1
|
Bardhan A, Banerjee A, Pal DK, Ghosh A. HAGLR, A Long Non-coding RNA of Potential Tumor Suppressive Function in Clear Cell Renal Cell Carcinoma: Diagnostic and Prognostic Implications. Mol Biotechnol 2024; 66:3485-3497. [PMID: 37955777 DOI: 10.1007/s12033-023-00948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Research works suggested the role of long non-coding RNAs (lncRNAs) in pathogenesis of clear cell renal cell carcinoma (ccRCC). lncRNA HAGLR is studied in several malignancies, but not in ccRCC. From The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) dataset, we analyzed molecular alterations of HAGLR and constructed a competitive endogenous RNA (ceRNA) network with related miRNAs and mRNAs. Gene Ontology analysis was done to identify important pathways enriched with HAGLR recovered mRNAs. Clinical importance of HAGLR and related mRNAs was assessed and, the impact of selected mRNA-encoding genes on tumor immune infiltration was studied using TIMER. HAGLR expression was reduced in ccRCC than in normal kidneys, and correlated significantly with gene promoter methylation. Low HAGLR level in tumors showed diagnostic potency, and was associated with clinicopathological parameters (stage/grade/metastasis) and poor patient survival. The HAGLR-associated ceRNA network constituted 13 miRNAs and 23 mRNAs differentially expressed in the TCGA-KIRC dataset. From HAGLR recovered mRNA-encoding genes, we developed a 5-gene (PAQR5, ARHGAP24, HABP4, PDLIM5, and RPS6KA2) prognostic signature in the training dataset and validated it in testing as well as entire datasets. The expression level of signature genes showed negative correlation with tumor infiltration of immune cells having adverse impact on ccRCC prognosis and also with tumor derived chemokines facilitating the infiltration. In conclusion, HAGLR seemed to play a tumor suppressive role in ccRCC. HAGLR and associated gene signature may have implementation in improving existing prognostic measure and developing effective immunotherapeutic strategies for ccRCC.
Collapse
Affiliation(s)
- Abhishek Bardhan
- Genetics of Non-communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Anwesha Banerjee
- Genetics of Non-communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | | | - Amlan Ghosh
- Genetics of Non-communicable Diseases, Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
2
|
Li X, Wen Z, Li R, Lu C, Chen W, Chen X, Huang G, Ni L, Lai Y, Tao L. Profiling of Serum miRNAs Constructs a Diagnostic 3-miRNA Panel for Clear-Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2024; 22:23-32. [PMID: 37574436 DOI: 10.1016/j.clgc.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/24/2023] [Accepted: 07/01/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Renal cell carcinoma (RCC) carries significant morbidity and mortality globally with an increasing incidence per year predominantly represented by clear-cell renal cell carcinoma (ccRCC) which accounts for 70-80% of all RCC cases. MicroRNAs(miRNAs) implicate tumor development and progression in epigenetic mechanisms and available profiling of serum miRNAs potentiate them as diagnostic markers for various cancers. MATERIALS AND METHODS A total of 108 ccRCC patients and 112 normal controls were enrolled. A 3-stage experiment was conducted to identify differentially expressed serum miRNAs in ccRCC and establish a diagnostic miRNAs panel. Additionally, bioinformatic analysis was employed to predict selected miRNAs' target genes, preform functional annotation and explore the roles in ccRCC. RESULTS MiR-429, miR-10a-5p, miR-154-5p were found to be up-regulated miRNAs. Inversely, miR-27a-3p and miR-221-3p were found to be down-regulated miRNAs. These 5 miRNAs were selected to construct diagnostic panel by backward stepwise logistic regression analysis and ultimately a 3-miRNA panel (miR-429, miR-10a-5p and miR-27a-3p) was established [area under the curve (AUC) = 0.897, sensitivity = 85.0%, specificity = 83.3%]. CONCLUSION The panel of 3-miRNA holds promise as a novel, convenient, and noninvasive diagnostic method for early detection of ccRCC.
Collapse
Affiliation(s)
- Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zhenyu Wen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Anhui Medical University, Hefei, Anhui, 230032, China
| | - Chong Lu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenkang Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Liangchao Ni
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China; Shantou University Medical College, Shantou, Guangdong, 515041, China.
| | - Lingzhi Tao
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
3
|
Abdolahi F, Shahraki A, Sheervalilou R, Mortazavi SS. Identification of differentially expressed genes associated with the pathogenesis of gastric cancer by bioinformatics analysis. BMC Med Genomics 2023; 16:311. [PMID: 38041130 PMCID: PMC10690994 DOI: 10.1186/s12920-023-01720-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/29/2023] [Indexed: 12/03/2023] Open
Abstract
AIM Gastric cancer (GC) is one of the most diagnosed cancers worldwide. GC is a heterogeneous disease whose pathogenesis has not been entirely understood. Besides, the GC prognosis for patients remains poor. Hence, finding reliable biomarkers and therapeutic targets for GC patients is urgently needed. METHODS GSE54129 and GSE26942 datasets were downloaded from Gene Expression Omnibus (GEO) database to detect differentially expressed genes (DEGs). Then, gene set enrichment analyses and protein-protein interactions were investigated. Afterward, ten hub genes were identified from the constructed network of DEGs. Then, the expression of hub genes in GC was validated. Performing survival analysis, the prognostic value of each hub gene in GC samples was investigated. Finally, the databases were used to predict microRNAs that could regulate the hub genes. Eventually, top miRNAs with more interactions with the list of hub genes were introduced. RESULTS In total, 203 overlapping DEGs were identified between both datasets. The main enriched KEGG pathway was "Protein digestion and absorption." The most significant identified GO terms included "primary alcohol metabolic process," "basal part of cell," and "extracellular matrix structural constituent conferring tensile strength." Identified hub modules were COL1A1, COL1A2, TIMP1, SPP1, COL5A2, THBS2, COL4A1, MUC6, CXCL8, and BGN. The overexpression of seven hub genes was associated with overall survival. Moreover, among the list of selected miRNAs, hsa-miR-27a-3, hsa-miR-941, hsa-miR-129-2-3p, and hsa-miR-1-3p, were introduced as top miRNAs targeting more than five hub genes. CONCLUSIONS The present study identified ten genes associated with GC, which may help discover novel prognostic and diagnostic biomarkers as well as therapeutic targets for GC. Our results may advance the understanding of GC occurrence and progression.
Collapse
Affiliation(s)
- Fatemeh Abdolahi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Ali Shahraki
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | | |
Collapse
|
4
|
MiRNAs and snoRNAs in Bone Metastasis: Functional Roles and Clinical Potential. Cancers (Basel) 2022; 15:cancers15010242. [PMID: 36612237 PMCID: PMC9818347 DOI: 10.3390/cancers15010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Bone is a frequent site of metastasis. Bone metastasis is associated with a short-term prognosis in cancer patients, and current treatments aim to slow its growth, but are rarely curative. Thus, revealing molecular mechanisms that explain why metastatic cells are attracted to the bone micro-environment, and how they successfully settle in the bone marrow-taking advantage over bone resident cells-and grow into macro-metastasis, is essential to propose new therapeutic approaches. MicroRNAs and snoRNAs are two classes of small non-coding RNAs that post-transcriptionally regulate gene expression. Recently, microRNAs and snoRNAs have been pointed out as important players in bone metastasis by (i) preparing the pre-metastatic niche, directly and indirectly affecting the activities of osteoclasts and osteoblasts, (ii) promoting metastatic properties within cancer cells, and (iii) acting as mediators within cells to support cancer cell growth in bone. This review aims to highlight the importance of microRNAs and snoRNAs in metastasis, specifically in bone, and how their roles can be linked together. We then discuss how microRNAs and snoRNAs are secreted by cancer cells and be found as extracellular vesicle cargo. Finally, we provide evidence of how microRNAs and snoRNAs can be potential therapeutic targets, at least in pre-clinical settings, and how their detection in liquid biopsies can be a useful diagnostic and/or prognostic biomarker to predict the risk of relapse in cancer patients.
Collapse
|
5
|
Wang Y, Shen Z, Mo S, Dai L, Song B, Gu W, Ding X, Zhang X. Construction and validation of a novel ten miRNA-pair based signature for the prognosis of clear cell renal cell carcinoma. Transl Oncol 2022; 25:101519. [PMID: 35998436 PMCID: PMC9421317 DOI: 10.1016/j.tranon.2022.101519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most predominate pathological subtype of renal cell carcinoma, causing a recurrence or metastasis rate as high as 20% to 40% after operation, for which effective prognostic signature is urgently needed. METHODS The mRNA and miRNA profiles of ccRCC specimens were collected from the Cancer Genome Atlas. MiRNA-pair risk score (miPRS) for each miRNA pair was generated as a signature and validated by univariate and multivariate Cox proportional hazards regression analysis. Functional enrichment was performed, and immune cells infiltration, as well as tumor mutation burden (TMB), and immunophenoscore (IPS) were evaluated between high and low miPRS groups. Target gene-prediction and differentially expressed gene-analysis were performed based on databases of miRDB, miRTarBase, and TargetScan. Multivariate Cox proportional hazards regression analysis was adopted to establish the prognostic model and Kaplan-Meier survival analysis was performed. FINDINGS A novel 10 miRNA-pair based signature was established. Area under the time-dependent receiver operating curve proved the performance of the signature in the training, validation, and testing cohorts. Higher TMB, as well as the higher CTLA4-negative PD1-negative IPS, were discovered in high miPRS patients. A prognostic model was built based on miPRS (1 year-, 5 year-, 10 year- ROC-AUC=0.92, 0.84, 0.82, respectively). INTERPRETATION The model based on miPRS is a novel and valid tool for predicting the prognosis of ccRCC. FUNDING This study was supported by research grants from the China National Natural Scientific Foundation (81903972, 82002018, and 82170752) and Shanghai Sailing Program (19YF1406700 and 20YF1406000).
Collapse
Affiliation(s)
- Yulin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, Shanghai 200032, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai 200032, China
| | - Ziyan Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, No. 136 Medical College Road, Shanghai 200032, China
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Leijie Dai
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Biao Song
- Department of Dermatology, Peking Union Medical College Hospital, Beijing, 100005, China
| | - Wenchao Gu
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, Shanghai 200032, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, No. 136 Medical College Road, Shanghai 200032, China.
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China; Shanghai Medical Center of Kidney Disease, Shanghai 200032, China; Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai 200032, China; Shanghai Institute of Kidney and Dialysis, No. 136 Medical College Road, Shanghai 200032, China.
| |
Collapse
|
6
|
Roussel E, Capitanio U, Kutikov A, Oosterwijk E, Pedrosa I, Rowe SP, Gorin MA. Novel Imaging Methods for Renal Mass Characterization: A Collaborative Review. Eur Urol 2022; 81:476-488. [PMID: 35216855 PMCID: PMC9844544 DOI: 10.1016/j.eururo.2022.01.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 01/19/2023]
Abstract
CONTEXT The incidental detection of localized renal masses has been rising steadily, but a significant proportion of these tumors are benign or indolent and, in most cases, do not require treatment. At the present time, a majority of patients with an incidentally detected renal tumor undergo treatment for the presumption of cancer, leading to a significant number of unnecessary surgical interventions that can result in complications including loss of renal function. Thus, there exists a clinical need for improved tools to aid in the pretreatment characterization of renal tumors to inform patient management. OBJECTIVE To systematically review the evidence on noninvasive, imaging-based tools for solid renal mass characterization. EVIDENCE ACQUISITION The MEDLINE database was systematically searched for relevant studies on novel imaging techniques and interpretative tools for the characterization of solid renal masses, published in the past 10 yr. EVIDENCE SYNTHESIS Over the past decade, several novel imaging tools have offered promise for the improved characterization of indeterminate renal masses. Technologies of particular note include multiparametric magnetic resonance imaging of the kidney, molecular imaging with targeted radiopharmaceutical agents, and use of radiomics as well as artificial intelligence to enhance the interpretation of imaging studies. Among these, 99mTc-sestamibi single photon emission computed tomography/computed tomography (CT) for the identification of benign renal oncocytomas and hybrid oncocytic chromophobe tumors, and positron emission tomography/CT imaging with radiolabeled girentuximab for the identification of clear cell renal cell carcinoma, are likely to be closest to implementation in clinical practice. CONCLUSIONS A number of novel imaging tools stand poised to aid in the noninvasive characterization of indeterminate renal masses. In the future, these tools may aid in patient management by providing a comprehensive virtual biopsy, complete with information on tumor histology, underlying molecular abnormalities, and ultimately disease prognosis. PATIENT SUMMARY Not all renal tumors require treatment, as a significant proportion are either benign or have limited metastatic potential. Several innovative imaging tools have shown promise for their ability to improve the characterization of renal tumors and provide guidance in terms of patient management.
Collapse
Affiliation(s)
- Eduard Roussel
- Department of Urology, University Hospitals Leuven, Leuven, Belgium
| | - Umberto Capitanio
- Department of Urology, University Vita-Salute, San Raffaele Scientific Institute, Milan, Italy; Division of Experimental Oncology, URI, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alexander Kutikov
- Division of Urology, Department of Surgery, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen, The Netherlands
| | - Ivan Pedrosa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center. University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven P Rowe
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael A Gorin
- Urology Associates and UPMC Western Maryland, Cumberland, MD, USA; Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Zhou H, Yang S, Xie T, Wang L, Zhong S, Sheng T, Fan G, Liao X, Xu Y. Risk Factors, Prognostic Factors, and Nomograms for Bone Metastasis in Patients with Newly Diagnosed Clear Cell Renal Cell Carcinoma: A Large Population-Based Study. Front Surg 2022; 9:877653. [PMID: 35433803 PMCID: PMC9011336 DOI: 10.3389/fsurg.2022.877653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/10/2022] [Indexed: 01/18/2023] Open
Abstract
Background This study aimed to investigate risk factors and prognostic factors in patients with clear cell renal cell carcinoma (ccRCC) with bone metastasis (BM) and establish nomograms to provide a quantitative prediction of the risk of BM and survival probability. Methods The clinicopathological characteristics of patients with ccRCC between January 2010 and December 2015 were obtained from the Surveillance, Epidemiology and End Results (SEER) database. Independent factors for BM in ccRCC patients were identified using univariate and multivariate logistic regression analyses. Prognostic factors for predicting cancer-specific death were evaluated using univariate and multivariate analyses based on a competing risk regression model. We then constructed a diagnostic nomogram and a prognostic nomogram. The two nomograms were evaluated using calibration curves, receiver operating characteristic curves, and decision curve analysis. Results Our study included 34,659 patients diagnosed with ccRCC in the SEER database, with 1,415 patients who presented with bone metastasis. Risk factors for BM in patients with ccRCC included age, stage T, stage N, brain metastasis, liver metastasis, lung metastasis, tumor size, and laterality. Independent prognostic factors for patients with ccRCC patients with BM were Fuhrman grade, tumor size, T stage, N stage, brain metastases, lung metastasis, and surgery. For the diagnostic nomogram, the area under the curve values in the training and testing cohorts were 0.863 (95% CI, 0.851–0.875) and 0.859 (95% CI, 0.839–0.878), respectively. In the prognostic cohort, the area under the curve values for 1-, 2-, and 3-year cancer-specific survival rates in the training cohort were 0.747, 0.774, and 0.780, respectively, and 0.671, 0.706, and 0.696, respectively, in the testing cohort. Through calibration curves and decision curve analyses, the nomograms displayed excellent performance. Conclusions Several factors related to the development and prognosis of BM in patients with ccRCC were identified. The nomograms constructed in this study are expected to become effective and precise tools for clinicians to improve cancer management.
Collapse
Affiliation(s)
- Hongmin Zhou
- Department of urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng Yang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Spinal Pain Research Institute, Tongji University School of Medicine, Shanghai, China
| | - Tiancheng Xie
- Department of urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Longfei Wang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sen Zhong
- Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyang Sheng
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guoxin Fan
- National Key Clinical Pain Medicine of China, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Correspondence: Guoxin Fan Xiang Liao Yunfei Xu
| | - Xiang Liao
- National Key Clinical Pain Medicine of China, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Correspondence: Guoxin Fan Xiang Liao Yunfei Xu
| | - Yunfei Xu
- Department of urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Correspondence: Guoxin Fan Xiang Liao Yunfei Xu
| |
Collapse
|
8
|
Qiu BQ, Lin XH, Lai SQ, Lu F, Lin K, Long X, Zhu SQ, Zou HX, Xu JJ, Liu JC, Wu YB. ITGB1-DT/ARNTL2 axis may be a novel biomarker in lung adenocarcinoma: a bioinformatics analysis and experimental validation. Cancer Cell Int 2021; 21:665. [PMID: 34906142 PMCID: PMC8670189 DOI: 10.1186/s12935-021-02380-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lung cancer is one of the most lethal malignant tumors that endangers human health. Lung adenocarcinoma (LUAD) has increased dramatically in recent decades, accounting for nearly 40% of all lung cancer cases. Increasing evidence points to the importance of the competitive endogenous RNA (ceRNA) intrinsic mechanism in various human cancers. However, behavioral characteristics of the ceRNA network in lung adenocarcinoma need further study. METHODS Groups based on SLC2A1 expression were used in this study to identify associated ceRNA networks and potential prognostic markers in lung adenocarcinoma. The Cancer Genome Atlas (TCGA) database was used to obtain the patients' lncRNA, miRNA, and mRNA expression profiles, as well as clinical data. Informatics techniques were used to investigate the effect of hub genes on prognosis. The Cox regression analyses were performed to evaluate the prognostic effect of hub genes. The methylation, GSEA, and immune infiltration analyses were utilized to explore the potential mechanisms of the hub gene. The CCK-8, transwell, and colony formation assays were performed to detect the proliferation and invasion of lung cancer cells. RESULTS We eventually identified the ITGB1-DT/ARNTL2 axis as an independent fact may promote lung adenocarcinoma progression. Furthermore, methylation analysis revealed that hypo-methylation may cause the dysregulated ITGB1-DT/ARNTL2 axis, and immune infiltration analysis revealed that the ITGB1-DT/ARNTL2 axis may affect the immune microenvironment and the progression of lung adenocarcinoma. The CCK-8, transwell, and colonu formation assays suggested that ITGB1-DT/ARNTL2 promotes the progression of lung adenocarcinoma. And hsa-miR-30b-3p reversed the ITGB1/ARNTL2-mediated oncogenic processes. CONCLUSION Our study identified the ITGB1-DT/ARNTL2 axis as a novel prognostic biomarker affects the prognosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia-Hui Lin
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Song-Qing Lai
- Institute of Cardiovascular Disease, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Lu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kun Lin
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiang Long
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu-Qiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hua-Xi Zou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian-Jun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Yong-Bing Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
9
|
Dong S, Yang H, Tang ZR, Ke Y, Wang H, Li W, Tian K. Development and Validation of a Predictive Model to Evaluate the Risk of Bone Metastasis in Kidney Cancer. Front Oncol 2021; 11:731905. [PMID: 34900681 PMCID: PMC8656153 DOI: 10.3389/fonc.2021.731905] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/01/2021] [Indexed: 01/07/2023] Open
Abstract
Background Bone is a common target of metastasis in kidney cancer, and accurately predicting the risk of bone metastases (BMs) facilitates risk stratification and precision medicine in kidney cancer. Methods Patients diagnosed with kidney cancer were extracted from the Surveillance, Epidemiology, and End Results (SEER) database to comprise the training group from 2010 to 2017, and the validation group was drawn from our academic medical center. Univariate and multivariate logistic regression analyses explored the statistical relationships between the included variables and BM. Statistically significant risk factors were applied to develop a nomogram. Calibration plots, receiver operating characteristic (ROC) curves, probability density functions (PDF), and clinical utility curves (CUC) were used to verify the predictive performance. Kaplan-Meier (KM) curves demonstrated survival differences between two subgroups of kidney cancer with and without BMs. A convenient web calculator was provided for users via “shiny” package. Results A total of 43,503 patients were recruited in this study, of which 42,650 were training group cases and 853 validation group cases. The variables included in the nomogram were sex, pathological grade, T-stage, N-stage, sequence number, brain metastases, liver metastasis, pulmonary metastasis, histological type, primary site, and laterality. The calibration plots confirmed good agreement between the prediction model and the actual results. The area under the curve (AUC) values in the training and validation groups were 0.952 (95% CI, 0.950–0.954) and 0.836 (95% CI, 0.809–0.860), respectively. Based on CUC, we recommend a threshold probability of 5% to guide the diagnosis of BMs. Conclusions The comprehensive predictive tool consisting of nomogram and web calculator contributes to risk stratification which helped clinicians identify high-risk cases and provide personalized treatment options.
Collapse
Affiliation(s)
- Shengtao Dong
- Department of Bone and Joint, First Affiliated Hospital, Dalian Medical University, Dalian, China.,Department of Spine Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hua Yang
- Department of Otolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhi-Ri Tang
- School of Physics and Technology, Wuhan University, Wuhan, China
| | - Yuqi Ke
- Department of Orthopaedics Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haosheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Wenle Li
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, China.,Clinical Medical Research Center, Xianyang Center Hospital, Xianyang, China
| | - Kang Tian
- Department of Bone and Joint, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|