1
|
Majc B, Habič A, Malavolta M, Vittori M, Porčnik A, Bošnjak R, Mlakar J, Matjašič A, Zupan A, Vidmar MS, Turnšek TL, Sadikov A, Breznik B, Novak M. Patient-derived tumor organoids mimic treatment-induced DNA damage response in glioblastoma. iScience 2024; 27:110604. [PMID: 39252971 PMCID: PMC11381849 DOI: 10.1016/j.isci.2024.110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/11/2024] [Accepted: 07/25/2024] [Indexed: 09/11/2024] Open
Abstract
Glioblastoma (GB) is the most common primary malignant brain tumor, characterized by resistance to therapy. Despite aggressive treatment options, GB remains an incurable disease. Invasiveness and heterogeneity are key GB features that cannot be studied in preclinical in vitro models. In this study, we investigated the effects of standard therapy using patient-derived GB organoids (GBOs). GBOs reflect the complexity and heterogeneity of the original tumor tissue. No significant effect on GBO viability or invasion was observed after irradiation and temozolomide treatment. E3 ubiquitin-protein ligase (MDM2), cyclin-dependent kinase inhibitor 1A (CDKN1A), and the serine/threonine kinases ATM and ATR were upregulated at the gene and protein levels after treatment. Our results show that the p53 pathway and DNA-damage response mechanisms were triggered, suggesting that GBOs recapitulate GB therapy resistance. GBOs thus provide a highly efficient platform to assess the specific responses of GB patients to therapy and to further explore therapy resistance.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Nanosciences and Nanotechnologies, 1000 Ljubljana, Slovenia
| | - Anamarija Habič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Nanosciences and Nanotechnologies, 1000 Ljubljana, Slovenia
| | - Marta Malavolta
- University of Ljubljana, Faculty of Computer and Information Science, 1000 Ljubljana, Slovenia
| | - Miloš Vittori
- University of Ljubljana, Biotechnical Faculty, Department of Biology, 1000 Ljubljana, Slovenia
| | - Andrej Porčnik
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Roman Bošnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Mlakar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Alenka Matjašič
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andrej Zupan
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marija Skoblar Vidmar
- Institute of Oncology, University Medical Centre Ljubljana, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Aleksander Sadikov
- University of Ljubljana, Faculty of Computer and Information Science, 1000 Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Han DJ, Kim S, Lee SY, Moon Y, Kang SJ, Yoo J, Jeong HY, Cho HJ, Jeon JY, Sim BC, Kim J, Lee S, Xi R, Kim TM. Evolutionary dependency of cancer mutations in gene pairs inferred by nonsynonymous-synonymous mutation ratios. Genome Med 2024; 16:103. [PMID: 39160568 PMCID: PMC11331682 DOI: 10.1186/s13073-024-01376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Determining the impact of somatic mutations requires understanding the functional relationship of genes acquiring mutations; however, it is largely unknown how mutations in functionally related genes influence each other. METHODS We employed non-synonymous-to-synonymous or dNdS ratios to evaluate the evolutionary dependency (ED) of gene pairs, assuming a mutation in one gene of a gene pair can affect the evolutionary fitness of mutations in its partner genes as mutation context. We employed PanCancer- and tumor type-specific mutational profiles to infer the ED of gene pairs and evaluated their biological relevance with respect to gene dependency and drug sensitivity. RESULTS We propose that dNdS ratios of gene pairs and their derived cdNS (context-dependent dNdS) scores as measure of ED distinguishing gene pairs either as synergistic (SYN) or antagonistic (ANT). Mutation contexts can induce substantial changes in the evolutionary fitness of mutations in the paired genes, e.g., IDH1 and IDH2 mutation contexts lead to substantial increase and decrease of dNdS ratios of ATRX indels and IDH1 missense mutations corresponding to SYN and ANT relationship with positive and negative cdNS scores, respectively. The impact of gene silencing or knock-outs on cell viability (genetic dependencies) often depends on ED, suggesting that ED can guide the selection of candidates for synthetic lethality such as TCF7L2-KRAS mutations. Using cell line-based drug sensitivity data, the effects of targeted agents on cell lines are often associated with mutations of genes exhibiting ED with the target genes, informing drug sensitizing or resistant mutations for targeted inhibitors, e.g., PRSS1 and CTCF mutations as resistant mutations to EGFR and BRAF inhibitors for lung adenocarcinomas and melanomas, respectively. CONCLUSIONS We propose that the ED of gene pairs evaluated by dNdS ratios can advance our understanding of the functional relationship of genes with potential biological and clinical implications.
Collapse
Affiliation(s)
- Dong-Jin Han
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Sunmin Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Seo-Young Lee
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Youngbeen Moon
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Su Jung Kang
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
| | - Jinseon Yoo
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Hye Young Jeong
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
| | - Hae Jin Cho
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
| | - Jeong Yang Jeon
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea
| | - Byeong Chang Sim
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaehoon Kim
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea
| | - Seungho Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ruibin Xi
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, 222 Bandodae-ro, Seocho-Gu, Seoul, Korea.
- CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Veiga RN, de Azevedo ALK, de Oliveira JC, Gradia DF. Targeting EphA2: a promising strategy to overcome chemoresistance and drug resistance in cancer. J Mol Med (Berl) 2024; 102:479-493. [PMID: 38393661 DOI: 10.1007/s00109-024-02431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Erythropoietin-producing hepatocellular A2 (EphA2) is a vital member of the Eph tyrosine kinase receptor family and has been associated with developmental processes. However, it is often overexpressed in tumors and correlates with cancer progression and worse prognosis due to the activation of its noncanonical signaling pathway. Throughout cancer treatment, the emergence of drug-resistant tumor cells is relatively common. Since the early 2000s, researchers have focused on understanding the role of EphA2 in promoting drug resistance in different types of cancer, as well as finding efficient and secure EphA2 inhibitors. In this review, the current knowledge regarding induced resistance by EphA2 in cancer treatment is summarized, and the types of cancer that lead to the most cancer-related deaths are highlighted. Some EphA2 inhibitors were also investigated. Regardless of whether the cancer treatment has reached a drug-resistance stage in EphA2-overexpressing tumors, once EphA2 is involved in cancer progression and aggressiveness, targeting EphA2 is a promising therapeutic strategy, especially in combination with other target-drugs for synergistic effect. For that reason, monoclonal antibodies against EphA2 and inhibitors of this receptor should be investigated for efficacy and drug toxicity.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Alexandre Luiz Korte de Azevedo
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics. Department of Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
4
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
5
|
Eek Mariampillai A, Hauge S, Kongsrud K, Syljuåsen RG. Immunogenic cell death after combined treatment with radiation and ATR inhibitors is dually regulated by apoptotic caspases. Front Immunol 2023; 14:1138920. [PMID: 37346039 PMCID: PMC10279842 DOI: 10.3389/fimmu.2023.1138920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Inhibitors of the ATR kinase act as radiosensitizers through abrogating the G2 checkpoint and reducing DNA repair. Recent studies suggest that ATR inhibitors can also increase radiation-induced antitumor immunity, but the underlying immunomodulating mechanisms remain poorly understood. Moreover, it is poorly known how such immune effects relate to different death pathways such as caspase-dependent apoptosis. Here we address whether ATR inhibition in combination with irradiation may increase the presentation of hallmark factors of immunogenic cell death (ICD), and to what extent caspase activation regulates this response. Methods Human lung cancer and osteosarcoma cell lines (SW900, H1975, H460, U2OS) were treated with X-rays and ATR inhibitors (VE822; AZD6738) in the absence and presence of a pan-caspase inhibitor. The ICD hallmarks HMGB1 release, ATP secretion and calreticulin surface-presentation were assessed by immunoblotting of growth medium, the CellTiter-Glo assay and an optimized live-cell flow cytometry assay, respectively. To obtain accurate measurement of small differences in the calreticulin signal by flow cytometry, we included normalization to a barcoded control sample. Results Extracellular release of HMGB1 was increased in all the cell lines at 72 hours after the combined treatment with radiation and ATR inhibitors, relative to mock treatment or cells treated with radiation alone. The HMGB1 release correlated largely - but not strictly - with loss of plasma membrane integrity, and was suppressed by addition of the caspase inhibitor. However, one cell line showed HMGB1 release despite caspase inhibition, and in this cell line caspase inhibition induced pMLKL, a marker for necroptosis. ATP secretion occurred already at 48 hours after the co-treatment and did clearly not correlate with loss of plasma membrane integrity. Addition of pan-caspase inhibition further increased the ATP secretion. Surface-presentation of calreticulin was increased at 24-72 hours after irradiation, but not further increased by either ATR or caspase inhibition. Conclusion These results show that ATR inhibition can increase the presentation of two out of three ICD hallmark factors from irradiated human cancer cells. Moreover, caspase activation distinctly affects each of the hallmark factors, and therefore likely plays a dual role in tumor immunogenicity by promoting both immunostimulatory and -suppressive effects.
Collapse
Affiliation(s)
- Adrian Eek Mariampillai
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sissel Hauge
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Karoline Kongsrud
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Randi G. Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Sun Y, Tang L, Wu C, Wang J, Wang C. RSK inhibitors as potential anticancer agents: Discovery, optimization, and challenges. Eur J Med Chem 2023; 251:115229. [PMID: 36898330 DOI: 10.1016/j.ejmech.2023.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Ribosomal S6 kinase (RSK) family is a group of serine/threonine kinases, including four isoforms (RSK1/2/3/4). As a downstream effector of the Ras-mitogen-activated protein kinase (Ras-MAPK) pathway, RSK participates in many physiological activities such as cell growth, proliferation, and migration, and is intimately involved in tumor occurrence and development. As a result, it is recognized as a potential target for anti-cancer and anti-resistance therapies. There have been several RSK inhibitors discovered or designed in recent decades, but only two have entered clinical trials. Low specificity, low selectivity, and poor pharmacokinetic properties in vivo limit their clinical translation. Published studies performed structure optimization by increasing interaction with RSK, avoiding hydrolysis of pharmacophores, eliminating chirality, adapting to binding site shape, and becoming prodrugs. Besides enhancing efficacy, the focus of further design will move towards selectivity since there are functional differences among RSK isoforms. This review summarized the types of cancers associated with RSK, along with the structural characteristics and optimization process of the reported RSK inhibitors. Furthermore, we addressed the importance of RSK inhibitors' selectivity and discussed future drug development directions. This review is expected to shed light on the emergence of RSK inhibitors with high potency, specificity, and selectivity.
Collapse
Affiliation(s)
- Ying Sun
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lichao Tang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, IL, United States
| | - Chengyong Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Zhou T, Zhang LY, He JZ, Miao ZM, Li YY, Zhang YM, Liu ZW, Zhang SZ, Chen Y, Zhou GC, Liu YQ. Review: Mechanisms and perspective treatment of radioresistance in non-small cell lung cancer. Front Immunol 2023; 14:1133899. [PMID: 36865554 PMCID: PMC9971010 DOI: 10.3389/fimmu.2023.1133899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Radiotherapy is the major treatment of non-small cell lung cancer (NSCLC). The radioresistance and toxicity are the main obstacles that leading to therapeutic failure and poor prognosis. Oncogenic mutation, cancer stem cells (CSCs), tumor hypoxia, DNA damage repair, epithelial-mesenchymal transition (EMT), and tumor microenvironment (TME) may dominate the occurrence of radioresistance at different stages of radiotherapy. Chemotherapy drugs, targeted drugs, and immune checkpoint inhibitors are combined with radiotherapy to treat NSCLC to improve the efficacy. This article reviews the potential mechanism of radioresistance in NSCLC, and discusses the current drug research to overcome radioresistance and the advantages of Traditional Chinese medicine (TCM) in improving the efficacy and reducing the toxicity of radiotherapy.
Collapse
Affiliation(s)
- Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Experimental & Training Teaching Centers, Gansu University of Chinese Medicine, Lanzhou, China
| | - Li-Ying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jian-Zheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Ming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yang-Yang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yi-Ming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Wei Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shang-Zu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gu-Cheng Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yong-Qi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Yong-Qi Liu,
| |
Collapse
|
8
|
Zhang L, Zhou C, Zhou Y, Zhang W, Hu X, Chen M, Hui H, Guo L, Wu C, Zhou J, Yin H. P-Y/G@NHs sensitizes non-small cell lung cancer cells to radiotherapy via blockage of the PI3K/AKT signaling pathway. Bioorg Chem 2023; 131:106317. [PMID: 36525920 DOI: 10.1016/j.bioorg.2022.106317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Radioresistance represents a common phenomenon found in cancer treatment. Herein, the current study sought to evaluate the effects of a nanodrug delivery system of YSAYPDSVPMMS (YSA) peptide-modified gold nanoparticles-dextran-based hydrogel loaded with paclitaxel-succinic anhydride (P-Y/G@NHs) on non-small cell lung cancer (NSCLC) cell radiosensitivity. Firstly, utilizing the coupling reaction and layer-by-layer assembly technique, P-Y/G@NHs was prepared. The therapeutic effects of the P-Y/G@NHs in NSCLC cells in relation to the PI3K/AKT signaling pathway were examined by assessing the colony formation, apoptosis, and reactive oxygen species (ROS) generation of A549 cells under 10 Gy X-rays irradiation. Moreover, A549 tumor-bearing mice were generated to further validate the therapeutic effect in vivo. We confirmed the successful conjugation of the nanocomposite. Under 10 Gy X-rays irradiation, P-Y/G@NHs reduced the number of colonies of A549 cells, while inducing both cell apoptosis and ROS production. Moreover, P-Y/G@NHs enhanced the radiosensitivity of A549 cells by inhibiting the PI3K/AKT signaling pathway. In vivo fluorescence experiments validated that P-Y/G@NHs effectively-targeted and accumulated at the tumor site in nude mice, thus augmenting the radiosensitivity of tumors without significant immune toxicity or side effects. Conclusively, our findings highlighted that P-Y/G@NHs significantly enhanced the radiosensitivity of NSCLC cells by repressing the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Lu Zhang
- Soochow University, Suzhou 215000, PR China; Radiotherapy Department, the Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, PR China
| | - Chong Zhou
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Yun Zhou
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Wei Zhang
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Xiang Hu
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Meng Chen
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Hui Hui
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Ling Guo
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Chengjun Wu
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China
| | - Juying Zhou
- Radiotherapy Department, the First Affiliated Hospital of Soochow University, Suzhou 215000, PR China.
| | - Haitao Yin
- Radiotherapy Department, Xuzhou Central Hospital, Xuzhou 221000, PR China.
| |
Collapse
|
9
|
Psilopatis I, Karniadakis I, Danos KS, Vrettou K, Michaelidou K, Mavridis K, Agelaki S, Theocharis S. May EPH/Ephrin Targeting Revolutionize Lung Cancer Treatment? Int J Mol Sci 2022; 24:ijms24010093. [PMID: 36613532 PMCID: PMC9820524 DOI: 10.3390/ijms24010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer death in the United States. Erythropoietin-producing hepatocellular receptors (EPHs) comprise the largest receptor tyrosine kinases (RTKs) family in mammals. EPHs along with their ligands, EPH-family receptor-interacting proteins (ephrins), have been found to be either up- or downregulated in LC cells, hence exhibiting a defining role in LC carcinogenesis and tumor progression. In their capacity as membrane-bound molecules, EPHs/ephrins may represent feasible targets in the context of precision cancer treatment. In order to investigate available therapeutics targeting the EPH/ephrin system in LC, a literature review was conducted, using the MEDLINE, LIVIVO, and Google Scholar databases. EPHA2 is the most well-studied EPH/ephrin target in LC treatment. The targeting of EPHA2, EPHA3, EPHA5, EPHA7, EPHB4, EPHB6, ephrin-A1, ephrin-A2, ephrin-B2, and ephrin-B3 in LC cells or xenograft models not only directly correlates with a profound LC suppression but also enriches the effects of well-established therapeutic regimens. However, the sole clinical trial incorporating a NSCLC patient could not describe objective anti-cancer effects after anti-EPHA2 antibody administration. Collectively, EPHs/ephrins seem to represent promising treatment targets in LC. However, large clinical trials still need to be performed, with a view to examining the effects of EPH/ephrin targeting in the clinical setting.
Collapse
Affiliation(s)
- Iason Psilopatis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Department of Gynecology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ioannis Karniadakis
- Second Department of Propaedeutic Surgery, “Laiko” General Hospital, 17 Agiou Thoma Street, 11527 Athens, Greece
| | - Konstantinos Stylianos Danos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kleio Vrettou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
| | - Kleita Michaelidou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Herakleion, Greece
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology-Hellas, 70013 Herakleion, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Vassilika Vouton, 71003 Herakleion, Greece
- Department of Medical Oncology, University General Hospital of Herakleion, Vassilika Vouton, 71110 Herakleion, Greece
- Correspondence: (S.A.); (S.T.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Bld 10, Goudi, 11527 Athens, Greece
- Correspondence: (S.A.); (S.T.)
| |
Collapse
|
10
|
Chen ZH, Chen ZY, Kang J, Chu XP, Fu R, Zhang JT, Qi YF, Chen JH, Lin JT, Jiang BY, Yang XN, Wu YL, Zhong WZ, Nie Q. Investigation on the incidence and risk factors of lung cancer among Chinese hospital employees. Thorac Cancer 2022; 13:2210-2222. [PMID: 35818719 PMCID: PMC9346177 DOI: 10.1111/1759-7714.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Objective In recent years, the lung cancer incidence has grown and the population is younger. We intend to find out the true detection rate of pulmonary nodules and the incidence of lung cancer in the population and search for the risk factors. Method Hospital employees ≥40 years old who underwent low‐dose computed tomography (CT) lung cancer screening from January 2019 to March 2022 were selected to record CT‐imaging characteristics, pathology, staging, and questionnaires to investigate past history, smoking history, diet, mental health, etc. PM2.5 and radiation intake in radiation‐related occupation received monitoring in hospital. Result The detection rate of suspicious pulmonary nodules was 9.1% (233/2552), and the incidence rate of lung cancer (including adenocarcinoma in situ) was 4.0% (103/2552). Morbidity among doctors, nurses, technicians, administers, and logistics was no difference (p = 0.184), but higher in women than in men (4.7% vs 2.4% p = 0.002). The invasiveness increased with age and CT density of nodules (p = 0.018). The relationship between lung cancer morbidity and PM2.5 was not clear (p = 0.543); and no lung cancer has been found in employees related ionizing radiation. Conclusion The high screening rate has brought about a high incidence of lung cancer. At present, the risk factor analysis of lung cancer based on small samples cannot find the direct cause. Most of the ground glass opacity (GGO)s detected by LDCT screening are indolent, but there are also rapidly progressive lung cancer. A predictive model to identify active and indolent GGO is necessary.
Collapse
Affiliation(s)
- Zi-Hao Chen
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi-Yong Chen
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Kang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiang-Peng Chu
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Rui Fu
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jia-Tao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yi-Fan Qi
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing-Hua Chen
- 12th People's Hospital of Guangzhou, Guangzhou, China
| | - Jun-Tao Lin
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ben-Yuan Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wen-Zhao Zhong
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiang Nie
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|