1
|
Bao X, Chen Y, Chang J, Du J, Yang C, Wu Y, Sha Y, Li M, Chen S, Yang M, Liu SB. Machine learning-based bulk RNA analysis reveals a prognostic signature of 13 cell death patterns and potential therapeutic target of SMAD3 in acute myeloid leukemia. BMC Cancer 2025; 25:273. [PMID: 39955536 PMCID: PMC11830216 DOI: 10.1186/s12885-025-13658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Dysregulation or abnormality of the programmed cell death (PCD) pathway is closely related to the occurrence and development of many tumors, including acute myeloid leukemia (AML). Studying the abnormal characteristics of PCD pathway-related molecular markers can provide a basis for prognosis prediction and targeted drug design in AML patients. METHODS A total of 1394 genes representing 13 different PCD pathways were examined in AML patients and healthy donors. The upregulated genes were analyzed for their ability to predict overall survival (OS) individually, and these prognostic genes were subsequently combined to construct a PCD-related prognostic signature via an integrated approach consisting of 101 models based on ten machine learning algorithms. RNA transcriptome and clinical data from multiple AML cohorts (TCGA-AML, GSE106291, GSE146173 and Beat AML) were obtained to develop and validate the AML prognostic model. RESULTS A total of 214 upregulated PCD-related genes were identified in AML patients, 39 of which were proven to be prognostic genes in the training cohort. On the basis of the average C-index and number of model genes identified from the machine learning combinations, a PCD index was developed and validated for predicting AML OS. A prognostic nomogram was then generated and validated on the basis of the PCD index, age and ELN risk stratification in the Beat AML cohort and the GSE146173 cohort, revealing satisfactory predictive power (AUC values ≥ 0.7). With different mutation patterns, a higher PCD index was associated with a worse OS. The PCD index was significantly related to higher scores for immunosuppressive cells and mature leukemia cell subtypes. As the gene most closely related to the PCD index, the expression of SMAD3 was further validated in vitro. AML cells harboring KMT2A rearrangements were more sensitive to the SMAD3 inhibitor SIS3, and the expression of the autophagy-related molecular marker LC3 was increased in KMT2A-rearranged cell lines after SIS3 monotherapy and combined treatment. CONCLUSION The PCD index and SMAD3 gene expression levels have potential prognostic value and can be used in targeted therapy for AML, and these findings can lead to the development of effective strategies for the combined treatment of high-risk AML patients.
Collapse
Affiliation(s)
- Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yao Chen
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Jie Chang
- School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Jiahui Du
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Chen Yang
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Yijie Wu
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Yu Sha
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Ming Li
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Minfeng Yang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong, 226019, China.
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.
| | - Song-Bai Liu
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, 28 Kehua Road, Suzhou, 215009, China.
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
2
|
Autophagy in Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14205072. [PMID: 36291856 PMCID: PMC9600546 DOI: 10.3390/cancers14205072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Autophagy is a dynamic and tightly regulated process that seems to have dual effects in cancer. In some contexts, it can induce carcinogenesis and promote cancer cell survival, whereas in others, it acts preventing tumor cell growth and tumor progression. Thus, autophagy functions seem to strictly depend on cancer ontogenesis, progression, and type. Here, we will dive into the current knowledge of autophagy in hematological malignancies and will highlight the main genetic components involved in each cancer type. Abstract Autophagy is a highly conserved metabolic pathway via which unwanted intracellular materials, such as unfolded proteins or damaged organelles, are digested. It is activated in response to conditions of oxidative stress or starvation, and is essential for the maintenance of cellular homeostasis and other vital functions, such as differentiation, cell death, and the cell cycle. Therefore, autophagy plays an important role in the initiation and progression of tumors, including hematological malignancies, where damaged autophagy during hematopoiesis can cause malignant transformation and increase cell proliferation. Over the last decade, the importance of autophagy in response to standard pharmacological treatment of hematological tumors has been observed, revealing completely opposite roles depending on the tumor type and stage. Thus, autophagy can promote tumor survival by attenuating the cellular damage caused by drugs and/or stabilizing oncogenic proteins, but can also have an antitumoral effect due to autophagic cell death. Therefore, autophagy-based strategies must depend on the context to create specific and safe combination therapies that could contribute to improved clinical outcomes. In this review, we describe the process of autophagy and its role on hematopoiesis, and we highlight recent research investigating its role as a potential therapeutic target in hematological malignancies. The findings suggest that genetic variants within autophagy-related genes modulate the risk of developing hemopathies, as well as patient survival.
Collapse
|
3
|
Wen J, Wan L, Dong X. The prognostic value of autophagy related genes with potential protective function in Ewing sarcoma. BMC Bioinformatics 2022; 23:306. [PMID: 35902797 PMCID: PMC9335970 DOI: 10.1186/s12859-022-04849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
Background Ewing sarcoma (ES) is the second most common primary malignant bone tumor mainly occurring in children, adolescents and young adults with high metastasis and mortality. Autophagy has been reported to be involved in the survival of ES, but the role remains unclear. Therefore, it’s necessary to investigate the prognostic value of autophagy related genes using bioinformatics methods. Results ATG2B, ATG10 and DAPK1 were final screened genes for a prognostic model. KM and risk score plots showed patients in high score group had better prognoses both in training and validation sets. C-indexes of the model for training and validation sets were 0.68 and 0.71, respectively. Calibration analyses indicated the model had high prediction accuracy in training and validation sets. The AUC values of ROC for 1-, 3-, 5-year prediction were 0.65, 0.73 and 0.84 in training set, 0.88, 0.73 and 0.79 in validation set, which suggested high prediction accuracy of the model. Decision curve analyses showed that patients could benefit much from the model. Differential and functional analyses suggested that autophagy and apoptosis were upregulated in high risk score group. Conclusions ATG2B, ATG10 and DAPK1 were autophagy related genes with potential protective function in ES. The prognostic model established by them exhibited excellent prediction accuracy and discriminatory capacities. They might be used as potential prognostic biomarkers and therapeutic targets in ES. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04849-x.
Collapse
Affiliation(s)
- Jian Wen
- Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China.,Department of Orthopedics, Jiangxi Provincial People's Hospital, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China.,JXHC Key Laboratory of Digital Orthopedics (Jiangxi Provincial People's Hospital), 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Lijia Wan
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xieping Dong
- Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China. .,Department of Orthopedics, Jiangxi Provincial People's Hospital, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China. .,JXHC Key Laboratory of Digital Orthopedics (Jiangxi Provincial People's Hospital), 152 Aiguo Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Seo W, Silwal P, Song IC, Jo EK. The dual role of autophagy in acute myeloid leukemia. J Hematol Oncol 2022; 15:51. [PMID: 35526025 PMCID: PMC9077970 DOI: 10.1186/s13045-022-01262-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a severe hematologic malignancy prevalent in older patients, and the identification of potential therapeutic targets for AML is problematic. Autophagy is a lysosome-dependent catabolic pathway involved in the tumorigenesis and/or treatment of various cancers. Mounting evidence has suggested that autophagy plays a critical role in the initiation and progression of AML and anticancer responses. In this review, we describe recent updates on the multifaceted functions of autophagy linking to genetic alterations of AML. We also summarize the latest evidence for autophagy-related genes as potential prognostic predictors and drivers of AML tumorigenesis. We then discuss the crosstalk between autophagy and tumor cell metabolism into the impact on both AML progression and anti-leukemic treatment. Moreover, a series of autophagy regulators, i.e., the inhibitors and activators, are described as potential therapeutics for AML. Finally, we describe the translation of autophagy-modulating therapeutics into clinical practice. Autophagy in AML is a double-edged sword, necessitating a deeper understanding of how autophagy influences dual functions in AML tumorigenesis and anti-leukemic responses.
Collapse
Affiliation(s)
- Wonhyoung Seo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|