1
|
Vitko D, Chou WF, Nouri Golmaei S, Lee JY, Belthangady C, Blume J, Chan JK, Flores-Campuzano G, Hu Y, Liu M, Marispini MA, Mora MG, Ramaswamy S, Ranjan P, Williams PB, Zawada RJX, Ma P, Wilcox BE. timsTOF HT Improves Protein Identification and Quantitative Reproducibility for Deep Unbiased Plasma Protein Biomarker Discovery. J Proteome Res 2024; 23:929-938. [PMID: 38225219 PMCID: PMC10913052 DOI: 10.1021/acs.jproteome.3c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Mass spectrometry (MS) is a valuable tool for plasma proteome profiling and disease biomarker discovery. However, wide-ranging plasma protein concentrations, along with technical and biological variabilities, present significant challenges for deep and reproducible protein quantitation. Here, we evaluated the qualitative and quantitative performance of timsTOF HT and timsTOF Pro 2 mass spectrometers for analysis of neat plasma samples (unfractionated) and plasma samples processed using the Proteograph Product Suite (Proteograph) that enables robust deep proteomics sampling prior to mass spectrometry. Samples were evaluated across a wide range of peptide loading masses and liquid chromatography (LC) gradients. We observed up to a 76% increase in total plasma peptide precursors identified and a >2-fold boost in quantifiable plasma peptide precursors (CV < 20%) with timsTOF HT compared to Pro 2. Additionally, approximately 4.5 fold more plasma peptide precursors were detected by both timsTOF HT and timsTOF Pro 2 in the Proteograph analyzed plasma vs neat plasma. In an exploratory analysis of 20 late-stage lung cancer and 20 control plasma samples with the Proteograph, which were expected to exhibit distinct proteomes, an approximate 50% increase in total and statistically significant plasma peptide precursors (q < 0.05) was observed with timsTOF HT compared to Pro 2. Our data demonstrate the superior performance of timsTOF HT for identifying and quantifying differences between biologically diverse samples, allowing for improved disease biomarker discovery in large cohort studies. Moreover, researchers can leverage data sets from this study to optimize their liquid chromatography-mass spectrometry (LC-MS) workflows for plasma protein profiling and biomarker discovery. (ProteomeXchange identifier: PXD047854 and PXD047839).
Collapse
Affiliation(s)
- Dijana Vitko
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Wan-Fang Chou
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Sara Nouri Golmaei
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Joon-Yong Lee
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Chinmay Belthangady
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - John Blume
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Jessica K. Chan
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | | | - Yuntao Hu
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Manway Liu
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Mark A. Marispini
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Megan G. Mora
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Saividya Ramaswamy
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Purva Ranjan
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Preston B. Williams
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Robert J. X. Zawada
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Philip Ma
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| | - Bruce E. Wilcox
- PrognomiQ Inc., 1900 Alameda de las Pulgas, San Mateo, California 94403, United States
| |
Collapse
|
2
|
AlSufyani AA. Correlation of serum biochemical parameters and saliva pH in healthy individuals. Saudi J Biol Sci 2023; 30:103793. [PMID: 37744004 PMCID: PMC10514437 DOI: 10.1016/j.sjbs.2023.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023] Open
Abstract
Saliva has the potential to work alongside needles in standard medical diagnosis. Yet the number of studies aimed at deciphering the biochemical communication between saliva and the rest of the body's systems is still very limited. The aim of this study is to investigate the interfluid interaction between saliva and serum by determining the correlation between saliva pH and serum biochemical parameters under mild conditions. Ultimately, using saliva may provide a stress-free diagnostic tool, but more ambitiously, the pH of saliva could present a genuine cost-effective screening tool that may immensely benefit areas with limited access to health care and diagnostic labs. Saliva and blood samples were collected from 43 randomly selected children (7-12 years), living in Jeddah, free from obesity and chronic or systemic body and mouth diseases. A complete serum biochemical analysis was performed, and the salivary pH of all samples was measured immediately at the time of collection. The correlations between saliva pH and serum biochemical parameters were investigated using Univariate and multiple linear regression models. Our results showed that pH has a weak significant positive correlation with total protein and a negative weak significant correlation with urea. Weak correlations suggest the existence of more serum factors to be investigated for their effect on the pH using a stepwise multiple linear regression. The multiple linear models' calculated saliva pH values were close to the measured values, demonstrating its possible capacity to predict saliva pH using serum parameters. The regression model's successful prediction of saliva pH using serum biochemicals reflects the significant correlations between the body fluids' parameters and invites more research to elucidate these relationships.
Collapse
Affiliation(s)
- Amal A. AlSufyani
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- Ministry of the National Guard - Health Affairs, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Thermodynamic Sensitivity of Blood Plasma Components in Patients Afflicted with Skin, Breast and Pancreatic Forms of Cancer. Cancers (Basel) 2022; 14:cancers14246147. [PMID: 36551631 PMCID: PMC9776601 DOI: 10.3390/cancers14246147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization's 2018 Global Cancer Survey, cancer is the second leading cause of death. From this survey, the third most common is breast cancer, the fifth is melanoma malignum and pancreatic adenocarcinoma ranks twentieth. Undoubtedly, the early diagnosis and monitoring of these tumors and related research is important for aspects of patient care. The aim of our present review was to explain an impressive methodology that is deemed suitable in reference to studying blood sample deviations in the case of solid tumors. Essentially, we compared the heat denaturation responses of blood plasma components through differential scanning calorimetry (DSC). In the control, between five and seven separable components can be detected, in which the primary component was albumin, while in the case of tumorous patients, the peaks of immunoglobulins were dominant. Moreover, the shape of the plasma DSC curves changed with a shift in the higher temperature ranges; thus, their pattern can be used as a suitable marker of direct immunological responses. The further development of the analysis of DSC curves raises the possibility of the early diagnosis of a potential tumor, the monitoring of diseases, or testing the efficacy of the therapy from a single drop of blood.
Collapse
|
4
|
He B, Huang Z, Huang C, Nice EC. Clinical applications of plasma proteomics and peptidomics: Towards precision medicine. Proteomics Clin Appl 2022; 16:e2100097. [PMID: 35490333 DOI: 10.1002/prca.202100097] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023]
Abstract
In the context of precision medicine, disease treatment requires individualized strategies based on the underlying molecular characteristics to overcome therapeutic challenges posed by heterogeneity. For this purpose, it is essential to develop new biomarkers to diagnose, stratify, or possibly prevent diseases. Plasma is an available source of biomarkers that greatly reflects the physiological and pathological conditions of the body. An increasing number of studies are focusing on proteins and peptides, including many involving the Human Proteome Project (HPP) of the Human Proteome Organization (HUPO), and proteomics and peptidomics techniques are emerging as critical tools for developing novel precision medicine preventative measures. Excitingly, the emerging plasma proteomics and peptidomics toolbox exhibits a huge potential for studying pathogenesis of diseases (e.g., COVID-19 and cancer), identifying valuable biomarkers and improving clinical management. However, the enormous complexity and wide dynamic range of plasma proteins makes plasma proteome profiling challenging. Herein, we summarize the recent advances in plasma proteomics and peptidomics with a focus on their emerging roles in COVID-19 and cancer research, aiming to emphasize the significance of plasma proteomics and peptidomics in clinical applications and precision medicine.
Collapse
Affiliation(s)
- Bo He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China.,Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Subasic CN, Kuilamu E, Cowin G, Minchin RF, Kaminskas LM. The pharmacokinetics of PEGylated liposomal doxorubicin are not significantly affected by sex in rats or humans, but may be affected by immune dysfunction. J Control Release 2021; 337:71-80. [PMID: 34245788 DOI: 10.1016/j.jconrel.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
PEGylated liposomal doxorubicin (PLD, Caelyx®, Doxil®) has been suggested to show significant sex-based differences in plasma clearance, as well as high inter-individual variability that may be driven by monocyte counts in cancer patients. This study aimed to establish if these differences are similarly observed in rats, which exhibit similar liposome clearance mechanisms to humans, and to use this model to identify sources of inter-individual and sex-based pharmacokinetic variability. The plasma and lymphatic pharmacokinetics of PLD were evaluated in male and female rats by quantifying doxorubicin as well as the 3H-labelled liposome. In general, the pharmacokinetics of doxorubicin and the 3H-liposome did not differ significantly between male and female rats when corrected for body surface area. Female rats did, however, show significantly higher doxorubicin concentrations in lymph compared to male rats. With the exception of serum testosterone concentrations in males, none of the physiological parameters evaluated correlated with plasma clearance. Further, reanalysis of published human data that formerly reported sex-differences in PLD plasma clearance similarly revealed no significant differences in PLD plasma clearance between males and females with solid tumours, but increased plasma clearance in patients with Kaposi's sarcoma (generally HIV+/immunocompromised). These data suggest that with the exception of lymphatic exposure, there are unlikely to be significant sex effects in the pharmacokinetics of liposomes, but immune function may contribute to inter individual variability.
Collapse
Affiliation(s)
- Christopher N Subasic
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Esther Kuilamu
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|