1
|
Sun XL, Song HX, Li JH, Liu YJ, Wang XY, Zhang LN. TOE1 deadenylase inhibits gastric cancer cell proliferation by regulating cell cycle progression. Biochim Biophys Acta Gen Subj 2025; 1869:130736. [PMID: 39657841 DOI: 10.1016/j.bbagen.2024.130736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
TOE1, also known as hCaf1z, belongs to the DEDD superfamily of deadenylases and a newly identified isoenzyme of hCaf1 deadenylases. Previous research has demonstrated that TOE1 has deadenylase activity, which can catalyze the degradation of poly(A) substrates and interact with hCcr4d to form the unconventional human Ccr4-Caf1 deadenylase complex. Our recent research indicates that hCaf1a and hCaf1b isoenzymes, highly expressed in gastric cancer, promote gastric cancer cell proliferation and tumorigenicity via modulating cell cycle progression. However, no studies have yet explored the relationship between TOE1 deadenylase and tumor development. In our study, we systematically investigated the functions and mechanisms of TOE1 in gastric cancer progression. Our findings revealed that overexpression of TOE1 inhibited gastric cancer cell proliferation, invasion and migration, promoted cell apoptosis, and led to cell cycle arrest in G0/G1 phase, while TOE1 knockdown had the opposite biological effects on these processes in gastric cancer cells. Further results indicated that TOE1 suppressed gastric cancer progression by inhibiting EMT process and MMPs expression. Moreover, our study clarified that TOE1 blocked gastric cancer cell cycle progression by up-regulating the expression level of the key cell cycle factors p21 and p53 through different regulatory mechanisms. Specifically, TOE1 up-regulated p53 expression by enhancing p53 promoter activity, and up-regulated p21 expression by enhancing p21 mRNA stability. Collectively, our findings first contribute to further elucidating the molecular mechanisms by which TOE1 participates in the regulation of gastric cancer progression, and are expected to provide a theoretical basis for diagnosis and targeted treatment of gastric cancer.
Collapse
Affiliation(s)
- Xiao-Lin Sun
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Huan-Xi Song
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Jia-Hui Li
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yi-Jin Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin-Ya Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Li-Na Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
2
|
Kaur I, Jadhav GP, Fischer PM, Winkler GS. Discovery of Substituted 5-(2-Hydroxybenzoyl)-2-Pyridone Analogues as Inhibitors of the Human Caf1/CNOT7 Ribonuclease. Molecules 2024; 29:4351. [PMID: 39339346 PMCID: PMC11870035 DOI: 10.3390/molecules29184351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The Caf1/CNOT7 nuclease is a catalytic component of the Ccr4-Not deadenylase complex, which is a key regulator of post-transcriptional gene regulation. In addition to providing catalytic activity, Caf1/CNOT7 and its paralogue Caf1/CNOT8 also contribute a structural function by mediating interactions between the large, non-catalytic subunit CNOT1, which forms the backbone of the Ccr4-Not complex and the second nuclease subunit Ccr4 (CNOT6/CNOT6L). To facilitate investigations into the role of Caf1/CNOT7 in gene regulation, we aimed to discover and develop non-nucleoside inhibitors of the enzyme. Here, we disclose that the tri-substituted 2-pyridone compound 5-(5-bromo-2-hydroxy-benzoyl)-1-(4-chloro-2-methoxy-5-methyl-phenyl)-2-oxo-pyridine-3-carbonitrile is an inhibitor of the Caf1/CNOT7 nuclease. Using a fluorescence-based nuclease assay, the activity of 16 structural analogues was determined, which predominantly explored substituents on the 1-phenyl group. While no compound with higher potency was identified among this set of structural analogues, the lowest potency was observed with the analogue lacking substituents on the 1-phenyl group. This indicates that substituents on the 1-phenyl group contribute significantly to binding. To identify possible binding modes of the inhibitors, molecular docking was carried out. This analysis suggested that the binding modes of the five most potent inhibitors may display similar conformations upon binding active site residues. Possible interactions include π-π interactions with His225, hydrogen bonding with the backbone of Phe43 and Van der Waals interactions with His225, Leu209, Leu112 and Leu115.
Collapse
Affiliation(s)
| | | | - Peter M. Fischer
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Gerlof Sebastiaan Winkler
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
3
|
Wang P, Zhou J, Sun W, Li H, Rehman S, Xu C, Li D, Zhuge Q. Poplar CCR4-associated factor PtCAF1I is necessary for poplar development and defense response. Int J Biol Macromol 2023:125090. [PMID: 37247707 DOI: 10.1016/j.ijbiomac.2023.125090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Poplar is one of the most widely used tree species in afforestation projects. CCR4 associated factor 1 (CAF1) is a major member of CCR4-NOT and plays an important role in eukaryotic mRNA deadenylation. However, its role in poplar remains unclear. In this study, the full-length cDNA of the PtCAF1I gene was cloned from the poplar by screening the highly expressed PtCAF1I gene in the identified PtCAF1 gene family by poplar sterilization. PtCAF1I was localized in the nucleus. Through sequence alignment, it was found that the PtCAF1I sequence contains three motifs and is highly similar to the CAF1 protein sequence of other species. In the quantitative expression analysis of tissues, the expression of PtCAF1I in different tissues of Populus trichocarpa, 'Nanlin895', and Shanxinyang was not much different. In addition, the analysis of the expression of the PtCAF1I gene under different stress treatments showed that PtCAF1I responded to abscisic acid (ABA), salicylic acid (SA), methyl jasmonate (MeJA), NaCl, PEG6000, hydrogen peroxide (H2O2) and cold stress to different degrees. To study the potential biological functions of PtCAF1I, 6 transgenic lines were obtained through transformation using an Agrobacterium tumefaciens infection system. The transcriptome sequencing results showed that DEGs were mainly concentrated in pathways of phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, carbon metabolism, and carotenoid biosynthesis. Compared with WT poplar, the contents of cellulose, hemicellulose, lignin, total sugar, and flavonoids, and the cell wall thickness of PtCAF1I overexpression poplars were significantly higher. Under Septotinia populiperda treatment, transgenic poplars clearly exhibited certain disease resistance. Meanwhile, upregulation of the expression of JA and SA pathway-related genes also contributed to improving the disease tolerance of transgenic poplar. In conclusion, our results suggest that PtCAF1I plays an important role in the growth and development of poplars and their resistance to pathogens.
Collapse
Affiliation(s)
- Pu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jie Zhou
- Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Hongyan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Xu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, State Key Laboratory of Tree Genetics and Breeding, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
4
|
Xue S, Ma M, Bei S, Li F, Wu C, Li H, Hu Y, Zhang X, Qian Y, Qin Z, Jiang J, Feng L. Identification and Validation of the Immune Regulator CXCR4 as a Novel Promising Target for Gastric Cancer. Front Immunol 2021; 12:702615. [PMID: 34322132 PMCID: PMC8311657 DOI: 10.3389/fimmu.2021.702615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint blockade has attracted a lot of attention in the treatment of human malignant tumors. We are trying to establish a prognostic model of gastric cancer (GC) based on the expression profile of immunoregulatory factor-related genes. Based on the TCGA database, we identified 234 differentially expressed immunoregulatory factors. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) conducted enrichment analysis to clarify the biological functions of differential expression of immunoregulatory factors. STRING database predicted the interaction network between 234 differently expressed immune regulatory factors. The expression of 11 immunoregulatory factors was significantly related to the overall survival of gastric cancer patients. Univariate Cox regression analysis, Kaplan–Meier analysis and multivariate Cox regression analysis found that immunomodulatory factors were involved in the progression of gastric cancer and promising biomarkers for predicting prognosis. Among them, CXCR4 was related to the low survival of GC patients and a key immunomodulatory factor in GC. Based on TCGA data, the high expression of CXCR4 in GC was positively correlated with the advanced stage and grade of gastric cancer and related to poor prognosis. Univariate analysis and multivariate analysis indicated that CXCR4 was an independent prognostic indicator for TCGA gastric cancer patients. In vitro functional studies had shown that CXCR4 promoted the proliferation, migration, and invasion of gastric cancer cells. In summary, this study has determined the prognostic value of 11 immunomodulatory factors in gastric cancer. CXCR4 is an independent prognostic indicator for gastric cancer patients, which may help to improve the individualized prognostic prediction of GC and provide candidates for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Shuai Xue
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Ming Ma
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, China
| | - Songhua Bei
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Fan Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Chenqu Wu
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Huanqing Li
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Yanling Hu
- Institute of Fudan Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaohong Zhang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - YanQing Qian
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Zhe Qin
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Jun Jiang
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| | - Li Feng
- Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|