1
|
Saha N, Kuehne A, Millward JM, Eigentler TW, Starke L, Waiczies S, Niendorf T. Advanced Radio Frequency Applicators for Thermal Magnetic Resonance Theranostics of Brain Tumors. Cancers (Basel) 2023; 15:cancers15082303. [PMID: 37190232 DOI: 10.3390/cancers15082303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Thermal Magnetic Resonance (ThermalMR) is a theranostic concept that combines diagnostic magnetic resonance imaging (MRI) with targeted thermal therapy in the hyperthermia (HT) range using a radiofrequency (RF) applicator in an integrated system. ThermalMR adds a therapeutic dimension to a diagnostic MRI device. Focused, targeted RF heating of deep-seated brain tumors, accurate non-invasive temperature monitoring and high-resolution MRI are specific requirements of ThermalMR that can be addressed with novel concepts in RF applicator design. This work examines hybrid RF applicator arrays combining loop and self-grounded bow-tie (SGBT) dipole antennas for ThermalMR of brain tumors, at magnetic field strengths of 7.0 T, 9.4 T and 10.5 T. These high-density RF arrays improve the feasible transmission channel count, and provide additional degrees of freedom for RF shimming not afforded by using dipole antennas only, for superior thermal therapy and MRI diagnostics. These improvements are especially relevant for ThermalMR theranostics of deep-seated brain tumors because of the small surface area of the head. ThermalMR RF applicators with the hybrid loop+SGBT dipole design outperformed applicators using dipole-only and loop-only designs, with superior MRI performance and targeted RF heating. Array variants with a horse-shoe configuration covering an arc (270°) around the head avoiding the eyes performed better than designs with 360° coverage, with a 1.3 °C higher temperature rise inside the tumor while sparing healthy tissue. Our EMF and temperature simulations performed on a virtual patient with a clinically realistic intracranial tumor provide a technical foundation for implementation of advanced RF applicators tailored for ThermalMR theranostics of brain tumors.
Collapse
Affiliation(s)
- Nandita Saha
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Andre Kuehne
- MRI.TOOLS GmbH, 13125 Berlin, Germany
- Brightmind.AI GmbH, 1010 Vienna, Austria
| | - Jason M Millward
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Thomas Wilhelm Eigentler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
| | - Ludger Starke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, 14482 Potsdam, Germany
| | - Sonia Waiczies
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- MRI.TOOLS GmbH, 13125 Berlin, Germany
| |
Collapse
|
2
|
Berangi M, Kuehne A, Waiczies H, Niendorf T. MRI of Implantation Sites Using Parallel Transmission of an Optimized Radiofrequency Excitation Vector. Tomography 2023; 9:603-620. [PMID: 36961008 PMCID: PMC10037644 DOI: 10.3390/tomography9020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/25/2023] Open
Abstract
Postoperative care of orthopedic implants is aided by imaging to assess the healing process and the implant status. MRI of implantation sites might be compromised by radiofrequency (RF) heating and RF transmission field (B1+) inhomogeneities induced by electrically conducting implants. This study examines the applicability of safe and B1+-distortion-free MRI of implantation sites using optimized parallel RF field transmission (pTx) based on a multi-objective genetic algorithm (GA). Electromagnetic field simulations were performed for eight eight-channel RF array configurations (f = 297.2 MHz), and the most efficient array was manufactured for phantom experiments at 7.0 T. Circular polarization (CP) and orthogonal projection (OP) algorithms were applied for benchmarking the GA-based shimming. B1+ mapping and MR thermometry and imaging were performed using phantoms mimicking muscle containing conductive implants. The local SAR10g of the entire phantom in GA was 12% and 43.8% less than the CP and OP, respectively. Experimental temperature mapping using the CP yielded ΔT = 2.5-3.0 K, whereas the GA induced no extra heating. GA-based shimming eliminated B1+ artefacts at implantation sites and enabled uniform gradient-echo MRI. To conclude, parallel RF transmission with GA-based excitation vectors provides a technical foundation en route to safe and B1+-distortion-free MRI of implantation sites.
Collapse
Affiliation(s)
- Mostafa Berangi
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- MRI.TOOLS GmbH, 13125 Berlin, Germany
| | | | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- MRI.TOOLS GmbH, 13125 Berlin, Germany
| |
Collapse
|
3
|
Sumser K, Drizdal T, Bellizzi GG, Hernandez-Tamames JA, van Rhoon GC, Paulides MM. Experimental Validation of the MRcollar: An MR Compatible Applicator for Deep Heating in the Head and Neck Region. Cancers (Basel) 2021; 13:5617. [PMID: 34830773 PMCID: PMC8615935 DOI: 10.3390/cancers13225617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Clinical effectiveness of hyperthermia treatments, in which tumor tissue is artificially heated to 40-44 °C for 60-90 min, can be hampered by a lack of accurate temperature monitoring. The need for noninvasive temperature monitoring in the head and neck region (H&N) and the potential of MR thermometry prompt us to design an MR compatible hyperthermia applicator: the MRcollar. In this work, we validate the design, numerical model, and MR performance of the MRcollar. The MRcollar antennas have low reflection coefficients (<-15 dB) and the intended low interaction between the individual antenna modules (<-32 dB). A 10 °C increase in 3 min was reached in a muscle-equivalent phantom, such that the specifications from the European Society for Hyperthermic Oncology were easily reached. The MRcollar had a minimal effect on MR image quality and a five-fold improvement in SNR was achieved using the integrated coils of the MRcollar, compared to the body coil. The feasibility of using the MRcollar in an MR environment was shown by a synchronous heating experiment. The match between the predicted SAR and measured SAR using MR thermometry satisfied the gamma criteria [distance-to-agreement = 5 mm, dose-difference = 7%]. All experiments combined show that the MRcollar delivers on the needs for MR-hyperthermia in the H&N and is ready for in vivo investigation.
Collapse
Affiliation(s)
- Kemal Sumser
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
| | - Tomas Drizdal
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
- Department of Biomedical Technology, Czech Technical University in Prague, nam. Sítna 3105, 272 01 Kladno, Czech Republic
| | - Gennaro G. Bellizzi
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
| | - Juan A. Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands;
| | - Gerard C. van Rhoon
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
| | - Margarethus Marius Paulides
- Department of Radiotherapy, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands; (T.D.); (G.G.B.); (G.C.v.R.); (M.M.P.)
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
4
|
Eigentler TW, Kuehne A, Boehmert L, Dietrich S, Els A, Waiczies H, Niendorf T. 32-Channel self-grounded bow-tie transceiver array for cardiac MR at 7.0T. Magn Reson Med 2021; 86:2862-2879. [PMID: 34169546 DOI: 10.1002/mrm.28885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Design, implementation, evaluation, and application of a 32-channel Self-Grounded Bow-Tie (SGBT) transceiver array for cardiac MR (CMR) at 7.0T. METHODS The array consists of 32 compact SGBT building blocks. Transmission field ( B 1 + ) shimming and radiofrequency safety assessment were performed with numerical simulations and benchmarked against phantom experiments. In vivo B 1 + efficiency mapping was conducted with actual flip angle imaging. The array's applicability for accelerated high spatial resolution 2D FLASH CINE imaging of the heart was examined in a volunteer study (n = 7). RESULTS B 1 + shimming provided a uniform field distribution suitable for female and male subjects. Phantom studies demonstrated an excellent agreement between simulated and measured B 1 + efficiency maps (7% mean difference). The SGBT array afforded a spatial resolution of (0.8 × 0.8 × 2.5) mm3 for 2D CINE FLASH which is by a factor of 12 superior to standardized cardiovascular MR (CMR) protocols. The density of the SGBT array supports 1D acceleration of up to R = 4 (mean signal-to-noise ratio (whole heart) ≥ 16.7, mean contrast-to-noise ratio ≥ 13.5) without impairing image quality significantly. CONCLUSION The compact SGBT building block facilitates a modular high-density array that supports accelerated and high spatial resolution CMR at 7.0T. The array provides a technological basis for future clinical assessment of parallel transmission techniques.
Collapse
Affiliation(s)
- Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| | | | - Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,MRI.TOOLS GmbH, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
5
|
Oberacker E, Diesch C, Nadobny J, Kuehne A, Wust P, Ghadjar P, Niendorf T. Patient-Specific Planning for Thermal Magnetic Resonance of Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13081867. [PMID: 33919701 PMCID: PMC8070230 DOI: 10.3390/cancers13081867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hyperthermia was proven to enhance the efficacy of chemo- and radiation therapy treatment of glioblastoma multiforme, an aggressive brain tumor of poor prognosis. Despite good clinical results in other tumor types and locations, hyperthermia induced by electromagnetic waves in the radiofrequency range is not available so far for the treatment of brain tumors due to the highly sensitive surrounding tissue and lack of non-invasive therapy monitoring. ThermalMR integrates non-invasive diagnosis, therapy, and therapy monitoring in a single RF applicator device by employing radiowaves for magnetic resonance imaging, radiofrequency heating, as well as magnetic resonance thermometry. This work examines three optimization algorithms for hyperthermia treatment planning and up to ten RF applicator configurations for a cohort of nine patient models with glioblastoma multiforme. Clinical diversity is represented in target size and location and the inclusion of post-operative models. Our findings indicate the need and potential for patient-specific treatment planning and RF applicator design when targeting brain tumors. Abstract Thermal intervention is a potent sensitizer of cells to chemo- and radiotherapy in cancer treatment. Glioblastoma multiforme (GBM) is a potential clinical target, given the cancer’s aggressive nature and resistance to current treatment options. This drives research into optimization algorithms for treatment planning as well as radiofrequency (RF) applicator design for treatment delivery. In this work, nine clinically realistic GBM target volumes (TVs) for thermal intervention are compared using three optimization algorithms and up to ten RF applicator designs for thermal magnetic resonance. Hyperthermia treatment planning (HTP) was successfully performed for all cases, including very small, large, and even split target volumes. Minimum requirements formulated for the metrics assessing HTP outcome were met and exceeded for all patient specific cases. Results indicate a 16 channel two row arrangement to be most promising. HTP of TVs with a small extent in the cranial–caudal direction in conjunction with a large radial extent remains challenging despite the advanced optimization algorithms used. In general, deep seated targets are favorable. Overall, our findings indicate that a one-size-fits-all RF applicator might not be the ultimate approach in hyperthermia of brain tumors. It stands to reason that modular and reconfigurable RF applicator configurations might best suit the needs of targeting individual GBM geometry.
Collapse
Affiliation(s)
- Eva Oberacker
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (C.D.); (T.N.)
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (J.N.); (P.W.); (P.G.)
- Department of Physics, Faculty of Mathematics and Natural Sciences, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)30-450-557188
| | - Cecilia Diesch
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (C.D.); (T.N.)
| | - Jacek Nadobny
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (J.N.); (P.W.); (P.G.)
| | | | - Peter Wust
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (J.N.); (P.W.); (P.G.)
| | - Pirus Ghadjar
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (J.N.); (P.W.); (P.G.)
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (C.D.); (T.N.)
- MRI.TOOLS GmbH, 13125 Berlin, Germany;
- Experimental and Clinical Research Center, Joint Cooperation between Charité Unversitätsmedizin and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
6
|
Crezee J, Franken NAP, Oei AL. Hyperthermia-Based Anti-Cancer Treatments. Cancers (Basel) 2021; 13:1240. [PMID: 33808948 PMCID: PMC7999567 DOI: 10.3390/cancers13061240] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Hyperthermia is an adjuvant local anti-cancer treatment using temperatures exceeding the physiologically optimal level, typically 40-43 °C for approximately one hour [...].
Collapse
Affiliation(s)
- Johannes Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (N.A.P.F.); (A.L.O.)
| | - Nicolaas A. P. Franken
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (N.A.P.F.); (A.L.O.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
- Center for Experimental Molecular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| | - Arlene L. Oei
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands; (N.A.P.F.); (A.L.O.)
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
- Center for Experimental Molecular Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
| |
Collapse
|