1
|
Chen SL, Hu D, Chen TZ, Shen SY, Zhao CF, Wang C, Tong SY, Liu Z, Lin SH, Jin LX, He YB, Zhang ZZ. Pan-Cancer Screening and Validation of CALU's Role in EMT Regulation and Tumor Microenvironment in Triple-Negative Breast Cancer. J Inflamm Res 2024; 17:6743-6764. [PMID: 39345892 PMCID: PMC11439346 DOI: 10.2147/jir.s477846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Purpose Cancer-associated fibroblasts (CAFs) significantly contribute to tumor progression and the development of resistance to therapies across a range of malignancies, notably breast cancer. This study aims to elucidate the specific role and prognostic relevance of CALU across multiple cancer types. Patients and Methods The association between CALU expression and prognosis, along with clinical characteristics in BRCA, HNSC, KIRP, LGG, and LIHC, was analyzed using data from the TCGA, GTEx, and GEO databases. Transcriptomic analysis of TCGA BRCA project data provided insights into the interaction between CALU and epithelial-mesenchymal transition (EMT) marker genes. Using TIMER and TISCH databases, the correlation between CALU expression and tumor microenvironment infiltration was assessed, alongside an evaluation of CALU expression across various cell types. Furthermore, CALU's influence on TNBC BRCA cell lines was explored, and its expression in tumor tissues was confirmed through immunohistochemical analysis of clinical samples. Results This study revealed a consistent upregulation of CALU across several tumor types, including BRCA, KIRP, LIHC, HNSC, and LGG, with elevated CALU expression being associated with unfavorable prognoses. CALU expression was particularly enhanced in clinical contexts linked to poor outcomes. Genomic analysis identified copy number alterations as the principal factor driving CALU overexpression. Additionally, a positive correlation between CALU expression and CAF infiltration was observed, along with its involvement in the EMT process in both CAFs and malignant cells. In vitro experiments demonstrated that CALU is highly expressed in TNBC-BRCA cell lines, and knockdown of CALU effectively reversed EMT progression and inhibited cellular migration. Immunohistochemical analysis of clinical samples corroborated the elevated expression of CALU in tumors, along with alterations in EMT markers. Conclusion This comprehensive pan-cancer analysis underscores CALU's critical role in modulating the tumor microenvironment and facilitating cell migration via the EMT pathway, identifying it as a potential therapeutic target.
Collapse
Affiliation(s)
- Shi-liang Chen
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People’s Republic of China
| | - Dan Hu
- Department of Clinical Lab, The Cixi Integrated Traditional Chinese and Western Medicine Medical and Health Group Cixi Red Cross Hospital, Cixi, People’s Republic of China
| | - Tian-zhu Chen
- Department of Pathology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People’s Republic of China
| | - Si-yu Shen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Chen-fei Zhao
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People’s Republic of China
| | - Cong Wang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People’s Republic of China
| | - Shi-yuan Tong
- The Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, People’s Republic of China
| | - Zhao Liu
- Department of General Surgery, Shaoxing Central Hospital, Shaoxing, People’s Republic of China
| | - Shao-hua Lin
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People’s Republic of China
| | - Li-xia Jin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yi-bo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People’s Republic of China
| | - Zhe-zhong Zhang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Liu X, Yang B, Huang X, Yan W, Zhang Y, Hu G. Identifying Lymph Node Metastasis-Related Factors in Breast Cancer Using Differential Modular and Mutational Structural Analysis. Interdiscip Sci 2023; 15:525-541. [PMID: 37115388 DOI: 10.1007/s12539-023-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Complex diseases are generally caused by disorders of biological networks and/or mutations in multiple genes. Comparisons of network topologies between different disease states can highlight key factors in their dynamic processes. Here, we propose a differential modular analysis approach that integrates protein-protein interactions with gene expression profiles for modular analysis, and introduces inter-modular edges and date hubs to identify the "core network module" that quantifies the significant phenotypic variation. Then, based on this core network module, key factors, including functional protein-protein interactions, pathways, and driver mutations, are predicted by the topological-functional connection score and structural modeling. We applied this approach to analyze the lymph node metastasis (LNM) process in breast cancer. The functional enrichment analysis showed that both inter-modular edges and date hubs play important roles in cancer metastasis and invasion, and in metastasis hallmarks. The structural mutation analysis suggested that the LNM of breast cancer may be the outcome of the dysfunction of rearranged during transfection (RET) proto-oncogene-related interactions and the non-canonical calcium signaling pathway via an allosteric mutation of RET. We believe that the proposed method can provide new insights into disease progression such as cancer metastasis.
Collapse
Affiliation(s)
- Xingyi Liu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Bin Yang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xinpeng Huang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wenying Yan
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou, 215123, Jiangsu, China.
| | - Yujuan Zhang
- Experimental Center of Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
3
|
Chen S, Liu Y, Fong DYT, Zhou J, Chen H, Wan C. Health-related quality of life and its influencing factors in patients with breast cancer based on the scale QLICP-BR. Sci Rep 2023; 13:15176. [PMID: 37704676 PMCID: PMC10499782 DOI: 10.1038/s41598-023-41809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Breast cancer is the most common cancer and the leading cause of cancer death among females worldwide. During the past 15 years, quality of life (QOL) has become an important aspect of breast cancer treatment. The purpose of this study was to evaluate QOL of breast cancer patients in China, and investigate its associations with sociodemographic and clinical variables. A cross-sectional study was conducted in 246 breast cancer patients in China. Recruited patients were surveyed for QOL using the QOL instruments for cancer patients-breast cancer QLICP-BR (V2.0). We assessed the associations between potential influencing factors and QOL using multiple linear regression models. The general mean QOL score for our population was 70.24 with SD = 8.70. Results indicated that medical insurance, drinking history, alkaline phosphatase, serum chloride ion level, serum calcium ion level, serum phosphorus ion level, mean corpuscular volume, mean corpuscular hemoglobin, red cell volume distribution width and platelet had significant associations with QOL of breast cancer patients. Our results emphasized that many factors are affecting QOL of breast cancer patients, which may provide a reference for targeted management or intervention strategies of breast cancer patients to improve their QOL.
Collapse
Affiliation(s)
- Shu Chen
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
- Key Laboratory for Quality of Life and Psychological Assessment and Intervention, Research Center for Quality of Life and Applied Psychology, Guangdong Medical University, Dongguan, China
| | - Yuxi Liu
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | | | - Jiali Zhou
- Key Laboratory for Quality of Life and Psychological Assessment and Intervention, Research Center for Quality of Life and Applied Psychology, Guangdong Medical University, Dongguan, China
| | - Huanwei Chen
- Central Hospital of Guangdong Nongken, Zhanjiang, China
| | - Chonghua Wan
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China.
- Key Laboratory for Quality of Life and Psychological Assessment and Intervention, Research Center for Quality of Life and Applied Psychology, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
4
|
Saldías MP, Cruz P, Silva I, Orellana-Serradell O, Lavanderos B, Maureira D, Pinto R, Cerda O. The Cytoplasmic Region of SARAF Reduces Triple-Negative Breast Cancer Metastasis through the Regulation of Store-Operated Calcium Entry. Int J Mol Sci 2023; 24:ijms24065306. [PMID: 36982380 PMCID: PMC10049260 DOI: 10.3390/ijms24065306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Triple-negative breast cancer has a poor prognosis and is non-responsive to first-line therapies; hence, new therapeutic strategies are needed. Enhanced store-operated Ca2+ entry (SOCE) has been widely described as a contributing factor to tumorigenic behavior in several tumor types, particularly in breast cancer cells. SOCE-associated regulatory factor (SARAF) acts as an inhibitor of the SOCE response and, therefore, can be a potential antitumor factor. Herein, we generated a C-terminal SARAF fragment to evaluate the effect of overexpression of this peptide on the malignancy of triple-negative breast cancer cell lines. Using both in vitro and in vivo approaches, we showed that overexpression of the C-terminal SARAF fragment reduced proliferation, cell migration, and the invasion of murine and human breast cancer cells by decreasing the SOCE response. Our data suggest that regulating the activity of the SOCE response via SARAF activity might constitute the basis for further alternative therapeutic strategies for triple-negative breast cancer.
Collapse
Affiliation(s)
- María Paz Saldías
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago 8380453, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Pablo Cruz
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago 8380453, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Ian Silva
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago 8380453, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Octavio Orellana-Serradell
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago 8380453, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Boris Lavanderos
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago 8380453, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Diego Maureira
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago 8380453, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Raquel Pinto
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago 8380453, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago 8380453, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: ; Tel.: +56-2-29786909
| |
Collapse
|
5
|
Elevation of Cytoplasmic Calcium Suppresses Microtentacle Formation and Function in Breast Tumor Cells. Cancers (Basel) 2023; 15:cancers15030884. [PMID: 36765843 PMCID: PMC9913253 DOI: 10.3390/cancers15030884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Cytoskeletal remodeling in circulating tumor cells (CTCs) facilitates metastatic spread. Previous oncology studies examine sustained aberrant calcium (Ca2+) signaling and cytoskeletal remodeling scrutinizing long-term phenotypes such as tumorigenesis and metastasis. The significance of acute Ca2+ signaling in tumor cells that occur within seconds to minutes is overlooked. This study investigates rapid cytoplasmic Ca2+ elevation in suspended cells on actin and tubulin cytoskeletal rearrangements and the metastatic microtentacle (McTN) phenotype. The compounds Ionomycin and Thapsigargin acutely increase cytoplasmic Ca2+, suppressing McTNs in the metastatic breast cancer cell lines MDA-MB-231 and MDA-MB-436. Functional decreases in McTN-mediated reattachment and cell clustering during the first 24 h of treatment are not attributed to cytotoxicity. Rapid cytoplasmic Ca2+ elevation was correlated to Ca2+-induced actin cortex contraction and rearrangement via myosin light chain 2 and cofilin activity, while the inhibition of actin polymerization with Latrunculin A reversed Ca2+-mediated McTN suppression. Preclinical and phase 1 and 2 clinical trial data have established Thapsigargin derivatives as cytotoxic anticancer agents. The results from this study suggest an alternative molecular mechanism by which these compounds act, and proof-of-principle Ca2+-modulating compounds can rapidly induce morphological changes in free-floating tumor cells to reduce metastatic phenotypes.
Collapse
|
6
|
Beasley HK, Widatalla SE, Whalen DS, Williams SD, Korolkova OY, Namba C, Pratap S, Ochieng J, Sakwe AM. Identification of MAGEC2/CT10 as a High Calcium-Inducible Gene in Triple-Negative Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:816598. [PMID: 35355564 PMCID: PMC8959981 DOI: 10.3389/fendo.2022.816598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
The expression of the melanoma/cancer-testis antigen MAGEC2/CT10 is restricted to germline cells, but like most cancer-testis antigens, it is frequently upregulated in advanced breast tumors and other malignant tumors. However, the physiological cues that trigger the expression of this gene during malignancy remain unknown. Given that malignant breast cancer is often associated with skeletal metastasis and co-morbidities such as cancer-induced hypercalcemia, we evaluated the effect of high Ca2+ on the calcium-sensing receptor (CaSR) and potential mechanisms underlying the survival of triple-negative breast cancer (TNBC) cells at high Ca2+. We show that chronic exposure of TNBC cells to high Ca2+ decreased the sensitivity of CaSR to Ca2+ but stimulated tumor cell growth and migration. Furthermore, high extracellular Ca2+ also stimulated the expression of early response genes such as FOS/FOSB and a unique set of genes associated with malignant tumors, including MAGEC2. We further show that the MAGEC2 proximal promoter is Ca2+ inducible and that FOS/FOSB binds to this promoter in a Ca2+- dependent manner. Finally, downregulation of MAGEC2 strongly inhibited the growth of TNBC cells in vitro. These data suggest for the first time that MAGEC2 is a high Ca2+ inducible gene and that aberrant expression of MAGEC2 in malignant TNBC tissues is at least in part mediated by an increase in circulating Ca2+via the AP-1 transcription factor.
Collapse
Affiliation(s)
- Heather K. Beasley
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Sarrah E. Widatalla
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Diva S. Whalen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Stephen D. Williams
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Olga Y. Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Clementine Namba
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Siddharth Pratap
- Bioinformatics Core, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Josiah Ochieng
- Bioinformatics Core, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Amos M. Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
- *Correspondence: Amos M. Sakwe,
| |
Collapse
|
7
|
Vaibavi SR, Sivasubramaniapandian M, Vaippully R, Edwina P, Roy B, Bajpai SK. Calcium-channel-blockers exhibit divergent regulation of cancer extravasation through the mechanical properties of cancer cells and underlying vascular endothelial cells. Cell Biochem Biophys 2021; 80:171-190. [PMID: 34643835 DOI: 10.1007/s12013-021-01035-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022]
Abstract
Cardiovascular and cancer illnesses often co-exist, share pathological pathways, and complicate therapy. In the context of the potential oncological role of cardiovascular-antihypertensive drugs (AHD), here we examine the role of calcium-channel blocking drugs on mechanics of extravasating cancer cells, choosing two clinically-approved calcium-channel blockers (CCB): Verapamil-hydrochloride and Nifedipine, as model AHD to simultaneously target cancer cells (MCF7 and or MDA231) and an underlying monolayer of endothelial cells (HUVEC). First, live-cell microscopy shows that exposure to Nifedipine increases the spreading-area, migration-distance, and frequency of transmigration of MCF-7 cells through the HUVEC monolayer, whereas Verapamil has the opposite effect. Next, impedance-spectroscopy shows that for monolayers of either endothelial or cancer cells, Nifedipine-treatment alone decreases the impedance of both cases, suggesting compromised cell-cell integrity. Furthermore, upon co-culturing MCF-7 on the HUVEC monolayers, Nifedipine-treated MCF-7 cells exhibit weaker impedance than Verapamil-treated MCF-7 cells. Following, fluorescent staining of CCB-treated cytoskeleton, focal adhesions, and cell-cell junction also indicated that Nifedipine treatment diminished the cell-cell integrity, whereas verapamil treatment preserved the integrity. Since CCBs regulate intracellular Ca2+, we next investigated if cancer cell's exposure to CCBs regulates calcium-dependent processes critical to extravasation, specifically traction and mechanics of plasma membrane. Towards this end, first, we quantified the 2D-cellular traction of cells in response to CCBs. Results show that exposure to F-actin depolymerizing drug decreases traction stress significantly only for Nifedipine-treated cells, suggesting an actin-independent mechanism of Verapamil activity. Next, using an optical tweezer to quantify the mechanics of plasma membrane (PM), we observe that under constant, externally-applied tensile strain, PM of Nifedipine-treated cells exhibits smaller relaxation-time than Verapamil and untreated cells. Finally, actin depolymerization significantly decreases MSD only for Verapamil treated cancer-cells and endothelial cells and not for Nifedipine-treated cells. Together, our results show that CCBs can have varied, mechanics-regulating effects on cancer-cell transmigration across endothelial monolayers. A judicious choice of CCBs is critical to minimizing the pro-metastatic effects of antihypertension therapy.
Collapse
Affiliation(s)
- S R Vaibavi
- Department of Applied Mechanics, Indian Institute of Technology, Madras, India
| | | | - Rahul Vaippully
- Department of Physics, Indian Institute of Technology, Madras, India
| | - Privita Edwina
- Department of Applied Mechanics, Indian Institute of Technology, Madras, India
| | - Basudev Roy
- Department of Physics, Indian Institute of Technology, Madras, India
| | | |
Collapse
|