1
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Krieg S, Rohde T, Rausch T, Butthof L, Wendler-Link L, Eckert C, Breuhahn K, Galy B, Korbel J, Billmann M, Breinig M, Tschaharganeh DF. Mitoferrin2 is a synthetic lethal target for chromosome 8p deleted cancers. Genome Med 2024; 16:83. [PMID: 38886830 PMCID: PMC11181659 DOI: 10.1186/s13073-024-01357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Somatic copy number alterations are a hallmark of cancer that offer unique opportunities for therapeutic exploitation. Here, we focused on the identification of specific vulnerabilities for tumors harboring chromosome 8p deletions. METHODS We developed and applied an integrative analysis of The Cancer Genome Atlas (TCGA), the Cancer Dependency Map (DepMap), and the Cancer Cell Line Encyclopedia to identify chromosome 8p-specific vulnerabilities. We employ orthogonal gene targeting strategies, both in vitro and in vivo, including short hairpin RNA-mediated gene knockdown and CRISPR/Cas9-mediated gene knockout to validate vulnerabilities. RESULTS We identified SLC25A28 (also known as MFRN2), as a specific vulnerability for tumors harboring chromosome 8p deletions. We demonstrate that vulnerability towards MFRN2 loss is dictated by the expression of its paralog, SLC25A37 (also known as MFRN1), which resides on chromosome 8p. In line with their function as mitochondrial iron transporters, MFRN1/2 paralog protein deficiency profoundly impaired mitochondrial respiration, induced global depletion of iron-sulfur cluster proteins, and resulted in DNA-damage and cell death. MFRN2 depletion in MFRN1-deficient tumors led to impaired growth and even tumor eradication in preclinical mouse xenograft experiments, highlighting its therapeutic potential. CONCLUSIONS Our data reveal MFRN2 as a therapeutic target of chromosome 8p deleted cancers and nominate MFNR1 as the complimentary biomarker for MFRN2-directed therapies.
Collapse
Affiliation(s)
- Stephan Krieg
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Rohde
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Luise Butthof
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lena Wendler-Link
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Eckert
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Bruno Galy
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Maximilian Billmann
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany.
| | - Marco Breinig
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Darjus F Tschaharganeh
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ), Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
4
|
Shi X, Zhao X, Xue J, Jia E. Extracellular vesicle biomarkers in circulation for colorectal cancer detection: a systematic review and meta-analysis. BMC Cancer 2024; 24:623. [PMID: 38778252 PMCID: PMC11110411 DOI: 10.1186/s12885-024-12312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
We provided an overview which evaluated the diagnostic performance of circulation EV biomarkers for CRC from PubMed, Medline, and Web of Science until 21 August 2022.Weidentified 48 studies that involved 7727 participants and evaluated 162 plasma/serum individual EV biomarkers including 117 RNAs and 45 proteins, as well as 45 EV biomarker panels for CRC detection. 12 studies evaluated the diagnostic performance of EV biomarkers for early CRC. The summarized sensitivity, specificity, and AUC value of individual EV RNAs and EV RNA panels were 76%, 75%, 0.87 and 82%, 79% and 0.90, respectively. Meanwhile, those of individual EV proteins and EV protein panels were 85%, 84%, 0.92 and 87%, 83%, 0.92, respectively. These results indicated that EV biomarker panels revealed superior diagnostic performance than the corresponding individual biomarkers. In early CRC, EV biomarkers showed available diagnostic value with the sensitivity, specificity, and AUC value of 80%, 75%, and 0.89.In subgroup analyses, EV miRNAs and LncRNAs held similar diagnostic value with the sensitivity, specificity and AUC value of 75%, 78%, 0.90 and 79%, 72%, 0.83, which was highly consistent with the whole EV RNAs. Significantly, the diagnostic values of EV miRNAs in plasma were marginally higher than those based on serum. In detail, the sensitivity, specificity, and AUC values were 79%, 81%, and 0.92 in plasma, as well as 74%, 77%, and 0.88 in serum, respectively. Therefore, circulation EV biomarkers could be considered as a promising biomarker for the early detection of CRC.
Collapse
Affiliation(s)
- Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyu Zhao
- Clinical Epidemiology & EBM Unit, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Rahmati S, Moeinafshar A, Rezaei N. The multifaceted role of extracellular vesicles (EVs) in colorectal cancer: metastasis, immune suppression, therapy resistance, and autophagy crosstalk. J Transl Med 2024; 22:452. [PMID: 38741166 DOI: 10.1186/s12967-024-05267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer structures released by all cells and widely distributed in all biological fluids. EVs are implicated in diverse physiopathological processes by orchestrating cell-cell communication. Colorectal cancer (CRC) is one of the most common cancers worldwide, with metastasis being the leading cause of mortality in CRC patients. EVs contribute significantly to the advancement and spread of CRC by transferring their cargo, which includes lipids, proteins, RNAs, and DNAs, to neighboring or distant cells. Besides, they can serve as non-invasive diagnostic and prognostic biomarkers for early detection of CRC or be harnessed as effective carriers for delivering therapeutic agents. Autophagy is an essential cellular process that serves to remove damaged proteins and organelles by lysosomal degradation to maintain cellular homeostasis. Autophagy and EV release are coordinately activated in tumor cells and share common factors and regulatory mechanisms. Although the significance of autophagy and EVs in cancer is well established, the exact mechanism of their interplay in tumor development is obscure. This review focuses on examining the specific functions of EVs in various aspects of CRC, including progression, metastasis, immune regulation, and therapy resistance. Further, we overview emerging discoveries relevant to autophagy and EVs crosstalk in CRC.
Collapse
Affiliation(s)
- Soheil Rahmati
- Student Research Committee, Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Mondal D, Shinde S, Sinha V, Dixit V, Paul S, Gupta RK, Thakur S, Vishvakarma NK, Shukla D. Prospects of liquid biopsy in the prognosis and clinical management of gastrointestinal cancers. Front Mol Biosci 2024; 11:1385238. [PMID: 38770216 PMCID: PMC11103528 DOI: 10.3389/fmolb.2024.1385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Gastrointestinal (GI) cancers account for one-fourth of the global cancer incidence and are incriminated to cause one-third of cancer-related deaths. GI cancer includes esophageal, gastric, liver, pancreatic, and colorectal cancers, mostly diagnosed at advanced stages due to a lack of accurate markers for early stages. The invasiveness of diagnostic methods like colonoscopy for solid biopsy reduces patient compliance as it cannot be frequently used to screen patients. Therefore, minimally invasive approaches like liquid biopsy may be explored for screening and early identification of gastrointestinal cancers. Liquid biopsy involves the qualitative and quantitative determination of certain cancer-specific biomarkers in body fluids such as blood, serum, saliva, and urine to predict disease progression, therapeutic tolerance, toxicities, and recurrence by evaluating minimal residual disease and its correlation with other clinical features. In this review, we deliberate upon various tumor-specific cellular and molecular entities such as circulating tumor cells (CTCs), tumor-educated platelets (TEPs), circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), exosomes, and exosome-derived biomolecules and cite recent advances pertaining to their use in predicting disease progression, therapy response, or risk of relapse. We also discuss the technical challenges associated with translating liquid biopsy into clinical settings for various clinical applications in gastrointestinal cancers.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vibha Sinha
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Sadguru Jagjit Singh Namdhari College, Garhwa, Jharkhand, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Rakesh Kumar Gupta
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
7
|
Qin CM, Wei XW, Wu JY, Liu XQ, Lin Y. Decreased NSD2 impairs stromal cell proliferation in human endometrium via reprogramming H3K36me2. Reproduction 2024; 167:e230254. [PMID: 38236723 PMCID: PMC10895284 DOI: 10.1530/rep-23-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
In brief The proliferation of the endometrium is regulated by histone methylation. This study shows that decreased NSD2 impairs proliferative-phase endometrial stromal cell proliferation in patients with recurrent implantation failure via epigenetic reprogramming of H3K36me2 methylation on the promoter region of MCM7. Abstract Recurrent implantation failure (RIF) is a formidable challenge in assisted reproductive technology because of its unclear molecular mechanism. Impaired human endometrial stromal cell (HESC) proliferation disrupts the rhythm of the menstrual cycle, resulting in devastating disorders between the embryo and the endometrium. The molecular function of histone methylation enzymes in modulating HESC proliferation remains largely uncharacterized. Herein, we found that the levels of histone methyltransferase nuclear receptor binding SET domain protein 2 (NSD2) and the dimethylation of lysine 36 on histone H3 are decreased significantly in the proliferative-phase endometrium of patients with RIF. Knockdown of NSD2 in an HESC cell line markedly impaired cell proliferation and globally reduced H3K36me2 binding to chromatin, leading to altered expression of many genes. Transcriptomic analyses revealed that cell cycle-related gene sets were downregulated in the endometrium of patients with RIF and in NSD2‑knockdown HESCs. Furthermore, RNA-sequencing and CUT&Tag sequencing analysis suggested that NSD2 knockdown reduced the binding of H3K36me2 to the promoter region of cell cycle marker gene MCM7 (encoding minichromosome maintenance complex component 7) and downregulated its expression. The interaction of H3K36me2 with the MCM7 promoter was verified using chromatin immunoprecipitation-quantitative real-time PCR. Our results demonstrated a unifying epigenome-scale mechanism by which decreased NSD2 impairs endometrial stromal cell proliferation in the proliferative-phase endometrium of patients with RIF.
Collapse
Affiliation(s)
- Chuan-Mei Qin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Wei Wei
- Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Yi Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Qing Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Wang Y, Cai S, Chen X, Sun Q, Yin T, Diao L. The role of extracellular vesicles from placenta and endometrium in pregnancy: Insights from tumor biology. J Reprod Immunol 2024; 162:104210. [PMID: 38359619 DOI: 10.1016/j.jri.2024.104210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Extracellular vesicles (EVs) are small membrane-bound particles secreted by various cell types that play a critical role in intercellular communication by packaging and delivering biomolecules. In recent years, EVs have emerged as essential messengers in mediating physiological and pathological processes in tumor biology. The tumor microenvironment (TME) plays a pivotal role in tumor generation, progression, and metastasis. In this review, we provide an overview of the impact of tumor-derived EVs on both tumor cells and the TME. Moreover, we draw parallels between tumor biology and pregnancy, as successful embryo implantation also requires intricate intercellular communication between the placental trophecepiblast and the endometrial epithelium. Additionally, we discuss the involvement of EVs in targeting immune responses, trophoblast invasion, migration, and angiogenesis, which are shared biological processes between tumors and pregnancy. Specifically, we highlight the effects of placenta-derived EVs on the fetal-maternal interface, placenta, endometrium, and maternal system, as well as the role of endometrium-derived EVs in embryo-endometrial communication. However, challenges still exist in EVs research, including the standardization of EVs isolation methods for diagnostic testing, which also apply to reproductive systems where EVs-mediated communication is proposed to take place. Through this review, we aim to deepen the understanding of EVs, particularly in the context of reproductive biology, and encourage further investigation in this field.
Collapse
Affiliation(s)
- Yanjun Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518045, PR China
| | - Xian Chen
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518045, PR China
| | - Qing Sun
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518045, PR China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China.
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen 518045, PR China; Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen 518045, PR China.
| |
Collapse
|
9
|
Koelbel C, Ruiz Y, Wan Z, Wang S, Ho T, Lake D. Development of tandem antigen capture ELISAs measuring QSOX1 isoforms in plasma and serum. Free Radic Biol Med 2024; 210:212-220. [PMID: 38036070 PMCID: PMC10843750 DOI: 10.1016/j.freeradbiomed.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
QSOX1 is a sulfhydryl oxidase that has been identified as a potential biomarker in multiple cancer types as well as acute decompensated heart failure. Three anti-QSOX1 monoclonal antibodies (mAbs) were generated: 2F1, 3A10, and 56-3. MAbs 2F1 and 3A10 were generated against the short isoform of recombinant QSOX1 (rQSOX1-S), and mAb 56-3 was generated against a peptide (NEQEQPLGQWHLS) from the long isoform of QSOX1 (QSOX1-L). Using these mAbs, tandem antigen capture ELISAs were developed to quantify both short and long isoforms of QSOX1 (Total QSOX1 ELISA) and QSOX1-L (QSOX1-L ELISA) in serum and plasma samples. The Total QSOX1 ELISA pairs mAbs 2F1 and 3A10 and has a limit of detection of 109.5 pM, while the QSOX1-L ELISA pairs mAbs 2F1 and 56-3 and has a limit of detection of 10 pM. The levels of total QSOX1 and QSOX1-L were measured in a cohort of paired sera and plasma from 61 donors ≥40 years old and 15 donors <40 years old. No difference in QSOX1 levels was detected between QSOX1-L and QSOX1-S in serum, but the mean concentration of QSOX1-L was found to be 3.21 nM in serum and 5.63 nM in plasma (**p = 0.006). Our tandem ELISAs demonstrate the wide range of concentrations of QSOX1-L and QSOX1-S among individual serum and plasma samples. Since the epitope of mAb 2F1 was mapped to the first CxxC motif at residues C70 and C73 and mAb 56-3 was generated against NEQEQPLGQWHLS in QSOX1-L, our findings support previous research which suggested that QSOX1-L is secreted from cells despite a putative transmembrane domain. The ELISAs reported here may be a useful tool for investigating QSOX1 isoforms as potential biomarkers in cancer and/or heart failure.
Collapse
Affiliation(s)
- Calvin Koelbel
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Yvette Ruiz
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Zijian Wan
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, USA
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, AZ, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Thai Ho
- Divison of Hematology and Medical Oncology, Hollings Cancer Center, Medical University of South Carolina College of Medicine, Charleston, SC, USA
| | - Douglas Lake
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
10
|
Tabasum S, Thapa D, Giobbie-Hurder A, Weirather JL, Campisi M, Schol PJ, Li X, Li J, Yoon CH, Manos MP, Barbie DA, Hodi FS. EDIL3 as an Angiogenic Target of Immune Exclusion Following Checkpoint Blockade. Cancer Immunol Res 2023; 11:1493-1507. [PMID: 37728484 PMCID: PMC10618652 DOI: 10.1158/2326-6066.cir-23-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Immune checkpoint blockade (ICB) has become the standard of care for several solid tumors. Multiple combinatorial approaches have been studied to improve therapeutic efficacy. The combination of antiangiogenic agents and ICB has demonstrated efficacy in several cancers. To improve the mechanistic understanding of synergies with these treatment modalities, we performed screens of sera from long-term responding patients treated with ipilimumab and bevacizumab. We discovered a high-titer antibody response against EGF-like repeats and discoidin I-like domains protein 3 (EDIL3) that correlated with favorable clinical outcomes. EDIL3 is an extracellular protein, previously identified as a marker of poor prognosis in various malignancies. Our Tumor Immune Dysfunction and Exclusion analysis predicted that EDIL3 was associated with immune exclusion signatures for cytotoxic immune cell infiltration and nonresponse to ICB. Cancer-associated fibroblasts (CAF) were predicted as the source of EDIL3 in immune exclusion-related cells. Furthermore, The Cancer Genome Atlas Skin Cutaneous Melanoma (TCGA-SKCM) and CheckMate 064 data analyses correlated high levels of EDIL3 with increased pan-fibroblast TGFβ response, enrichment of angiogenic signatures, and induction of epithelial-to-mesenchymal transition. Our in vitro studies validated EDIL3 overexpression and TGFβ regulation in patient-derived CAFs. In pretreatment serum samples from patients, circulating levels of EDIL3 were associated with circulating levels of VEGF, and like VEGF, EDIL3 increased the angiogenic abilities of patient-derived tumor endothelial cells (TEC). Mechanistically, three-dimensional microfluidic cultures and two-dimensional transmigration assays with TEC endorsed EDIL3-mediated disruption of the lymphocyte function-associated antigen-1 (LFA-1)-ICAM-1 interaction as a possible means of T-cell exclusion. We propose EDIL3 as a potential target for improving the transendothelial migration of immune cells and efficacy of ICB therapy.
Collapse
Affiliation(s)
- Saba Tabasum
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Dinesh Thapa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jason L. Weirather
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Pieter J. Schol
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Xiaoyu Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jingjing Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Charles H. Yoon
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael P. Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Rong W, Shao S, Pu Y, Ji Q, Zhu H. Circulating extracellular vesicle-derived MARCKSL1 is a potential diagnostic non-invasive biomarker in metastatic colorectal cancer patients. Sci Rep 2023; 13:9957. [PMID: 37340044 DOI: 10.1038/s41598-023-37008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Extracellular vesicle-derived proteins are closely related to colorectal cancer metastasis, and early detection and diagnosis of colorectal cancer metastasis is very important to improve the prognosis. In this study, we evaluated the clinical significance of plasma EV-derived MARCKSL1 in differentiating patients with metastatic and nonmetastatic CRC. This study included 78 patients, including 40 patients with nonmetastatic colorectal cancer, 38 patients with metastatic colorectal cancer, and 15 healthy volunteers. The extracellular vesicles extracted from the participants' plasma were characterized through transmission electron microscopy, nanoparticle tracking analysis and western blotting. MARCKSL1 protein expression in the EVs was detected by ELISA, and the diagnostic efficacy of MARCKSL1 alone or in combination with CA125 and lymphocyte levels was evaluated by receiver operating characteristic curve (ROC) analysis. Pearson's correlation test was performed to detect the correlation between MARCKSL1, CA125, lymphocyte level and clinicopathological characteristics of tumors. The present study demonstrated that the level of circulating EV-derived MARCKSL1 in patients with metastatic colorectal cancer was significantly higher than that in patients with nonmetastatic colorectal cancer and healthy people. Combined with CA125 and lymphocyte levels, the best diagnostic effect was achieved, and the area under the ROC curve was 0.7480. Together, our findings indicated that circulating EV-derived MARCKSL1 could be used as a new potential diagnostic biomarker for metastatic CRC.
Collapse
Affiliation(s)
- Wenqing Rong
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyun Shao
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunzhou Pu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Huirong Zhu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
12
|
Peng Z, Tong Z, Ren Z, Ye M, Hu K. Cancer-associated fibroblasts and its derived exosomes: a new perspective for reshaping the tumor microenvironment. Mol Med 2023; 29:66. [PMID: 37217855 DOI: 10.1186/s10020-023-00665-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the most abundant stromal cells within the tumor microenvironment (TME). They extensively communicate with the other cells. Exosome-packed bioactive molecules derived from CAFs can reshape the TME by interacting with other cells and the extracellular matrix, which adds a new perspective for their clinical application in tumor targeted therapy. An in-depth understanding of the biological characteristics of CAF-derived exosomes (CDEs) is critical for depicting the detailed landscape of the TME and developing tailored therapeutic strategies for cancer treatment. In this review, we have summarized the functional roles of CAFs in the TME, particularly focusing on the extensive communication mediated by CDEs that contain biological molecules such as miRNAs, proteins, metabolites, and other components. In addition, we have also highlighted the prospects for diagnostic and therapeutic applications based on CDEs, which could guide the future development of exosome-targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Zhiwei Peng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230022, China
| | - Zhiwei Tong
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230022, China
| | - Zihao Ren
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230022, China
| | - Manping Ye
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Anhui, Hefei, 230032, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Anhui, Hefei, 230022, China.
- Department of General Surgery, Fuyang Affiliated Hospital of Anhui Medical University, Anhui, Fuyang, 236000, China.
| |
Collapse
|
13
|
Xiong L, Wei Y, Jia Q, Chen J, Chen T, Yuan J, Pi C, Liu H, Tang J, Yin S, Zuo Y, Zhang X, Liu F, Yang H, Zhao L. The application of extracellular vesicles in colorectal cancer metastasis and drug resistance: recent advances and trends. J Nanobiotechnology 2023; 21:143. [PMID: 37120534 PMCID: PMC10148416 DOI: 10.1186/s12951-023-01888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023] Open
Abstract
Colorectal cancer (CRC) has high incidence and mortality rates and is one of the most common cancers of the digestive tract worldwide. Metastasis and drug resistance are the main causes of cancer treatment failure. Studies have recently suggested extracellular vesicles (EVs) as a novel mechanism for intercellular communication. They are vesicular particles, which are secreted and released into biological fluids, such as blood, urine, milk, etc., by a variety of cells and carry numerous biologically active molecules, including proteins, nucleic acids, lipids, metabolites, etc. EVs play a crucial part in the metastasis and drug resistance of CRC by delivering cargo to recipient cells and modulating their behavior. An in-depth exploration of EVs might facilitate a comprehensive understanding of the biological behavior of CRC metastasis and drug resistance, which might provide a basis for developing therapeutic strategies. Therefore, considering the specific biological properties of EVs, researchers have attempted to explore their potential as next-generation delivery systems. On the other hand, EVs have also been demonstrated as biomarkers for the prediction, diagnosis, and presumed prognosis of CRC. This review focuses on the role of EVs in regulating the metastasis and chemoresistance of CRC. Moreover, the clinical applications of EVs are also discussed.
Collapse
Affiliation(s)
- Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qiang Jia
- Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiyuan Yuan
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suyu Yin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, People's Republic of China
| | - Furong Liu
- Department of Oncology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, China.
| | - Hongru Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Ling Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
14
|
Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers (Basel) 2023; 15:cancers15041107. [PMID: 36831450 PMCID: PMC9953945 DOI: 10.3390/cancers15041107] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Colorectal cancer (CRC) is a leading public health concern due to its incidence and high mortality rates, highlighting the requirement of an early diagnosis. Evaluation of circulating extracellular vesicles (EVs) might constitute a noninvasive and reliable approach for CRC detection and for patient follow-up because EVs display the molecular features of the cells they originate. EVs are released by almost all cell types and are mainly categorized as exosomes originating from exocytosis of intraluminal vesicles from multivesicular bodies, ectosomes resulting from outward budding of the plasma membrane and apoptotic bodies' ensuing cell shrinkage. These vesicles play a critical role in intercellular communications during physiological and pathological processes. They facilitate CRC progression and premetastatic niche formation, and they enable transfer of chemotherapy resistance to sensitive cells through the local or remote delivery of their lipid, nucleic acid and protein content. On another note, their stability in the bloodstream, their permeation in tissues and their sheltering of packaged material make engineered EVs suitable vectors for efficient delivery of tracers and therapeutic agents for tumor imaging or treatment. Here, we focus on the physiopathological role of EVs in CRCs, their value in the diagnosis and prognosis and ongoing investigations into therapeutic approaches.
Collapse
|
15
|
Mirza S, Bhadresha K, Mughal MJ, McCabe M, Shahbazi R, Ruff P, Penny C. Liquid biopsy approaches and immunotherapy in colorectal cancer for precision medicine: Are we there yet? Front Oncol 2023; 12:1023565. [PMID: 36686736 PMCID: PMC9853908 DOI: 10.3389/fonc.2022.1023565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally, with nearly half of patients detected in the advanced stages. This is due to the fact that symptoms associated with CRC often do not appear until the cancer has reached an advanced stage. This suggests that CRC is a cancer with a slow progression, making it curable and preventive if detected in its early stage. Therefore, there is an urgent clinical need to improve CRC early detection and personalize therapy for patients with this cancer. Recently, liquid biopsy as a non-invasive or nominally invasive approach has attracted considerable interest for its real-time disease monitoring capability through repeated sample analysis. Several studies in CRC have revealed the potential for liquid biopsy application in a real clinical setting using circulating RNA/miRNA, circulating tumor cells (CTCs), exosomes, etc. However, Liquid biopsy still remains a challenge since there are currently no promising results with high specificity and specificity that might be employed as optimal circulatory biomarkers. Therefore, in this review, we conferred the plausible role of less explored liquid biopsy components like mitochondrial DNA (mtDNA), organoid model of CTCs, and circulating cancer-associated fibroblasts (cCAFs); which may allow researchers to develop improved strategies to unravel unfulfilled clinical requirements in CRC patients. Moreover, we have also discussed immunotherapy approaches to improve the prognosis of MSI (Microsatellite Instability) CRC patients using neoantigens and immune cells in the tumor microenvironment (TME) as a liquid biopsy approach in detail.
Collapse
Affiliation(s)
- Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kinjal Bhadresha
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC, United States
| | - Michelle McCabe
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Reza Shahbazi
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Clement Penny,
| |
Collapse
|
16
|
Kuhn M, Zhang Y, Favate J, Morita M, Blucher A, Das S, Liang S, Preet R, Parham LR, Williams KN, Molugu S, Armstrong RJ, Zhang W, Yang J, Hamilton KE, Dixon DA, Mills G, Morgan TK, Shah P, Andres SF. IMP1/IGF2BP1 in human colorectal cancer extracellular vesicles. Am J Physiol Gastrointest Liver Physiol 2022; 323:G571-G585. [PMID: 36194131 PMCID: PMC9678429 DOI: 10.1152/ajpgi.00121.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death. There is an urgent need for new methods of early CRC detection and monitoring to improve patient outcomes. Extracellular vesicles (EVs) are secreted, lipid-bilayer bound, nanoparticles that carry biological cargo throughout the body and in turn exhibit cancer-related biomarker potential. RNA binding proteins (RBPs) are posttranscriptional regulators of gene expression that may provide a link between host cell gene expression and EV phenotypes. Insulin-like growth factor 2 RNA binding protein 1 (IGF2BP1/IMP1) is an RBP that is highly expressed in CRC with higher levels of expression correlating with poor prognosis. IMP1 binds and potently regulates tumor-associated transcripts that may impact CRC EV phenotypes. Our objective was to test whether IMP1 expression levels impact EV secretion and/or cargo. We used RNA sequencing, in vitro CRC cell lines, ex vivo colonoid models, and xenograft mice to test the hypothesis that IMP1 influences EV secretion and/or cargo in human CRC. Our data demonstrate that IMP1 modulates the RNA expression of transcripts associated with extracellular vesicle pathway regulation, but it has no effect on EV secretion levels in vitro or in vivo. Rather, IMP1 appears to affect EV regulation by directly entering EVs in a transformation-dependent manner. These findings suggest that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.NEW & NOTEWORTHY This work demonstrates that the RNA binding protein IGF2BP1/IMP1 alters the transcript profile of colorectal cancer cell (CRC) mRNAs from extracellular vesicle (EV) pathways. IMP1 does not alter EV production or secretion in vitro or in vivo, but rather enters CRC cells where it may further impact EV cargo. Our work shows that IMP1 has the ability to shape EV cargo in human CRC, which could serve as a diagnostic/prognostic circulating tumor biomarker.
Collapse
Affiliation(s)
- Madeline Kuhn
- Pediatric Gastroenterology Division, Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Yang Zhang
- Pediatric Gastroenterology Division, Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - John Favate
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Mayu Morita
- Department of Pathology, Oregon Health and Science University, Portland, Oregon
| | - Aurora Blucher
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Sukanya Das
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Shun Liang
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Ranjan Preet
- Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas
| | - Louis R Parham
- Division of Gastroenterology Hepatology and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kathy N Williams
- Division of Gastroenterology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sudheer Molugu
- Electron Microscopy Resource Lab, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Randall J Armstrong
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Cancer Early Detection Advanced Research, Oregon Health and Science University, Portland, Oregon
| | - Wei Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiegang Yang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn E Hamilton
- Division of Gastroenterology Hepatology and Nutrition, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas Cancer Center, University of Kansas, Lawrence, Kansas
| | - Gordon Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Terry K Morgan
- Department of Pathology, Oregon Health and Science University, Portland, Oregon
- Cancer Early Detection Advanced Research, Oregon Health and Science University, Portland, Oregon
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Sarah F Andres
- Pediatric Gastroenterology Division, Department of Pediatrics, School of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
17
|
Naito Y, Yoshioka Y, Ochiya T. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via extracellular vesicles. Cancer Cell Int 2022; 22:367. [PMID: 36424598 PMCID: PMC9686122 DOI: 10.1186/s12935-022-02784-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication plays an important role in cancer initiation and progression through direct contact and indirect interactions, such as via secretory molecules. Cancer-associated fibroblasts (CAFs) are one of the principal components of such communication with cancer cells, modulating cancer metastasis and tumour mechanics and influencing angiogenesis, the immune system, and therapeutic resistance. Over the past few years, there has been a significant increase in research on extracellular vesicles (EVs) as regulatory agents in intercellular communication. EVs enable the transfer of functional molecules, including proteins, mRNAs and microRNAs (miRNAs), to recipient cells. Cancer cells utilize EVs to dictate the specific characteristics of CAFs within the tumour microenvironment, thereby promoting cancer progression. In response to such "education" by cancer cells, CAFs contribute to cancer progression via EVs. In this review, we summarize experimental data indicating the pivotal roles of EVs in intercellular communication between cancer cells and CAFs.
Collapse
Affiliation(s)
- Yutaka Naito
- grid.410821.e0000 0001 2173 8328Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, 113-8602 Japan
| | - Yusuke Yoshioka
- grid.410793.80000 0001 0663 3325Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023 Japan
| | - Takahiro Ochiya
- grid.410793.80000 0001 0663 3325Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023 Japan
| |
Collapse
|
18
|
Millar‐Haskell CS, Sperduto JL, Slater JH, Thorpe C, Gleghorn JP. Secretion of the disulfide bond generating catalyst QSOX1 from pancreatic tumor cells into the extracellular matrix: association with extracellular vesicles and matrix proteins. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e48. [PMID: 36590238 PMCID: PMC9797115 DOI: 10.1002/jex2.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/21/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Quiescin sulfhydryl oxidase 1 (QSOX1) is a disulfide bond generating catalyst that is overexpressed in solid tumors. Expression of QSOX1 is linked to cancer cell invasion, tumor grade, and extracellular matrix (ECM) protein deposition. While the secreted version of QSOX1 is known to be present in various fluids and secretory tissues, its presence in the ECM of cancer is less understood. To characterize secreted QSOX1, we separated conditioned media based on size and density. We discovered that the majority of secreted QSOX1 resides in the EV-depleted fraction and in the soluble protein fraction. Very little QSOX1 could be detected in the EVP fraction. We used immunofluorescence to image subpopulations of EVs and found QSOX1 in Golgi-derived vesicles and medium/large vesicles, but in general, most extracellular QSOX1 was not attributed to these vesicles. Next, we quantified QSOX1 co-localization with the EV marker Alix. For the medium/large EVs, ~98% contained QSOX1 when fibronectin was used as a coating. However, on collagen coatings, only ~60% of these vesicles contained QSOX1, suggesting differences in EV cargo based on ECM coated surfaces. About 10% of small EVs co-localized with QSOX1 on every ECM protein surface except for collagen (0.64%). We next investigated adhesion of QSOX1 to ECM proteins in vitro and in situ and found that QSOX1 preferentially adheres to fibronectin, laminins, and Matrigel compared to gelatin and collagen. This mechanism was found to be, in part, mediated by the formation of mixed disulfides between QSOX1 and cysteine-rich ECM proteins. In summary, we found that QSOX1 (1) is in subpopulations of medium/large EVs, (2) seems to interact with small Alix+ EVs, and (3) adheres to cysteine-rich ECM proteins, potentially through the formation of intermediate disulfides. These observations offer significant insight into how enzymes, such as QSOX1, can facilitate matrix remodeling events in solid tumor progression.
Collapse
Affiliation(s)
| | - John L. Sperduto
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - John H. Slater
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Colin Thorpe
- Department of Chemistry & BiochemistryUniversity of DelawareNewarkDelawareUSA
| | - Jason P. Gleghorn
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
19
|
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, Sethi G, Zarrabi A, Kumar AP, Tan SC, Papadakis M, Alexiou A, Islam MA, Mostafavi E, Ashrafizadeh M. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol 2022; 15:83. [PMID: 35765040 PMCID: PMC9238168 DOI: 10.1186/s13045-022-01305-4] [Citation(s) in RCA: 229] [Impact Index Per Article: 114.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide, and the factors responsible for its progression need to be elucidated. Exosomes are structures with an average size of 100 nm that can transport proteins, lipids, and nucleic acids. This review focuses on the role of exosomes in cancer progression and therapy. We discuss how exosomes are able to modulate components of the tumor microenvironment and influence proliferation and migration rates of cancer cells. We also highlight that, depending on their cargo, exosomes can suppress or promote tumor cell progression and can enhance or reduce cancer cell response to radio- and chemo-therapies. In addition, we describe how exosomes can trigger chronic inflammation and lead to immune evasion and tumor progression by focusing on their ability to transfer non-coding RNAs between cells and modulate other molecular signaling pathways such as PTEN and PI3K/Akt in cancer. Subsequently, we discuss the use of exosomes as carriers of anti-tumor agents and genetic tools to control cancer progression. We then discuss the role of tumor-derived exosomes in carcinogenesis. Finally, we devote a section to the study of exosomes as diagnostic and prognostic tools in clinical courses that is important for the treatment of cancer patients. This review provides a comprehensive understanding of the role of exosomes in cancer therapy, focusing on their therapeutic value in cancer progression and remodeling of the tumor microenvironment.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohamad Javad Naghdi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sina Sabet
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Amin Khoshbakht
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia.,AFNP Med Austria, Vienna, Austria
| | - Md Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey.
| |
Collapse
|
20
|
Shaba E, Vantaggiato L, Governini L, Haxhiu A, Sebastiani G, Fignani D, Grieco GE, Bergantini L, Bini L, Landi C. Multi-Omics Integrative Approach of Extracellular Vesicles: A Future Challenging Milestone. Proteomes 2022; 10:proteomes10020012. [PMID: 35645370 PMCID: PMC9149947 DOI: 10.3390/proteomes10020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
In the era of multi-omic sciences, dogma on singular cause-effect in physio-pathological processes is overcome and system biology approaches have been providing new perspectives to see through. In this context, extracellular vesicles (EVs) are offering a new level of complexity, given their role in cellular communication and their activity as mediators of specific signals to target cells or tissues. Indeed, their heterogeneity in terms of content, function, origin and potentiality contribute to the cross-interaction of almost every molecular process occurring in a complex system. Such features make EVs proper biological systems being, therefore, optimal targets of omic sciences. Currently, most studies focus on dissecting EVs content in order to either characterize it or to explore its role in various pathogenic processes at transcriptomic, proteomic, metabolomic, lipidomic and genomic levels. Despite valuable results being provided by individual omic studies, the categorization of EVs biological data might represent a limit to be overcome. For this reason, a multi-omic integrative approach might contribute to explore EVs function, their tissue-specific origin and their potentiality. This review summarizes the state-of-the-art of EVs omic studies, addressing recent research on the integration of EVs multi-level biological data and challenging developments in EVs origin.
Collapse
Affiliation(s)
- Enxhi Shaba
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
- Correspondence:
| | - Lorenza Vantaggiato
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| | - Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (L.G.); (A.H.)
| | - Alesandro Haxhiu
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (L.G.); (A.H.)
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy;
| | - Luca Bini
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| | - Claudia Landi
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| |
Collapse
|
21
|
Zhou H, Zhu L, Song J, Wang G, Li P, Li W, Luo P, Sun X, Wu J, Liu Y, Zhu S, Zhang Y. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol Cancer 2022; 21:86. [PMID: 35337361 PMCID: PMC8951719 DOI: 10.1186/s12943-022-01556-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and a leading cause of carcinogenic death. To date, surgical resection is regarded as the gold standard by the operator for clinical decisions. Because conventional tissue biopsy is invasive and only a small sample can sometimes be obtained, it is unable to represent the heterogeneity of tumor or dynamically monitor tumor progression. Therefore, there is an urgent need to find a new minimally invasive or noninvasive diagnostic strategy to detect CRC at an early stage and monitor CRC recurrence. Over the past years, a new diagnostic concept called “liquid biopsy” has gained much attention. Liquid biopsy is noninvasive, allowing repeated analysis and real-time monitoring of tumor recurrence, metastasis or therapeutic responses. With the advanced development of new molecular techniques in CRC, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, and tumor-educated platelet (TEP) detection have achieved interesting and inspiring results as the most prominent liquid biopsy markers. In this review, we focused on some clinical applications of CTCs, ctDNA, exosomes and TEPs and discuss promising future applications to solve unmet clinical needs in CRC patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Liyong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jun Song
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Guohui Wang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Pengzhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Weizheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ping Luo
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xulong Sun
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jin Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Yunze Liu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Shaihong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Yi Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
22
|
Raza A, Khan AQ, Inchakalody VP, Mestiri S, Yoosuf ZSKM, Bedhiafi T, El-Ella DMA, Taib N, Hydrose S, Akbar S, Fernandes Q, Al-Zaidan L, Krishnankutty R, Merhi M, Uddin S, Dermime S. Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer. J Exp Clin Cancer Res 2022; 41:99. [PMID: 35292091 PMCID: PMC8922757 DOI: 10.1186/s13046-022-02318-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The diagnosis, prognosis and therapeutic monitoring of CRC depends largely on tissue biopsy. However, due to tumor heterogeneity and limitations such as invasiveness, high cost and limited applicability in longitudinal monitoring, liquid biopsy has gathered immense attention in CRC. Liquid biopsy has several advantages over tissue biopsy including ease of sampling, effective monitoring, and longitudinal assessment of treatment dynamics. Furthermore, the importance of liquid biopsy is signified by approval of several liquid biopsy assays by regulatory bodies indicating the powerful approach of liquid biopsy for comprehensive CRC screening, diagnostic and prognostics. Several liquid biopsy biomarkers such as novel components of the microbiome, non-coding RNAs, extracellular vesicles and circulating tumor DNA are extensively being researched for their role in CRC management. Majority of these components have shown promising results on their clinical application in CRC including early detection, observe tumor heterogeneity for treatment and response, prediction of metastases and relapse and detection of minimal residual disease. Therefore, in this review, we aim to provide updated information on various novel liquid biopsy markers such as a) oral microbiota related bacterial network b) gut microbiome-associated serum metabolites c) PIWI-interacting RNAs (piRNAs), microRNA(miRNAs), Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and d) circulating tumor DNAs (ctDNA) and circulating tumor cells (CTC) for their role in disease diagnosis, prognosis, treatment monitoring and their applicability for personalized management of CRC.
Collapse
Affiliation(s)
- Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | | | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
23
|
Li Q, Wang D, Ding D, Feng Y, Hou R, Liu D, Lin C, Gao Y. The Role and Application of Exosomes in Gastric and Colorectal Cancer. Front Pharmacol 2022; 12:825475. [PMID: 35111071 PMCID: PMC8801572 DOI: 10.3389/fphar.2021.825475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022] Open
Abstract
Gastric cancer and colorectal cancer are malignant tumors found in the human gastrointestinal tract. Bidirectional communication between tumor cells and their microenvironment can be realized through the transmission of exosomes—small, cell-derived vesicles containing complex RNA and proteins. Exosomes play an important role in the proliferation, metastasis, immune response, and drug resistance of cancer cells. In this review, we focus on the role and application of exosomes in gastric and colorectal cancer. We also summarize the role of exosomes secreted by different types of cells in tumor development and as drug carriers in cancer treatment.
Collapse
Affiliation(s)
- Qirong Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dayong Ding
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ye Feng
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ruizhi Hou
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dianfeng Liu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongjian Gao
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Rhode P, Mehdorn M, Lyros O, Kahlert C, Kurth T, Venus T, Schierle K, Estrela-Lopis I, Jansen-Winkeln B, Lordick F, Gockel I, Thieme R. Characterization of Total RNA, CD44, FASN, and PTEN mRNAs from Extracellular Vesicles as Biomarkers in Gastric Cancer Patients. Cancers (Basel) 2021; 13:cancers13235975. [PMID: 34885085 PMCID: PMC8656496 DOI: 10.3390/cancers13235975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Liquid biopsy is an easily accessible and non-invasive method to gain information about tumor diseases. The purpose of our study was to determine the value of extracellular vesicle-derived mRNAs as biomarkers for the diagnosis of gastric cancer and the response to its treatment. In a cohort of 87 gastric cancer patients and a control group of 14 individuals, we analyzed the absolute RNA concentration from extracellular vesicles (EV) and the relative levels of FASN, PTEN, and CD44 mRNA, and their correlation with clinico-pathological features. These correlated with treatment, tumor grading, and the pathological subtype according to Laurén’s classification. This might reflect their potential as both diagnostic and therapeutic predictors. Abstract In-depth characterization has introduced new molecular subtypes of gastric cancer (GC). To identify these, new approaches and techniques are required. Liquid biopsies are trendsetting and provide an easy and feasible method to identify and to monitor GC patients. In a prospective cohort of 87 GC patients, extracellular vesicles (EVs) were isolated from 250 µL of plasma. The total RNA was isolated with TRIZOL. The total RNA amount and the relative mRNA levels of CD44, PTEN, and FASN were measured by qRT-PCR. The isolation of EVs and their contained mRNA was possible in all 87 samples investigated. The relative mRNA levels of PTEN were higher in patients already treated by chemotherapy than in chemo-naïve patients. In patients who had undergone neoadjuvant chemotherapy followed by gastrectomy, a decrease in the total RNA amount was observed after neoadjuvant chemotherapy and gastrectomy, while FASN and CD44 mRNA levels decreased only after gastrectomy. The amount of RNA and the relative mRNA levels of FASN and CD44 in EVs were affected more significantly by chemotherapy and gastrectomy than by chemotherapy alone. Therefore, they are a potential biomarker for monitoring treatment response. Future analyses are needed to identify GC-specific key RNAs in EVs, which could be used for the diagnosis of gastric cancer patients in order to determine their molecular subtype and to accompany the therapeutic response.
Collapse
Affiliation(s)
- Philipp Rhode
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - Matthias Mehdorn
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - Orestis Lyros
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - Christoph Kahlert
- Department for Visceral, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, D-01307 Dresden, Germany;
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Technische Universität Dresden, D-01307 Dresden, Germany;
| | - Tom Venus
- Institute of Medical Physics and Biophysics, University of Leipzig, D-0407 Leipzig, Germany; (T.V.); (I.E.-L.)
| | - Katrin Schierle
- Institute of Pathology, University Hospital Leipzig, D-04103 Leipzig, Germany;
| | - Irina Estrela-Lopis
- Institute of Medical Physics and Biophysics, University of Leipzig, D-0407 Leipzig, Germany; (T.V.); (I.E.-L.)
| | - Boris Jansen-Winkeln
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - Florian Lordick
- Department of Oncology, Gastroenterology, Hepatology, Pulmonology and Infectious Diseases, University Hospital Leipzig, D-04103 Leipzig, Germany;
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital Leipzig, D-04103 Leipzig, Germany; (P.R.); (M.M.); (O.L.); (B.J.-W.); (I.G.)
- Correspondence:
| |
Collapse
|