum tumor biomarker levels. RESULTS The CYFRA 21-1 and CA 125 biomarker combination predicted OS and PFS in patients with SD. Risk of death was ~4-fold higher for the biomarker-stratified high-risk versus low-risk SD patients (hazard ratio [HR] 3.80; 95% confidence interval [CI] 3.02-4.78; p < 0.0001). OS in patients with the low- and high-risk SD was comparable to that in patients with the CT-defined partial response (PR; HR 1.10; 95% CI 0.898-1.34) and progressive disease (PD) (HR 1.05; 95% CI 0.621-1.77), respectively. The findings were similar with PFS, and consistent across treatment arms. CONCLUSIONS Biomarker testing shows potential for providing prognostic information to help direct treatment in NSCLC patients with SD. Prospective clinical studies are warranted.ClinicalTrials.gov: NCT02366143.
Collapse
Affiliation(s)
- Anika Mang
- Roche Diagnostics GmbH, Penzberg, Germany
| | - Wei Zou
- Oncology Biomarkers Development, Genentech, San Francisco, CA, USA
| | | | - Martin Reck
- Lung Clinic Grosshansdorf, Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany
| | | | - Katja Schulze
- Oncology Biomarkers Development, Genentech, San Francisco, CA, USA
| | - Stefan Holdenrieder
- Institute of Laboratory Medicine, German Heart Centre Munich, Technical University of Munich, Munich, Germany
| | | | - David S Shames
- Oncology Biomarkers Development, Genentech, San Francisco, CA, USA
| | | | - Namrata S Patil
- Oncology Biomarkers Development, Genentech, San Francisco, CA, USA
| |
Collapse
|
17
|
van den Heuvel M, Holdenrieder S, Schuurbiers M, Cigoianu D, Trulson I, van Rossum H, Lang D. Serum tumor markers for response prediction and monitoring of advanced lung cancer: A review focusing on immunotherapy and targeted therapies. Tumour Biol 2024; 46:S233-S268. [PMID: 37248927 DOI: 10.3233/tub-220039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND The value of serum tumor markers (STMs) in the current therapeutic landscape of lung cancer is unclear. OBJECTIVE This scoping review gathered evidence of the predictive, prognostic, and monitoring value of STMs for patients with advanced lung cancer receiving immunotherapy (IT) or targeted therapy (TT). METHODS Literature searches were conducted (cut-off: May 2022) using PubMed and Cochrane CENTRAL databases. Medical professionals advised on the search strategies. RESULTS Study heterogeneity limited the evidence and inferences from the 36 publications reviewed. While increased baseline levels of serum cytokeratin 19 fragment antigen (CYFRA21-1) and carcinoembryonic antigen (CEA) may predict IT response, results for TT were less clear. For monitoring IT-treated patients, STM panels (including CYFRA21-1, CEA, and neuron-specific enolase) may surpass the power of single analyses to predict non-response. CYFRA21-1 measurement could aid in monitoring TT-treated patients, but the value of CEA in this context requires further investigation. Overall, baseline and dynamic changes in individual or combined STM levels have potential utility to predict treatment outcome and for monitoring of patients with advanced lung cancer. CONCLUSIONS In advanced lung cancer, STMs provide additional relevant clinical information by predicting treatment outcome, but further standardization and validation is warranted.
Collapse
Affiliation(s)
- Michel van den Heuvel
- Department of Pulmonology, Radboud University Medical Center - Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University of Munich, Munich, Germany
| | - Milou Schuurbiers
- Department of Pulmonology, Radboud University Medical Center - Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | - Inga Trulson
- Institute for Laboratory Medicine, German Heart Centre, Technical University of Munich, Munich, Germany
| | - Huub van Rossum
- Department of Laboratory Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - David Lang
- Department of Internal Medicine - Pulmonology, Johannes Kepler University Hospital, Linz, Austria
- Medical Faculty, Johannes Kepler University, Linz, Austria
| |
Collapse
|
18
|
Liu Y, Zhao Z, Zhu S, Cheng Y, Liu J, Ye T, Wang S. Docetaxel liposomes for lung targeted delivery: development and evaluation. Pharm Dev Technol 2023; 28:856-864. [PMID: 37842809 DOI: 10.1080/10837450.2023.2265472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
Docetaxel (DTX) is an artificial semi-synthetic second-generation taxane anti-tumor drug, which is suitable for the treatment of various cancers such as lung cancer. The route of administration of DTX formulations has been extended to oral, intravenous, and rectal, with few studies on pulmonary administration being reported. Here, we had developed DTX liposomes (DTX-lips) for pulmonary inhalation administration. The particle size of the preparation was 125 nm, the encapsulation efficiency was 94.4 ± 0.14%, and the drug loading capacity was 1.26 ± 0.01%. It had good stability. The fine particle fraction with aerodynamic diameter less than 6.4 μm accounts for 64.63 ± 0.12%, showed excellent aerosolization performance. DTX-lips were slow to release in simulated lung fluid. The fluorescence distribution experimented in mice and tissues showed that the fluorescence of the inhaled liposome group was mainly distributed in the lung, and the retention time was significantly prolonged as compared with those of the other two groups. No significant fluorescence was observed in other tissues, which was conducive to the full effect of the drug in the lung tissue. DTX-lips had no damage to respiratory system and whole body. These results indicated that the inhaled DTX-lips had good lung targeting, reduced accumulation in other organs, and improved the safety and effectiveness of the drug.
Collapse
Affiliation(s)
- Yishuai Liu
- College of Traditional Chinese Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zixuan Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shuhui Zhu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yumin Cheng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Jun Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang Junhong Pharmaceutical Technology Co., Ltd, Shenyang, China
| | - Tiantian Ye
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Shujun Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
19
|
Parra-Medina R, Castañeda-González JP, Montoya L, Paula Gómez-Gómez M, Clavijo Cabezas D, Plazas Vargas M. Prevalence of oncogenic driver mutations in Hispanics/Latin patients with lung cancer. A systematic review and meta-analysis. Lung Cancer 2023; 185:107378. [PMID: 37729688 DOI: 10.1016/j.lungcan.2023.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION The frequency of actionable mutations varies between races, and Hispanic/Latino (H/L) people are a population with different proportions of ancestry. Our purpose was to establish prevalence of actionable mutations in the H/L population with NSCLC. METHODS EMBASE, LILACS, MEDLINE, and Virtual Health Library were searched for studies published up to April 2023 that evaluated the prevalence of ALK, BRAF, EGFR, HER-2, KRAS, MET, NTRK, RET, ROS1 in H/L patients. Meta-analyses were done to determine prevalence using a random effects model. RESULTS Fifty-five articles were included. EGFR and KRAS were the most prevalent genes with high heterogeneity across the countries. The overall mutation frequency for EGFR was 22%. The most frequent mutations in the EGFR gene were del19 (10%) and L858R (7%). The mean of KRAS mutation was a 14% prevalence. KRASG12C was the most frequent mutation with a 7% prevalence in an entire population. The overall frequency of ALK rearrangement was 5%. The mean frequency of ROS-1 rearrangement was 2%, and the frequencies of HER-2, MET, BRAF, RET, NTRK molecular alterations were 4%, 3%, 2%, 2%, and 1% respectively. Almost half of the cases were male, and 65.8% had a history of tobacco exposure. The most common clinical stage was IV. CONCLUSIONS The prevalence of driver mutations such as EGFR and KRAS in LA populations differs from what is reported in Asians and Europeans. In the present article, countries with a high proportion of Amerindian ancestry show a greater prevalence of EGFR in contrast to countries with a high proportion of Caucasians. Lack of information on some countries or studies with a small sample size affects the real prevalence data for the region.
Collapse
Affiliation(s)
- Rafael Parra-Medina
- Research Institute, Fundación Universitaria de Ciencias de la Salud - FUCS, Bogotá, Colombia; Department of Pathology, Fundación Universitaria de Ciencias de la Salud - FUCS, Bogotá, Colombia; Department of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia.
| | - Juan Pablo Castañeda-González
- Research Institute, Fundación Universitaria de Ciencias de la Salud - FUCS, Bogotá, Colombia; Department of Pathology, Fundación Universitaria de Ciencias de la Salud - FUCS, Bogotá, Colombia
| | - Luisa Montoya
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - María Paula Gómez-Gómez
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud - FUCS, Bogotá, Colombia
| | - Daniel Clavijo Cabezas
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud - FUCS, Bogotá, Colombia
| | - Merideidy Plazas Vargas
- Department of Epidemiology, Fundación Universitaria de Ciencias de la Salud - FUCS, Bogotá, Colombia
| |
Collapse
|
20
|
Meyer C, McCoy M, Li L, Posner B, Westover KD. LIMS-Kinase provides sensitive and generalizable label-free in vitro measurement of kinase activity using mass spectrometry. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101599. [PMID: 38213501 PMCID: PMC10783653 DOI: 10.1016/j.xcrp.2023.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Measurements of kinase activity are important for kinase-directed drug development, analysis of inhibitor structure and function, and understanding mechanisms of drug resistance. Sensitive, accurate, and miniaturized assay methods are crucial for these investigations. Here, we describe a label-free, high-throughput mass spectrometry-based assay for studying individual kinase enzymology and drug discovery in a purified system, with a focus on validated drug targets as benchmarks. We demonstrate that this approach can be adapted to many known kinase substrates and highlight the benefits of using mass spectrometry to measure kinase activity in vitro, including increased sensitivity. We speculate that this approach to measuring kinase activity will be generally applicable across most of the kinome, enabling research on understudied kinases and kinase drug discovery.
Collapse
Affiliation(s)
- Cynthia Meyer
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Melissa McCoy
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Lianbo Li
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Bruce Posner
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Kenneth D. Westover
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- X (formerly Twitter): @KENWESTOVER
- Lead contact
| |
Collapse
|
21
|
Park SY, Yoon H, Han EJ, Yoo IR. Clinical Challenge of Two Competing Targetable Mutations in Non-Small-Cell Lung Cancer: A Case Report. Diagnostics (Basel) 2023; 13:3112. [PMID: 37835855 PMCID: PMC10572277 DOI: 10.3390/diagnostics13193112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The development of therapeutic agents targeting products of epidermal growth factor receptor (EGFR) gene mutation and anaplastic lymphoma kinase (ALK) rearrangements has improved survival in patients with non-small-cell lung cancer. EGFR and ALK mutations are generally regarded as mutually exclusive, and the presence of one in lieu of another influences the response to targeted therapy. We herein present an interesting case following the course of progression of a patient with synchronous lung cancers with a discordant mutation profile. The importance of this modality in the follow-up of lung cancer patients is illustrated, and the therapeutic implications of coexisting oncogenic drivers are briefly discussed.
Collapse
Affiliation(s)
| | | | | | - Ie Ryung Yoo
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
22
|
Yeon M, Lee H, Yeo J, Jeong MS, Jung HS, Lee H, Shim K, Jo H, Jeon D, Koh J, Jeoung D. Cancer/testis antigen CAGE mediates osimertinib resistance in non-small cell lung cancer cells and predicts poor prognosis in patients with pulmonary adenocarcinoma. Sci Rep 2023; 13:15748. [PMID: 37735252 PMCID: PMC10514060 DOI: 10.1038/s41598-023-43124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2023] [Indexed: 09/23/2023] Open
Abstract
CAGE, a cancer/testis antigen, was originally isolated from the sera of patients with gastric cancers. Previously, we have shown the role of CAGE in resistance to chemotherapy and target therapy. The aim of this study was to investigate the role of CAGE in osimertinib resistance and determine the prognostic value of CAGE in patients with pulmonary adenocarcinomas. The clinicopathological correlation with CAGE and autophagy flux in patients was examined using immunohistochemistry and in situ hybridization. The possible role of autophagy in osimertinib resistance was analyzed using immune blot, immune fluorescence staining and immunohistochemistry. This study found that immunohistochemical staining (IHC) showed CAGE expression in more than 50% of patients with pulmonary adenocarcinomas (pADCs). CAGE expression was increased in pADCs after the acquisition of EGFR-TKIs resistance. High expression of CAGE was correlated with shorter overall survival and progression free survival in patients with pADCs. Thus, CAGE mediates osimertinib resistance and predicts poor prognosis in patients with pADCs. Osimertinib-resistant non-small cell lung cancer cells (PC-9/OSI) were established and mechanistic studies of CAGE-mediated osimertinib resistance were performed. PC-9/OSI cells showed increased autophagic flux and CAGE expression compared with parental sensitive PC-9 cells. PC-9/OSI cells showed higher tumorigenic, metastatic, and angiogenic potential compared with parental PC-9 cells. CAGE CRISPR-Cas9 cell lines showed decreased autophagic flux, invasion, migration potential, and tumorigenic potential compared with PC-9/OSI cells in vitro and in vivo. CAGE plays a crucial role in the cancer progression by modulating autophagy and can predict the poor prognosis of patients with pulmonary adenocarcinomas. Our findings propose CAGE as a potential therapeutic target for developing anticancer drugs that can overcome osimertinib resistance.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | | | - Jeongseon Yeo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
- Paean Biotech Company, Seoul, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | | | - Kyeonghee Shim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Hyein Jo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | | | - Jaemoon Koh
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Korea.
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|
23
|
Crintea A, Constantin AM, Motofelea AC, Crivii CB, Velescu MA, Coșeriu RL, Ilyés T, Crăciun AM, Silaghi CN. Targeted EGFR Nanotherapy in Non-Small Cell Lung Cancer. J Funct Biomater 2023; 14:466. [PMID: 37754880 PMCID: PMC10532491 DOI: 10.3390/jfb14090466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. Despite advances in treatment, the prognosis remains poor, highlighting the need for novel therapeutic strategies. The present review explores the potential of targeted epidermal growth factor receptor (EGFR) nanotherapy as an alternative treatment for NSCLC, showing that EGFR-targeted nanoparticles are efficiently taken up by NSCLC cells, leading to a significant reduction in tumor growth in mouse models. Consequently, we suggest that targeted EGFR nanotherapy could be an innovative treatment strategy for NSCLC; however, further studies are needed to optimize the nanoparticles and evaluate their safety and efficacy in clinical settings and human trials.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Anne-Marie Constantin
- Department of Morphological Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.-M.C.); (C.-B.C.)
| | - Alexandru C. Motofelea
- Department of Internal Medicine, University of Medicine and Pharmacy “Victor Babeș”, 300041 Timișoara, Romania;
| | - Carmen-Bianca Crivii
- Department of Morphological Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.-M.C.); (C.-B.C.)
| | - Maria A. Velescu
- Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania;
| | - Răzvan L. Coșeriu
- Department of Microbiology, University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu-Mureș, Romania;
| | - Tamás Ilyés
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Alexandra M. Crăciun
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| | - Ciprian N. Silaghi
- Department of Molecular Sciences, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400349 Cluj-Napoca, Romania; (A.C.); (T.I.); (C.N.S.)
| |
Collapse
|
24
|
Bi Y, Xia C, Zhang X, Liu H. Targeted treatments after chemoradiotherapy failure in a patient with relapsed, advanced non‑small cell lung cancer with on‑therapy circulating tumor biomarker monitoring: A case report. Oncol Lett 2023; 26:407. [PMID: 37600327 PMCID: PMC10436159 DOI: 10.3892/ol.2023.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/30/2023] [Indexed: 08/22/2023] Open
Abstract
Ongoing investigations of targeted therapeutic agents and their increased clinical applications, together with research in genomics and proteomics, have explored a variety of novel approaches for treatment of lung cancer, and 'molecular subtypes' have been defined based on specific actionable genetic aberrations. Liquid biopsies, including circulating tumor DNA (ctDNA) testing, are of value for cancer diagnosis and comprehensive genomic profiling, such as the identification of cancer subtypes and major genetic alterations in cancer cells. The case of a 66-year-old male patient with newly-diagnosed driver mutation-negative advanced non-small cell lung cancer (NSCLC) who underwent conventional therapy is described in the present report. The patient underwent regular monitoring, including continuous ctDNA analysis, imaging and assessment of tumor marker levels such as carcinoembryonic antigen (CEA). The patient initially presented with deep vein thrombosis which affected both lower extremities and without any symptoms in the lung, with a positron emission tomography scan identifying irregular pulmonary nodules in the right lower lobe and enlarged right supraclavicular lymph nodes. Subsequent ultrasound-guided fine-needle aspiration with nodule biopsy indicated advanced unresectable disease at stage IIIB based on the Tumor-Node-Metastasis staging system by the American Joint Committee on Cancer. Next-generation sequencing of tumor tissue and peripheral blood confirmed driver mutation-negative genes, including epidermal growth factor receptor, rat sarcoma, ALK receptor tyrosine kinase, ROS1 proto-oncogene receptor tyrosine kinase and rearrangement during transfection (RET). After 5 years of chemoradiotherapy and surveillance of ctDNA and CEA levels, detectable kinesin family member 5B (KIF5B)-RET fusion in ctDNA and rising CEA levels prompted early scans, which identified disease progression. The patient subsequently received the oral RET inhibitor pralsetinib, with treatment being currently ongoing for ≥17 months without detectable KIF5B-RET ctDNA or elevated CEA levels, with an ongoing minor response and stable disease based on Response Evaluation Criteria in Solid Tumors v1.1 on imaging. The present case illustrates the potential role of on-therapy circulating tumor biomarker monitoring as a non-traumatic method to evaluate therapy response and detect early disease progression in patients with advanced NSCLC. Integration of circulating tumor biomarker testing into the management of patients with advanced NSCLC requires additional prospective studies to actively assess and elucidate optimal treatment strategies.
Collapse
Affiliation(s)
- Yinghui Bi
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong 266012, P.R. China
| | - Chaoran Xia
- Zhejiang Shaoxing Topgen Biomedical Technology Co. Ltd., Shanghai 200120, P.R. China
| | - Xinglin Zhang
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong 266012, P.R. China
| | - Haixin Liu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong 266012, P.R. China
| |
Collapse
|
25
|
Riely GJ, Smit EF, Ahn MJ, Felip E, Ramalingam SS, Tsao A, Johnson M, Gelsomino F, Esper R, Nadal E, Offin M, Provencio M, Clarke J, Hussain M, Otterson GA, Dagogo-Jack I, Goldman JW, Morgensztern D, Alcasid A, Usari T, Wissel P, Wilner K, Pathan N, Tonkovyd S, Johnson BE. Phase II, Open-Label Study of Encorafenib Plus Binimetinib in Patients With BRAFV600-Mutant Metastatic Non-Small-Cell Lung Cancer. J Clin Oncol 2023; 41:3700-3711. [PMID: 37270692 DOI: 10.1200/jco.23.00774] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/19/2023] [Accepted: 05/04/2023] [Indexed: 06/05/2023] Open
Abstract
PURPOSE The combination of encorafenib (BRAF inhibitor) plus binimetinib (MEK inhibitor) has demonstrated clinical efficacy with an acceptable safety profile in patients with BRAFV600E/K-mutant metastatic melanoma. We evaluated the efficacy and safety of encorafenib plus binimetinib in patients with BRAFV600E-mutant metastatic non-small-cell lung cancer (NSCLC). METHODS In this ongoing, open-label, single-arm, phase II study, patients with BRAFV600E-mutant metastatic NSCLC received oral encorafenib 450 mg once daily plus binimetinib 45 mg twice daily in 28-day cycles. The primary end point was confirmed objective response rate (ORR) by independent radiology review (IRR). Secondary end points included duration of response (DOR), disease control rate (DCR), progression-free survival (PFS), overall survival, time to response, and safety. RESULTS At data cutoff, 98 patients (59 treatment-naïve and 39 previously treated) with BRAFV600E-mutant metastatic NSCLC received encorafenib plus binimetinib. Median duration of treatment was 9.2 months with encorafenib and 8.4 months with binimetinib. ORR by IRR was 75% (95% CI, 62 to 85) in treatment-naïve and 46% (95% CI, 30 to 63) in previously treated patients; median DOR was not estimable (NE; 95% CI, 23.1 to NE) and 16.7 months (95% CI, 7.4 to NE), respectively. DCR after 24 weeks was 64% in treatment-naïve and 41% in previously treated patients. Median PFS was NE (95% CI, 15.7 to NE) in treatment-naïve and 9.3 months (95% CI, 6.2 to NE) in previously treated patients. The most frequent treatment-related adverse events (TRAEs) were nausea (50%), diarrhea (43%), and fatigue (32%). TRAEs led to dose reductions in 24 (24%) and permanent discontinuation of encorafenib plus binimetinib in 15 (15%) patients. One grade 5 TRAE of intracranial hemorrhage was reported. Interactive visualization of the data presented in this article is available at the PHAROS dashboard (https://clinical-trials.dimensions.ai/pharos/). CONCLUSION For patients with treatment-naïve and previously treated BRAFV600E-mutant metastatic NSCLC, encorafenib plus binimetinib showed a meaningful clinical benefit with a safety profile consistent with that observed in the approved indication in melanoma.
Collapse
Affiliation(s)
| | - Egbert F Smit
- Department of Pulmonary Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Myung-Ju Ahn
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Enriqueta Felip
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Anne Tsao
- MD Anderson Cancer Center, Houston, TX
| | - Melissa Johnson
- Tennessee Oncology, Sarah Cannon Research Institute, Nashville, TN
| | - Francesco Gelsomino
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Ernest Nadal
- Medical Oncology, Catalan Institute of Oncology, Barcelona, Spain
| | - Michael Offin
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nowak P, Bil-Lula I, Śliwińska-Mossoń M. A Cross-Talk about Radioresistance in Lung Cancer-How to Improve Radiosensitivity According to Chinese Medicine and Medicaments That Commonly Occur in Pharmacies. Int J Mol Sci 2023; 24:11206. [PMID: 37446385 DOI: 10.3390/ijms241311206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Lung cancer is one of the most common cancers in the population and is characterized by non-specific symptoms that delay the diagnosis and reduce the effectiveness of oncological treatment. Due to the difficult placement of the tumor, one of the main methods of lung cancer treatment is radiotherapy, which damages the DNA of cancer cells, inducing their apoptosis. However, resistance to ionizing radiation may develop during radiotherapy cycles, leading to an increase in the number of DNA points of control that protect cells from apoptosis. Cancer stem cells are essential for radioresistance, and due to their ability to undergo epithelial-mesenchymal transition, they modify the phenotype, bypassing the genotoxic effect of radiotherapy. It is therefore necessary to search for new methods that could improve the cytotoxic effect of cells through new mechanisms of action. Chinese medicine, with several thousand years of tradition, offers a wide range of possibilities in the search for compounds that could be used in conventional medicine. This review introduces the potential candidates that may present a radiosensitizing effect on lung cancer cells, breaking their radioresistance. Additionally, it includes candidates taken from conventional medicine-drugs commonly available in pharmacies, which may also be significant candidates.
Collapse
Affiliation(s)
- Paulina Nowak
- Scientific Club of Specialized Biological Analyzes, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Mariola Śliwińska-Mossoń
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
27
|
Chattopadhyay S, Sarkar SS, Saproo S, Yadav S, Antil D, Das B, Naidu S. Apoptosis-targeted gene therapy for non-small cell lung cancer using chitosan-poly-lactic-co-glycolic acid -based nano-delivery system and CASP8 and miRs 29A-B1 and 34A. Front Bioeng Biotechnol 2023; 11:1188652. [PMID: 37346791 PMCID: PMC10281530 DOI: 10.3389/fbioe.2023.1188652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths worldwide, with resistance to apoptosis being a major driver of therapeutic resistance and aggressive phenotype. This study aimed to develop a novel gene therapy approach for NSCLC by targeting resistance to apoptosis. Loss of function mutations of caspase 8 (CASP8) and downregulation of microRNAs (miRs) 29A-B1 and 34A were identified as key contributors to resistance to apoptosis in NSCLC. A biodegradable polymeric nano-gene delivery system composed of chitosan-poly-lactic-co-glycolic acid was formulated to deliver initiator CASP8 and miRs 29A-B1 and 34A. The nano-formulation efficiently encapsulated the therapeutic genes effectively internalized into NSCLC cells and induced significant apoptosis. Evaluation of the nano-formulation in A549 tumor spheroids showed a significant increase in apoptosis within the core of the spheroids, suggesting effective penetration into the spheroid structures. We provide a novel nano-formulation that demonstrate therapeutic potential for suicidal gene therapy in NSCLC.
Collapse
|
28
|
Wang B, Song Y, Chen Z, Su X, Yang X, Wei Z, Chen J, Chen C, Li M. A retrospective study of postoperative targeted therapy in ALK-positive lung cancer. Sci Rep 2023; 13:8317. [PMID: 37221218 DOI: 10.1038/s41598-023-34397-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
In this study, we aim to investigate the therapeutic effect and safety of ALK inhibitor in ALK-positive lung cancer patients. 59 patients with ALK-positive lung cancer from August 2013 to August 2022 were retrospectively recruited. The basic information, pathological type, clinical stage and treatment strategy were collected. These patients were divided into two groups, including 29 patients of conventional adjuvant chemotherapy, and 30 cases of targeted therapy. The patients in the targeted therapy group underwent adjuvant targeted therapy with crizotinib for 2 years. The observation indicators include curative effects and adverse events. The disease-free survival (DFS) and overall survival (OS) were also analyzed. We analyzed the pathological stages after adjuvant chemotherapy and targeted therapy in lung cancer, no significant difference in the p stage N and T was found between the two therapeutic groups. However, the DFS events, DFS median time and OS median time showed significant improvement in the targeted therapy group when compared with adjuvant chemotherapy (all P < 0.05). Besides, the patients under both therapeutic regimens presented some adverse events, among them elevated aspartate transaminase/alanine aminotransferase was the most common adverse event in all the patients, followed by nausea and vomiting. Our study identified that crizotinib-based postoperative targeted therapy helps improve the prognosis of patients with ALK-positive lung cancer, confirming that postoperative targeted therapy can be considered an effective and feasible therapeutic alternative.
Collapse
Affiliation(s)
- Bin Wang
- Department of Oncology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Song
- Department of Oncology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Zhuo Chen
- Department of Oncology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Xiaona Su
- Department of Oncology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Xin Yang
- Department of Pathology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhi Wei
- Information Section, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, China
| | - Chuan Chen
- Department of Oncology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| | - Mengxia Li
- Department of Oncology, Daping Hospital, Army Medical University, No. 10, Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
29
|
Grodzka A, Knopik-Skrocka A, Kowalska K, Kurzawa P, Krzyzaniak M, Stencel K, Bryl M. Molecular alterations of driver genes in non-small cell lung cancer: from diagnostics to targeted therapy. EXCLI JOURNAL 2023; 22:415-432. [PMID: 37346803 PMCID: PMC10279966 DOI: 10.17179/excli2023-6122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Lung cancer is the leading cause of cancer death all over the world. The majority (80-85 %) of lung cancer cases are classified as non-small cell lung cancer (NSCLC). Within NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SCC) are the most often recognized. The histological and immunohistochemical examination of NSCLC is a basic diagnostic tool, but insufficient for comprehensive therapeutic decisions. In some NSCLC patients, mainly adenocarcinoma, molecular alterations in driver genes, like EGFR, KRAS, HER2, ALK, MET, BRAF, RET, ROS1, and NTRK are recognized. The frequency of some of those changes is different depending on race, and between smokers and non-smokers. The molecular diagnostics of NSCLC using modern methods, like next-generation sequencing, is essential in estimating targeted, personalized therapy. In recent years, a breakthrough in understanding the importance of molecular studies for the precise treatment of NSCLC has been observed. Many new drugs were approved, including tyrosine kinase and immune checkpoint inhibitors. Clinical trials testing novel molecules like miRNAs and trials with CAR-T cells (chimeric antigen receptor - T cells) dedicated to NSCLC patients are ongoing.
Collapse
Affiliation(s)
- Anna Grodzka
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznan, Poland
| | | | - Katarzyna Kowalska
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, Poland
| | - Pawel Kurzawa
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, Poland
- Department of Clinical Pathology and Immunology, Poznan University of Medical Sciences, Poland
| | - Monika Krzyzaniak
- Department of Oncological Pathology, University Clinical Hospital in Poznan, Poznan University of Medical Sciences, Poland
| | - Katarzyna Stencel
- Department of Clinical Oncology with the Subdepartment of Diurnal Chemotherapy, E. J. Zeyland Wielkopolska Center of Pulmonology and Thoracic Surgery, Poznan, Poland
| | - Maciej Bryl
- Department of Clinical Oncology with the Subdepartment of Diurnal Chemotherapy, E. J. Zeyland Wielkopolska Center of Pulmonology and Thoracic Surgery, Poznan, Poland
| |
Collapse
|
30
|
Tozuka T, Yanagitani N, Yoshida H, Manabe R, Ogusu S, Tsugitomi R, Sakamoto H, Amino Y, Ariyasu R, Uchibori K, Kitazono S, Seike M, Gemma A, Nishio M. Soluble interleukin-2 receptor as a predictive biomarker for poor efficacy of combination treatment with anti-PD-1/PD-L1 antibodies and chemotherapy in non-small cell lung cancer patients. Invest New Drugs 2023:10.1007/s10637-023-01358-3. [PMID: 37058183 DOI: 10.1007/s10637-023-01358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Soluble interleukin-2 receptor (sIL-2R) suppresses effector T-cells. Few studies have assessed serum sIL-2R in patients receiving immunotherapy. We evaluated the association between serum sIL-2R levels and the efficacy of anti-programmed cell death 1/ programmed death-ligand 1 (anti-PD-1/PD-L1) antibody combined with chemotherapy in non-small cell lung cancer (NSCLC) patients. We prospectively enrolled NSCLC patients who received anti-PD-1/PD-L1 antibody combined with platinum-based chemotherapy between 8/2019 and 8/2020 and measured their serum sIL-2R. The patients were divided into high and low sIL-2R groups based on the median of sIL-2R levels at pretreatment. Progression-free survival (PFS) and overall survival (OS) of patients in the high and low sIL-2R groups were compared. The Kaplan-Meier curves of PFS and OS were evaluated using the log-rank test. The multivariate analysis of PFS and OS was performed using the Cox proportional hazard models. Among 54 patients (median age 65, range 34-84), 39 were male and 43 had non-squamous cell carcinoma. The sIL-2R cut-off value was 533 U/mL. Median PFS was 5.1 months (95% CI, 1.8-7.5 months) and 10.1 months (95% CI, 8.3-not reached [NR] months) in the high and low sIL-2R groups (P = 0.007), respectively. Median OS was 10.3 months (95% CI, 4.0-NR months) and NR (95% CI, 10.3-NR months) in the high and low sIL-2R groups (P = 0.005), respectively. Multivariate Cox regression analysis showed that high sIL-2R was significantly associated with shorter PFS and OS. SIL-2R may be a biomarker for the poor efficacy of anti-PD-1/PD-L1 antibody combined with chemotherapy.
Collapse
Affiliation(s)
- Takehiro Tozuka
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hiroshi Yoshida
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Ryo Manabe
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Shinsuke Ogusu
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Ryosuke Tsugitomi
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Hiroaki Sakamoto
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yoshiaki Amino
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Ryo Ariyasu
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Ken Uchibori
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Satoru Kitazono
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
31
|
Quick QA. Efficacy of PP121 in primary and metastatic non‑small cell lung cancers. Biomed Rep 2023; 18:29. [PMID: 36926188 PMCID: PMC10011948 DOI: 10.3892/br.2023.1611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Tyrosine kinase inhibitors are a clinically standard treatment option for non-small cell lung cancers (NSCLCs), the leading cause of cancer-related deaths in the US. These targeted agents include first, second and third generation tyrosine kinase inhibitors; however, these lack clinical efficacy in the treatment of NSCLC due to intrinsic and acquired resistance. This resistance may be a result of genetic aberrations in oncogenic signaling mediators of divergent pathways. The present study aimed to investigate a novel dual tyrosine kinase and PI3K inhibitor, PP121, as a targeted agent in NSCLC cell lines. The present study co-cultured PP121 with healthy human astrocytes, a prevalent cell type located in the brain of NSCLC brain metastases. To date, few preclinical studies have examined the efficacy of PP121 as an anticancer agent, and to the best of my knowledge, no previous studies have previously evaluated its therapeutic potential in the treatment of NSCLC. To investigate the clinical heterogeneity of NSCLC, patient-derived adenocarcinoma (ADC) and squamous cell carcinoma (SCC) xenograft models were used, which exhibited epidermal growth factor receptor (EGFR) mutations and mesenchymal-epithelial transition (MET) factor amplifications. Notably, both EGFR and MET are known contributors to tyrosine kinase inhibitor resistance; thus, the aforementioned mutations and amplifications enabled the effects of PP121 to be evaluated in these solid tumors. In addition, a co-cultured model system using both NSCLC cells and astrocytes was employed to assess the effects of PP121 on the invasion of ADC and SCC cells in a multicellular environment. Results of the present study demonstrated that PP121 exerted an antitumorigenic effect in the aforementioned model systems via downregulation of pharmacodynamic targets.
Collapse
Affiliation(s)
- Quincy A Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|
32
|
Desai A, Reddy NK, Subbiah V. Top advances of the year: Precision oncology. Cancer 2023; 129:1634-1642. [PMID: 36946766 DOI: 10.1002/cncr.34743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The advent of precision medicine has changed the landscape of oncologic biomarkers, drug discovery, drug development, and, more importantly, outcomes for patients with cancer. Precision oncology entails the genomic profiling of tumors to detect actionable aberrations. The advances in clinical next-generation sequencing from both tumor tissue and liquid biopsy and availability of targeted therapies has rapidly entered mainstream clinical practice. In this review, recent major developments in precision oncology that have affected outcomes for patients with cancer are discussed. Rapid clinical development was seen of targeted agents across various mutational profiles such as KRASG12C (which was considered "undruggable" for almost 4 decades), Exon 20 insertions, and RET mutations. Approaches to precision chemotherapy delivery by the introduction of antibody drug conjugates in the armamentarium against lung cancer has been appreciated.
Collapse
Affiliation(s)
- Aakash Desai
- Division of Medical Oncology, MayoClinic, Rochester, Minnesota, USA
| | - Neha K Reddy
- Department of Internal Medicine, The University of Texas at Austin Dell Medical School, Austin, Texas, USA
| | - Vivek Subbiah
- Division of Cancer Medicine, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
33
|
Shah V, McNatty A, Simpson L, Ofori H, Raheem F. Amivantamab-Vmjw: A Novel Treatment for Patients with NSCLC Harboring EGFR Exon 20 Insertion Mutation after Progression on Platinum-Based Chemotherapy. Biomedicines 2023; 11:biomedicines11030950. [PMID: 36979929 PMCID: PMC10046583 DOI: 10.3390/biomedicines11030950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
OBJECTIVE This study is a comprehensive review of the clinical pharmacology, pharmacokinetics, efficacy, safety, and clinical applicability of amivantamab-vmjw for metastatic non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) exon 20 insertion (exon20ins) mutation. DATA SYNTHESIS The literature search to identify clinical trials returned only the CHRYSALIS phase 1 study. In a phase I trial, amivantamab-vmjw was associated with an overall response rate (ORR) of 40% (95% CI, 29-51) in the EGFR exon20ins NSCLC patient population (n = 81) after platinum-based chemotherapy. There were 3 complete responses (CRs) and 29 partial responses (PRs). The median duration of response (DOR) was 11.1 months (95% CI, 6.9-not reached; NR). The median progression-free survival (PFS) was 8.3 months (95% CI, 6.5-10.9), and overall survival (OS) was 22.8 months (95% CI, 14.6-NR). APPLICATION TO CLINICAL PRACTICE This review summarizes the pharmacology, clinical evidence, and use of amivantamab-vmjw for patients with locally advanced or metastatic NSCLC with EGFR exon20ins mutation. CONCLUSION The FDA approval of amivantamab-vmjw, the first bispecific antibody to target the exon20ins mutation, represents an important advancement in the treatment of patients with NSCLC with limited effective treatment options. The initial findings of the CHRYSALIS trial demonstrate an overall tumor response benefit with an acceptable safety profile.
Collapse
Affiliation(s)
- Vishal Shah
- Department of Pharmacy, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, USA
| | | | - Lacey Simpson
- Department of Pharmacy, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Henry Ofori
- Department of Pharmacy, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, USA
| | - Farah Raheem
- Department of Pharmacy, Mayo Clinic, 5881 E Mayo Blvd, Phoenix, AZ 85054, USA
| |
Collapse
|
34
|
Frost MG, Jensen KJ, Gotfredsen DR, Sørensen AMS, Ankarfeldt MZ, Louie KS, Sroczynski N, Jakobsen E, Andersen JL, Jimenez-Solem E, Petersen TS. KRAS G12C mutated advanced non-small cell lung cancer (NSCLC): Characteristics, treatment patterns and overall survival from a Danish nationwide observational register study. Lung Cancer 2023; 178:172-182. [PMID: 36868178 DOI: 10.1016/j.lungcan.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
OBJECTIVES We aimed to characterize the advanced NSCLC population in terms of KRAS G12C prevalence, patient characteristics, and survival outcomes after the introduction of immunotherapies. MATERIALS AND METHODS We identified adult patients diagnosed with advanced NSCLC between January 1, 2018 and June 30, 2021 using the Danish health registries. Patients were grouped by mutational status (any KRAS mutation, KRAS G12C, and KRAS/EGFR/ALK wildtype [Triple WT]). We analyzed KRAS G12C prevalence, patient and tumor characteristics, treatment history, time-to-next-treatment (TTNT), and overall survival (OS). RESULTS We identified 7,440 patients of whom 40% (n = 2,969) were KRAS tested prior to the first line of therapy (LOT1). Among the KRAS tested, 11% (n = 328) harbored KRAS G12C. More KRAS G12C patients were women (67%), smokers (86%), had a high (≥50%) level of PD-L1 expression (54%), and more frequently received anti-PD-L1 treatment than any other group. From the date of the mutational test result, OS (7.1-7.3 months) was similar between the groups. OS from LOT1 (14.0 months) and LOT2 (10.8 months), and TTNT from LOT1 (6.9 months) and LOT2 (6.3 months) was numerically longer for the KRAS G12C mutated group compared to any other group. However, from LOT1 and LOT2, the OS and TTNT were comparable when stratifying the groups by PD-L1 expression level. Regardless of the mutational group, OS was markedly longer for patients with high PD-L1 expression. CONCLUSION In patients diagnosed with advanced NSCLC after the implementation of anti-PD-1/L1 therapies, the survival in KRAS G12C mutated patients is comparable to patients with any KRAS mutation, Triple WT, and all NSCLC patients.
Collapse
Affiliation(s)
- Matilde Grupe Frost
- University of Copenhagen, Faculty of Health and Medicinal Sciences, Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| | - Kristoffer Jarlov Jensen
- Copenhagen Phase IV Unit (Phase4CPH), Department of Clinical Pharmacology and Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Ditte Resendal Gotfredsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Anne Mette Skov Sørensen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Mikkel Zöllner Ankarfeldt
- Copenhagen Phase IV Unit (Phase4CPH), Department of Clinical Pharmacology and Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | | | - Erik Jakobsen
- Department of Heart, Lung and Vascular Surgery, Odense University Hospital, Denmark
| | | | - Espen Jimenez-Solem
- University of Copenhagen, Faculty of Health and Medicinal Sciences, Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Copenhagen Phase IV Unit (Phase4CPH), Department of Clinical Pharmacology and Center for Clinical Research and Prevention, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Tonny Studsgaard Petersen
- University of Copenhagen, Faculty of Health and Medicinal Sciences, Copenhagen, Denmark; Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
35
|
Wang W, Qiu T, Li F, Ren S. Current status and future perspectives of bispecific antibodies in the treatment of lung cancer. Chin Med J (Engl) 2023; 136:379-393. [PMID: 36848213 PMCID: PMC10106182 DOI: 10.1097/cm9.0000000000002460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Monoclonal antibodies have been successfully incorporated into the current therapeutical landscape of lung cancer in the last decades. Recently, with technological advances, bispecific antibodies (bsAbs) have also shown robust efficacy in the treatment of malignant cancers, including lung cancer. These antibodies target two independent epitopes or antigens and have been extensively explored in translational and clinical studies in lung cancer. Here, we outline the mechanisms of action of bsAbs, related clinical data, ongoing clinical trials, and potent novel compounds of various types of bsAbs in clinical studies, especially in lung cancer. We also propose future directions for the clinical development of bsAbs, which might bring a new era of treatment for patients with lung cancer.
Collapse
Affiliation(s)
- Wanying Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Institute of Thoracic Cancer, School of Medicine, Tongji University, Shanghai 200433, China
| | - Tianyu Qiu
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Institute of Thoracic Cancer, School of Medicine, Tongji University, Shanghai 200433, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Institute of Thoracic Cancer, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
36
|
Mejía-Méndez JL, López-Mena ER, Sánchez-Arreola E. Activities against Lung Cancer of Biosynthesized Silver Nanoparticles: A Review. Biomedicines 2023; 11:389. [PMID: 36830926 PMCID: PMC9953519 DOI: 10.3390/biomedicines11020389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Nanomedicine is an interdisciplinary field where nanostructured objects are applied to treat or diagnose disease. Nanoparticles (NPs) are a special class of materials at nanometric scale that can be prepared from lipids, polymers, or noble metals through bottom-up approaches. Biological synthesis is a reliable, sustainable, and non-toxic bottom-up method that uses phytochemicals, microorganisms, and enzymes to induce the reduction of metal ions into NPs. Silver (Ag) NPs exhibit potent therapeutic properties that can be exploited to overcome the limitations of current treatment modalities for human health issues such as lung cancer (LC). Here, we review the preparation of AgNPs using biological synthesis and their application against LC using in vitro and in vivo models. An overview of the staging, diagnosis, genetic mutations, and treatment of LC, as well as its main subtypes, is presented. A summary of the reaction mechanisms of AgNPs using microbial cell cultures, plant extracts, phytochemicals, and amino acids is included. The use of capping agents in the biosynthesis of AgNPs with anticancer activity is also detailed. The history and biological activities of metal-based nanostructures synthesized with gold, copper, palladium, and platinum are considered. The possible anticancer mechanisms of AgNPs against LC models are covered. Our perspective about the future of AgNPs in LC treatment and nanomedicine is added.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico
| | - Eugenio Sánchez-Arreola
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| |
Collapse
|
37
|
Tumor-specific intracellular delivery: peptide-guided transport of a catalytic toxin. Commun Biol 2023; 6:60. [PMID: 36650239 PMCID: PMC9845330 DOI: 10.1038/s42003-022-04385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
There continues to be a need for cancer-specific ligands that can deliver a wide variety of therapeutic cargos. Ligands demonstrating both tumor-specificity and the ability to mediate efficient cellular uptake of a therapeutic are critical to expand targeted therapies. We previously reported the selection of a peptide from a peptide library using a non-small cell lung cancer (NSCLC) cell line as the target. Here we optimize our lead peptide by a series of chemical modifications including truncations, N-terminal capping, and changes in valency. The resultant 10 amino acid peptide has an affinity of <40 nM on four different NSCLC cell lines as a monomer and is stable in human serum for >48 h. The peptide rapidly internalizes upon cell binding and traffics to the lysosome. The peptide homes to a tumor in an animal model and is retained up to 72 h. Importantly, we demonstrate that the peptide can deliver the cytotoxic protein saporin specifically to cancer cells in vitro and in vivo, resulting in an effective anticancer agent.
Collapse
|
38
|
Andrews LJ, Thornton ZA, Saleh R, Dawson S, Short SC, Daly R, Higgins JPT, Davies P, Kurian KM. Genomic landscape and actionable mutations of brain metastases derived from non-small cell lung cancer: A systematic review. Neurooncol Adv 2023; 5:vdad145. [PMID: 38130901 PMCID: PMC10734675 DOI: 10.1093/noajnl/vdad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Background Brain metastases derived from non-small cell lung cancer (NSCLC) represent a significant clinical problem. We aim to characterize the genomic landscape of brain metastases derived from NSCLC and assess clinical actionability. Methods We searched Embase, MEDLINE, Web of Science, and BIOSIS from inception to 18/19 May 2022. We extracted information on patient demographics, smoking status, genomic data, matched primary NSCLC, and programmed cell death ligand 1 expression. Results We found 72 included papers and data on 2346 patients. The most frequently mutated genes from our data were EGFR (n = 559), TP53 (n = 331), KRAS (n = 328), CDKN2A (n = 97), and STK11 (n = 72). Common missense mutations included EGFR L858R (n = 80) and KRAS G12C (n = 17). Brain metastases of ever versus never smokers had differing missense mutations in TP53 and EGFR, except for L858R and T790M in EGFR, which were seen in both subgroups. Of the top 10 frequently mutated genes that had primary NSCLC data, we found 37% of the specific mutations assessed to be discordant between the primary NSCLC and brain metastases. Conclusions To our knowledge, this is the first systematic review to describe the genomic landscape of brain metastases derived from NSCLC. These results provide a comprehensive outline of frequently mutated genes and missense mutations that could be clinically actionable. These data also provide evidence of differing genomic landscapes between ever versus never smokers and primary NSCLC compared to the BM. This information could have important consequences for the selection and development of targeted drugs for these patients.
Collapse
Affiliation(s)
- Lily J Andrews
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, UK
| | - Zak A Thornton
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, UK
| | - Ruqiya Saleh
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Susan C Short
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Richard Daly
- Cellular Pathology Department, North Bristol NHS Trust, Bristol, UK
| | - Julian P T Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Philippa Davies
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, UK
| | - Kathreena M Kurian
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Cancer Research Integrative Cancer Epidemiology Programme, University of Bristol, Bristol, UK
- Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
39
|
Shu Y, Wang Z, Shang H, Le W, Lei Y, Huang L, Tao L, Chen J, Li J. Case Report: Response to crizotinib treatment in a patient with advanced non-small cell lung cancer with LDLR-ROS1 fusion. Front Oncol 2023; 13:1169876. [PMID: 37152007 PMCID: PMC10157030 DOI: 10.3389/fonc.2023.1169876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
C-ros oncogene 1 (ROS1) fusion is a pathogenic driver gene in non-small cell lung cancer (NSCLC). Currently, clinical guidelines from the National Comprehensive Cancer Network (NCCN) have recommended molecular pathologic tests for patients with NSCLC, including the detection of the ROS1 gene. Crizotinib is a small molecule tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK), ROS1, and mesenchymal-epithelial transition (MET). In recent years, the efficacy of crizotinib in NSCLC patients with ROS1 fusion has been reported. Here, a 77-year-old woman was diagnosed with stage IVA lung adenocarcinoma harboring a novel low-density lipoprotein receptor (LDLR)-ROS1 fusion variant. This novel LDLR-ROS1 fusion was identified by targeted DNA next-generation sequencing (NGS) panel and then verified by RNA fusion panel based on amplicon sequencing. This patient benefited from subsequent crizotinib therapy and achieved progression-free survival of 15 months without significant toxic symptoms. Our case report recommended a promising targeted therapeutic option for patients with metastatic NSCLC with LDLR-ROS1 fusion and highlighted the importance of genetic testing for accurate treatment.
Collapse
Affiliation(s)
- Yun Shu
- Department of Medical Oncology, Third People’s Hospital of Jiujiang City, Jiujiang, China
- *Correspondence: Yun Shu, ; Jing Li,
| | - Zhouyu Wang
- Department of Medical Affairs, Berry Oncology Corporation, Beijing, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Hongjuan Shang
- Department of Medical Oncology, Third People’s Hospital of Jiujiang City, Jiujiang, China
| | - Wei Le
- Department of Medical Oncology, Third People’s Hospital of Jiujiang City, Jiujiang, China
| | - Yan Lei
- Department of Medical Affairs, Berry Oncology Corporation, Beijing, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
| | - Longzhang Huang
- Department of Medical Oncology, Third People’s Hospital of Jiujiang City, Jiujiang, China
| | - Liming Tao
- Department of Medical Oncology, Third People’s Hospital of Jiujiang City, Jiujiang, China
| | - Jun Chen
- Department of Medical Oncology, Third People’s Hospital of Jiujiang City, Jiujiang, China
| | - Jing Li
- Department of Medical Affairs, Berry Oncology Corporation, Beijing, China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Fuzhou, China
- *Correspondence: Yun Shu, ; Jing Li,
| |
Collapse
|
40
|
An oncogene addiction phosphorylation signature and its derived scores inform tumor responsiveness to targeted therapies. Cell Mol Life Sci 2022; 80:6. [PMID: 36494469 PMCID: PMC9734221 DOI: 10.1007/s00018-022-04634-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Oncogene addiction provides important therapeutic opportunities for precision oncology treatment strategies. To date the cellular circuitries associated with driving oncoproteins, which eventually establish the phenotypic manifestation of oncogene addiction, remain largely unexplored. Data suggest the DNA damage response (DDR) as a central signaling network that intersects with pathways associated with deregulated addicting oncoproteins with kinase activity in cancer cells. EXPERIMENTAL DESIGN: We employed a targeted mass spectrometry approach to systematically explore alterations in 116 phosphosites related to oncogene signaling and its intersection with the DDR following inhibition of the addicting oncogene alone or in combination with irradiation in MET-, EGFR-, ALK- or BRAF (V600)-positive cancer models. An NSCLC tissue pipeline combining patient-derived xenografts (PDXs) and ex vivo patient organotypic cultures has been established for treatment responsiveness assessment. RESULTS We identified an 'oncogene addiction phosphorylation signature' (OAPS) consisting of 8 protein phosphorylations (ACLY S455, IF4B S422, IF4G1 S1231, LIMA1 S490, MYCN S62, NCBP1 S22, P3C2A S259 and TERF2 S365) that are significantly suppressed upon targeted oncogene inhibition solely in addicted cell line models and patient tissues. We show that the OAPS is present in patient tissues and the OAPS-derived score strongly correlates with the ex vivo responses to targeted treatments. CONCLUSIONS We propose a score derived from OAPS as a quantitative measure to evaluate oncogene addiction of cancer cell samples. This work underlines the importance of protein phosphorylation assessment for patient stratification in precision oncology and corresponding identification of tumor subtypes sensitive to inhibition of a particular oncogene.
Collapse
|
41
|
Liu Y, Cheng X, Han X, Cheng X, Jiang S, Lin Y, Zhang Z, Lu L, Qu B, Chen Y, Zhang X. Global research landscape and trends of lung cancer immunotherapy: A bibliometric analysis. Front Immunol 2022; 13:1032747. [PMID: 36532038 PMCID: PMC9751816 DOI: 10.3389/fimmu.2022.1032747] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
Background Immunotherapy for lung cancer has been a hot research area for years. This bibliometric analysis aims to present the research trends on lung cancer immunotherapy. Method On 1 July, 2022, the authors identified 2,941 papers on lung cancer immunotherapy by the Web of Science and extracted their general information and the total number of citations. A bibliometric analysis was carried out to present the research landscape, demonstrate the research trends, and determine the most cited papers (top papers) as well as major journals on lung cancer immunotherapy. After that, recent research hotspots were analyzed based on the latest publications in major journals. Results These 2,941 papers were cited a total of 122,467 times. "Nivolumab vs. docetaxel in advanced non-squamous non-small-cell lung cancer" published in 2015 by Borghaei H et al. was the most cited paper (5,854 citations). Among the journals, New England Journal of Medicine was most influential. Corresponding authors represented China took part in most articles (904) and papers with corresponding authors from the USA were most cited (139.46 citations per paper). Since 2015, anti-PD-(L)1 has become the hottest research area. Conclusions This bibliometric analysis comprehensively and quantitatively presents the research trends and hotspots based on thousands of publications, and further suggests future research directions. Moreover, the results can benefit researchers to select journals and find potential collaborators. This study can help researchers get a comprehensive impression of the research landscape, historical development, and recent hotspots in lung cancer immunotherapy and provide inspiration for further research.
Collapse
Affiliation(s)
- Yanhao Liu
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xu Cheng
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Xiaona Han
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Xi Cheng
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Shu Jiang
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Yaru Lin
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Zhen Zhang
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Linlin Lu
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Baozhen Qu
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Yuxian Chen
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Xiaotao Zhang
- Department of Radiation Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
42
|
Aljamal AA, Elajami MK, Mansour EH, Bahmad HF, Medina AM, Cusnir M. Novel ATM Gene c.5644 C > T (p.Arg1882*) Variant Detected in a Patient with Pancreatic Adenocarcinoma and Two Primary Non-Small Cell Lung Adenocarcinomas: A Case Report. Diseases 2022; 10:diseases10040115. [PMID: 36547201 PMCID: PMC9778013 DOI: 10.3390/diseases10040115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Ataxia-telangiectasia is an autosomal recessive disorder that usually manifests in childhood due to mutations in the Ataxia-Telangiectasia Mutated (ATM) gene. It is believed that there is an association between this gene mutation/polymorphism and cancer risk, including breast, lung, and pancreatic cancers. We report a rare case of a 69-year-old woman who developed three different primary cancers, including non-small cell lung cancer (NSCLC) in both lungs and pancreatic adenocarcinoma, and was later found to have a rarely reported variant mutation in the ATM gene, namely Exon 39, c.5644 C > T. We hypothesize that the ATM gene, c.5644 C > T mutation could be a plausible contributor in the pathogenesis of these three cancers. This hypothesis has yet to be validated by larger studies that focus on a mechanistic approach involving DNA repair genes such as the ATM. More importantly, this paves the way to developing new patient-specific targeted therapies and inaugurating precision medicine as a cornerstone in cancer therapeutics.
Collapse
Affiliation(s)
- Abed A. Aljamal
- Mount Sinai Medical Center, Department of Internal Medicine, Miami Beach, FL 33140, USA
- Department of Medicine, Division of Hematology Oncology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mohamad K. Elajami
- Mount Sinai Medical Center, Department of Internal Medicine, Miami Beach, FL 33140, USA
| | - Ephraim H. Mansour
- Mount Sinai Medical Center, Department of Internal Medicine, Miami Beach, FL 33140, USA
| | - Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence: or ; Tel.: +1-305-674-2277
| | - Ana Maria Medina
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Mike Cusnir
- Mount Sinai Medical Center, Department of Internal Medicine, Division of Hematology and Oncology, Miami Beach, FL 33140, USA
| |
Collapse
|
43
|
Visser E, de Kock R, Genet S, Borne BVD, Soud MYE, Belderbos H, Stege G, de Saegher M, ’t Westeinde SV, Broeren M, Eduati F, Deiman B, Scharnhorst V. Up-front mutation detection in circulating tumor DNA by droplet digital PCR has added diagnostic value in lung cancer. Transl Oncol 2022; 27:101589. [PMID: 36413862 PMCID: PMC9679361 DOI: 10.1016/j.tranon.2022.101589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022] Open
Abstract
Identification of actionable mutations in advanced stage non-squamous non-small-cell lung cancer (NSCLC) patients is recommended by guidelines as it enables treatment with targeted therapies. In current practice, mutations are identified by next-generation sequencing of tumor DNA (tDNA-NGS), which requires tissue biopsies of sufficient quality. Alternatively, circulating tumor DNA (ctDNA) could be used for mutation analysis. This prospective, multicenter study establishes the diagnostic value of ctDNA analysis by droplet digital PCR (ctDNA-ddPCR) in patients with primary lung cancer. CtDNA from 458 primary lung cancer patients was analyzed using a panel of multiplex ddPCRs for EGFR (Ex19Del, G719S, L858R, L861Q and S768I), KRAS G12/G13 and BRAF V600 mutations. For 142 of 175 advanced stage non-squamous NSCLC patients tDNA-NGS results were available to compare to ctDNA-ddPCR. tDNA-NGS identified 98 mutations, of which ctDNA-ddPCR found 53 mutations (54%), including 32 of 45 (71%) targetable driver mutations. In 2 of these 142 patients, a mutation was found by ctDNA-ddPCR only. In 33 advanced stage patients lacking tDNA-NGS results, ctDNA-ddPCR detected 15 additional mutations, of which 7 targetable. Overall, ctDNA-ddPCR detected 70 mutations and tDNA-NGS 98 mutations in 175 advanced NSCLC patients. Using an up-front ctDNA-ddPCR strategy, followed by tDNA-NGS only if ctDNA-ddPCR analysis is negative, increases the number of mutations found from 98 to 115 (17%). At the same time, up-front ctDNA-ddPCR reduces tDNA-NGS analyses by 40%, decreasing the need to perform (additional) biopsies.
Collapse
Affiliation(s)
- Esther Visser
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Catharina Hospital Eindhoven, Eindhoven, the Netherlands,Máxima Medical Center, Eindhoven, Veldhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands,Corresponding author at: Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Remco de Kock
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Catharina Hospital Eindhoven, Eindhoven, the Netherlands,Máxima Medical Center, Eindhoven, Veldhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands
| | - Sylvia Genet
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Catharina Hospital Eindhoven, Eindhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | | | | | | | | | | | - Maarten Broeren
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Máxima Medical Center, Eindhoven, Veldhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands,Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Birgit Deiman
- Catharina Hospital Eindhoven, Eindhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands
| | - Volkher Scharnhorst
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands,Catharina Hospital Eindhoven, Eindhoven, the Netherlands,Expert Center Clinical Chemistry Eindhoven, Eindhoven, the Netherlands,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands,Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
44
|
Bulk E, Todesca LM, Bachmann M, Szabo I, Rieke M, Schwab A. Functional expression of mitochondrial K Ca3.1 channels in non-small cell lung cancer cells. Pflugers Arch 2022; 474:1147-1157. [PMID: 36152073 PMCID: PMC9560933 DOI: 10.1007/s00424-022-02748-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 12/01/2022]
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide. The Ca2+-activated K+ channel KCa3.1 contributes to the progression of non-small cell lung cancer (NSCLC). Recently, KCa3.1 channels were found in the inner membrane of mitochondria in different cancer cells. Mitochondria are the main sources for the generation of reactive oxygen species (ROS) that affect the progression of cancer cells. Here, we combined Western blotting, immunofluorescence, and fluorescent live-cell imaging to investigate the expression and function of KCa3.1 channels in the mitochondria of NSCLC cells. Western blotting revealed KCa3.1 expression in mitochondrial lysates from different NSCLC cells. Using immunofluorescence, we demonstrate a co-localization of KCa3.1 channels with mitochondria of NSCLC cells. Measurements of the mitochondrial membrane potential with TMRM reveal a hyperpolarization following the inhibition of KCa3.1 channels with the cell-permeable blocker senicapoc. This is not the case when cells are treated with the cell-impermeable peptidic toxin maurotoxin. The hyperpolarization of the mitochondrial membrane potential is accompanied by an increased generation of ROS in NSCLC cells. Collectively, our results provide firm evidence for the functional expression of KCa3.1 channels in the inner membrane of mitochondria of NSCLC cells.
Collapse
Affiliation(s)
- Etmar Bulk
- Institute of Physiology II, University of Münster, 48149, Münster, Germany.
| | | | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy
| | - Marius Rieke
- Institute of Physiology II, University of Münster, 48149, Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, 48149, Münster, Germany
| |
Collapse
|
45
|
Bazhenova L, Kish J, Cai B, Caro N, Feinberg B. Real-world observational study of current treatment patterns and outcomes in recurrent or locally advanced/metastatic non-small cell lung cancer. Cancer Treat Res Commun 2022; 33:100637. [PMID: 36162323 DOI: 10.1016/j.ctarc.2022.100637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Treatment for recurrent or advanced/metastatic non-small cell lung cancer (aNSCLC) has advanced in the past 5 years with immunotherapy (IO). This study sought to describe first-line (1L) aNSCLC treatment patterns and clinical outcomes. METHODS In this retrospective, multisite cohort study, community oncologists reported data for randomly selected stage IIIB/IV, EGFR-/ALK wild-type aNSCLC patients who initiated 1L systemic therapy from 01/01/2016 to 12/31/2019. Follow-up was through November 2020. Demographics, clinical characteristics, treatment patterns, disease response, progression, and death/last follow-up date were described. Overall response rate (ORR) was calculated using tumor measurements applying RECIST v1.1 guidelines. Progression-free survival (PFS) and overall survival (OS) were calculated from 1L initiation by Kaplan-Meier method. RESULTS 497 patients from 46 sites were included. The most common 1L regimens (%) were platinum-doublet chemotherapy plus IO (PDC+IO) (40.6%), PDC (29.4%), IO monotherapy (20.7%), and PDC+bevacizumab (6.2%). From 2016 to 2019, 1L PDC declined from 63% to 10%, whereas 1L PDC+IO increased from 14% to 58%. The ORRs were 64.9%, 32.9%, 60.2%, and 61.3% for 1L PDC+IO, PDC, IO monotherapy, and PDC+bevacizumab, respectively. Median 1L PFS/OS (months) was 15.6/26.5, 5.3/13.7, 17.8/not reached, 10.8/18.6, respectively, for PDC+IO, PDC, IO monotherapy, and PDC+bevacizumab. Among patients who received only 1L treatment (n = 299), 41.5% had no further therapy and were deceased. CONCLUSIONS Although the 1L treatment paradigm has recently shifted to IO-based regimens, 41.5% did not survive past 1L. Median 1L PFS did not exceed 1.5 years and median OS remained limited across all 1L treatment groups, illustrating continued unmet aNSCLC therapeutic needs.
Collapse
Affiliation(s)
- Lyudmila Bazhenova
- University of California San Diego Moores Cancer Center, San Diego, 9500 Gilman Dr, 92093, La Jolla, CA, USA
| | - Jonathan Kish
- Cardinal Health Specialty Solutions, 7000 Cardinal Place, 43017, Dublin, OH, USA
| | - Beilei Cai
- Novartis Pharmaceuticals Corporation, 1 Health Plaza, 07936, East Hanover, NJ, USA
| | - Nydia Caro
- Novartis Pharmaceuticals Corporation, 1 Health Plaza, 07936, East Hanover, NJ, USA
| | - Bruce Feinberg
- Cardinal Health Specialty Solutions, 7000 Cardinal Place, 43017, Dublin, OH, USA.
| |
Collapse
|
46
|
Alves Pinto I, de Oliveira Cavagna R, Virginio da Silva AL, Dias JM, Santana IV, Souza LC, Ferreira da Silva FA, Biazotto Fernandes MF, Junqueira Pinto GD, Negreiros IS, Santiago Gonçalves MF, de Paula FE, Berardinelli GN, Casagrande GMS, Oliveira da Silva M, Albino da Silva EC, de Oliveira MA, Jacinto AA, Duval da Silva V, Reis RM, De Marchi P, Leal LF. EGFR Mutations and PD-L1 Expression in Early-Stage Non-Small Cell Lung Cancer: A Real-World Data From a Single Center in Brazil. Oncologist 2022; 27:e899-e907. [PMID: 36099421 PMCID: PMC9632322 DOI: 10.1093/oncolo/oyac167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/05/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Targeted and immunotherapies are currently moving toward early-stage settings for patients with non-small cell lung cancer (NSCLC). Predictive biomarkers data are scarce in this scenario. We aimed to describe the frequency of EGFR mutations and PD-L1 expression levels in early-stage non-squamous patients with NSCLC from a large, single Brazilian oncology center. METHODS We retrospectively evaluated patients with NSCLC diagnosed at an early-stage (IB to IIIA-AJCC seventh edition) at Barretos Cancer Hospital (n = 302). EGFR mutational status was assessed in FFPE tumor tissues using distinct methodologies (NGS, Cobas, or Sanger sequencing). PD-L1 expression was evaluated by immunohistochemistry (clone 22C3) and reported as Tumor Proportion Score (TPS), categorized as <1%, 1-49%, and ≥50%. We evaluated the association between EGFR mutational status and PD-L1 expression with sociodemographic and clinicopathological parameters by Fisher's test, qui-square test, and logistic regression. Survival analysis was assessed by the Kaplan-Meier method and Cox regression model. RESULTS EGFR mutations were detected in 17.3% (n = 48) of cases and were associated with female sex, never smokers, and longer overall and event-free survival. PD-L1 positivity was observed in 36.7% (n = 69) of cases [TPS 1-49% n = 44(23.4%); TPS ≥50% n = 25(13.3%)]. PD-L1 positivity was associated with smoking, weight loss, and higher disease stages (IIB/IIIA). CONCLUSION The frequencies of EGFR mutations and PD-L1 positivity were described for early-stage non-squamous patients with NSCLC. These results will be essential for guiding treatment strategies with the recent approvals of osimertinib and immunotherapy in the adjuvant setting.
Collapse
Affiliation(s)
| | | | | | | | - Iara Vidigal Santana
- Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil,Molecular Diagnostic Laboratory, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Vinicius Duval da Silva
- Department of Pathology, Barretos Cancer Hospital, Barretos, Brazil,Barretos School of Medicine Dr. Paulo Prata, FACISB, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil,Molecular Diagnostic Laboratory, Barretos Cancer Hospital, Barretos, Brazil,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro De Marchi
- Corresponding author: Letícia Ferro Leal, PhD, Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331 - CEP 14784 400, Barretos, S. Paulo, Brazil. E-mail: , or Pedro De Marchi, Oncoclinicas Institute, Praia de Botafogo, 300 (10 andar), CEP: 22251-060, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Letícia Ferro Leal
- Corresponding author: Letícia Ferro Leal, PhD, Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331 - CEP 14784 400, Barretos, S. Paulo, Brazil. E-mail: , or Pedro De Marchi, Oncoclinicas Institute, Praia de Botafogo, 300 (10 andar), CEP: 22251-060, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
47
|
Deng L, Tian P, Qiu Z, Wang K, Li Y. A novel SLC8A1-ALK fusion in lung adenocarcinoma confers sensitivity to alectinib: A case report. Open Life Sci 2022; 17:846-850. [PMID: 36045716 PMCID: PMC9372703 DOI: 10.1515/biol-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 11/15/2022] Open
Abstract
ALK fusion genes are diverse. Approximately 30 different ALK fusion protein partners have been described previously, and some of these fusion proteins have been reported to be effective against ALK-tyrosine kinase inhibitor (TKI). ALK rearrangements often occur at a common breakpoint in exon 20 of the genome. SLC8A1-ALK, a novel fusion protein partner, comes from exon 2 of the SLC8A1 gene rearranged with exon 20 of the ALK gene. Here, we reported a patient with advanced lung adenocarcinoma harboring a SLC8A1-ALK fusion who benefited from first-line treatment with alectinib. After 2 months of taking alectinib, the targeted lung lesions and intrahepatic metastases regressed significantly. To date, the patient has achieved nearly 1 year of progression-free survival while taking the drug. Given the diversity of ALK fusion genes and the different efficacy of ALK-TKIs, we believe that this case report has an important clinical reference.
Collapse
Affiliation(s)
- Ling Deng
- Department of Respiratory and Critical Care Medicine, The First People's Hospital Of Chongqing Liang Jiang New Area, 401121, Chongqing, China
| | - Panwen Tian
- Department of Respiratory and Critical Care Medicine, Lung Cancer Treatment Center, West China Hospital, Sichuan University, No 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Zhixin Qiu
- Department of Respiratory and Critical Care Medicine, Lung Cancer Treatment Center, West China Hospital, Sichuan University, No 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, Lung Cancer Treatment Center, West China Hospital, Sichuan University, No 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, Lung Cancer Treatment Center, West China Hospital, Sichuan University, No 37 GuoXue Alley, Chengdu, 610041, Sichuan, China
| |
Collapse
|
48
|
Willard N, Sholl L, Aisner D. Panel Sequencing for Targeted Therapy Selection in Solid Tumors. Clin Lab Med 2022; 42:309-323. [DOI: 10.1016/j.cll.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Wu XB, Hou SL, Zhang QH, Jia N, Hou M, Shui W. Circulating Tumor DNA Characteristics Based on Next Generation Sequencing and Its Correlation With Clinical Parameters in Patients With Lymphoma. Front Oncol 2022; 12:901547. [PMID: 35865478 PMCID: PMC9294364 DOI: 10.3389/fonc.2022.901547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundLymphoma is a heterogeneous group of tumors in terms of morphological subtypes, molecular alterations, and management. However, data on circulating tumor DNA (ctDNA) mutated genes are limited. The purpose of this study was to investigate the features of the ctDNA mutated genes, the prognosis, and the association between the ctDNA mutated genes and the clinical parameters in lymphoma.MethodsDifferences in the ctDNA between the mutated genes and the prognosis of 59 patients with Hodgkin’s lymphoma (HL) (10.2%), germinal center B-cell–like lymphoma (GCB) (28.8%), nongerminal center B-cell–like lymphoma (non-GCB) (50.8%), and marginal zone lymphoma (MZL) (10.2%) were analyzed by next generation sequencing (NGS) targeting 121 lymphoma-relevant genes.ResultsGenetic alterations were identified in the ctDNA samples with a median of 6 variants per sample. The genetic variation of the ctDNA in the plasma was found to be significantly correlated with the clinical indices in lymphoma. The genetic heterogeneity of different lymphoma subtypes was clearly observed in the ctDNAs from HL, GCB, non-GCB, and MZL, confirming that distinct molecular mechanisms are involved in the pathogenesis of different lymphomas.ConclusionOur findings suggest that NGS-based ctDNA mutation analysis reveals genetic heterogeneity across lymphoma subtypes, with potential implications for discovering therapeutic targets, exploring genomic evolution, and developing risk-adaptive therapies.
Collapse
Affiliation(s)
- Xiao-Bo Wu
- Department of Lymphoma, Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiao-Bo Wu,
| | - Shu-Ling Hou
- Department of Lymphoma, Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiao-Hua Zhang
- Department of Lymphoma, Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Jia
- Department of Radiotherapy Abdominal Pelvic Ward Two, Shanxi Provincial Cancer Hospital, Taiyuan, China
| | - Min Hou
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Wen Shui
- Department of Cardiopulmonary Function, Shanxi Provincial Cancer Hospital, Taiyuan, China
| |
Collapse
|
50
|
Tankere P, Boidot R, Bonniaud P, Zouak A, Foucher P, Milliere A, Bertaut A, Favier L, Lagrange A, Ghiringhelli F, Kaderbhai CG, Fraisse C. Uncommon EGFR mutations in lung carcinoma: features and treatment outcomes in a retrospective French cohort. J Thorac Dis 2022; 14:2034-2044. [PMID: 35813741 PMCID: PMC9264085 DOI: 10.21037/jtd-21-1924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/14/2022] [Indexed: 11/06/2022]
Abstract
Background The best management for rare epidermal growth factor receptor (EGFR) mutations in advanced non-small cell lung carcinoma (NSCLC) remains uncertain. The literature indicates that response to usual treatment could differ in certain subgroups such as exon 20 insertion/duplication (E20ID), other single uncommon mutation (OSUM), and EGFR complex mutation (ECM). Methods In this observational, regional, multi-center, retrospective study, we gathered data on uncommon EGFR mutations in NSCLC from 2007 to 2021. We analyzed patient characteristics, prognostic factors and treatment outcomes [objective response rate (ORR), disease control rate (DCR), progression free survival (PFS) and overall survival (OS)]. Results Among 119 patients with an uncommon EGFR mutant, 34 harbored E20ID, 23 ECM, and 62 OSUM. There were significantly more non-smokers in E20ID. Female gender and performance status <2 were associated with a better prognosis. Among the 97 metastatic patients with available data for 1st line treatment, median estimated OS was 21 months (95% CI: 18-31 months), with better non-significant OS for ECM. Median estimated PFS was 7 months (95% CI: 4-9 months). We found significant differences in ORR, DCR and PFS favoring 1st line chemotherapy for E20ID, whereas the outcomes for OSUM and ECM were more favorable for tyrosine kinase inhibitor (TKI) (mainly 2nd and 3rd generation). Conclusions There were variations in treatment outcomes among subgroups in our cohort. Exon 20 insertions showed better ORR and PFS with 1st line chemotherapy compared to TKI. Conversely, other rare EGFR mutations including ECM had better ORR and PFS with TKI than chemotherapy. There was no significant difference in OS among treatment groups overall or within rare mutation subgroups.
Collapse
Affiliation(s)
- Pierre Tankere
- Reference Center for Rare Pulmonary Diseases, Pulmonary Medicine and Intensive Care Unit Department, Dijon University Hospital, Dijon, France
| | - Romain Boidot
- Molecular Biology Clinical Research, Unicancer-Center Georges-Francois Leclerc, Dijon, France
| | - Philippe Bonniaud
- Reference Center for Rare Pulmonary Diseases, Pulmonary Medicine and Intensive Care Unit Department, Dijon University Hospital, Dijon, France.,Institut national de la santé et de la recherche médicale (INSERM), LNC UMR1231, LipSTIC LabEx Team, Dijon, France
| | - Ayoube Zouak
- Reference Center for Rare Pulmonary Diseases, Pulmonary Medicine and Intensive Care Unit Department, Dijon University Hospital, Dijon, France
| | - Pascal Foucher
- Reference Center for Rare Pulmonary Diseases, Pulmonary Medicine and Intensive Care Unit Department, Dijon University Hospital, Dijon, France
| | - Alice Milliere
- Reference Center for Rare Pulmonary Diseases, Pulmonary Medicine and Intensive Care Unit Department, Dijon University Hospital, Dijon, France.,Department of Anatomopathology, Dijon University Hospital, Dijon, France
| | - Aurélie Bertaut
- Unit of Methodology and Biostatistics, Centre Georges-François Leclerc, Dijon, France
| | - Laure Favier
- Department of Medical Oncology, Cancer Center GF Leclerc, Dijon, France
| | - Aurélie Lagrange
- Department of Medical Oncology, Cancer Center GF Leclerc, Dijon, France
| | - François Ghiringhelli
- Institut national de la santé et de la recherche médicale (INSERM), LNC UMR1231, LipSTIC LabEx Team, Dijon, France.,Department of Medical Oncology, Cancer Center GF Leclerc, Dijon, France
| | | | - Cléa Fraisse
- Department of Medical Oncology, Cancer Center GF Leclerc, Dijon, France
| |
Collapse
|