1
|
Bornfeld N, Biewald E. [Liquid biopsy in retinoblastomas]. DIE OPHTHALMOLOGIE 2024:10.1007/s00347-024-02142-1. [PMID: 39537786 DOI: 10.1007/s00347-024-02142-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The liquid biopsy is playing an increasingly more important role in the diagnosis and treatment of retinoblastomas. The possibility of safe and uncomplicated retrieval and examination of aqueous humour from the anterior chamber contributes significantly to the differential diagnosis and to a better understanding of the disease. It helps with the prognosis both in terms of eye-preserving treatment and in estimating the risk of metastatic disease and helps with genetic uncertainties in unilateral disease. It is expected that the further development of liquid biopsy methods will form the basis for a personalized diagnosis and treatment of children with a retinoblastoma in the future.
Collapse
Affiliation(s)
- N Bornfeld
- Universität Duisburg-Essen, Duisburg-Essen, Deutschland.
- Zentrum für Augenheilkunde, Schadowstr. 80, 40212, Düsseldorf, Deutschland.
| | - E Biewald
- Augenklinik der Universitätsmedizin Essen, Essen, Deutschland
| |
Collapse
|
2
|
Singh L, Chinnaswamy G, Meel R, Radhakrishnan V, Madan R, Kulkarni S, Sasi A, Kaur T, Dhaliwal RS, Bakhshi S. Epidemiology, Diagnosis and Genetics of Retinoblastoma: ICMR Consensus Guidelines. Indian J Pediatr 2024; 91:1147-1156. [PMID: 38492167 DOI: 10.1007/s12098-024-05085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
Retinoblastoma (RB) is the most common intraocular tumor in childhood. It is mainly caused by mutations in both alleles of the RB1 tumor suppressor gene that is found on chromosome 13 and regulates the cell cycle. Approximately 8000 children are diagnosed with RB globally each year, with an estimated 1500 cases occurring in India. The survival rate of RB has improved to more than 90% in the developed world. Leukocoria and proptosis are the most common presenting features of RB in Asian Indian populations. Most cases of RB are diagnosed by fundus examination followed by ultrasound. The International Classification of Retinoblastoma is the most used scheme for the staging and classification of intraocular RB in India. Prenatal testing and preimplantation genetic testing for RB may be beneficial in high-risk families. Histopathologic risk factors such as massive choroidal invasion and post-laminar optic nerve help in predicting the occurrence of metastasis in children with RB, while presence of microscopic residual disease requires aggressive adjuvant treatment in eyes enucleated for group E RB. The review provides a consensus document on diagnosis and genetics of RB in India.
Collapse
Affiliation(s)
- Lata Singh
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Girish Chinnaswamy
- Department of Pediatric Oncology, Tata Memorial Hospital, Parel, Mumbai, India
| | - Rachna Meel
- Department of Oculoplasty and Ocular Oncology Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Venkatraman Radhakrishnan
- Department of Medical Oncology and Pediatric Oncology, Cancer Institute (W.I.A), Adyar, Chennai, India
| | - Renu Madan
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Suyash Kulkarni
- Department of Interventional Radiology, Tata Memorial Hospital, Parel, Mumbai, India
| | - Archana Sasi
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Tanvir Kaur
- Division of Non-Communicable Diseases (NCD Division), Indian Council of Medical Research (ICMR), New Delhi, India
| | - R S Dhaliwal
- Division of Non-Communicable Diseases (NCD Division), Indian Council of Medical Research (ICMR), New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Berry JL, Pike S, Shah R, Reid MW, Peng CC, Wang Y, Yellapantula V, Biegel J, Kuhn P, Hicks J, Xu L. Aqueous Humor Liquid Biopsy as a Companion Diagnostic for Retinoblastoma: Implications for Diagnosis, Prognosis, and Therapeutic Options: Five Years of Progress. Am J Ophthalmol 2024; 263:188-205. [PMID: 38040321 PMCID: PMC11148850 DOI: 10.1016/j.ajo.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE To define the prospective use of the aqueous humor (AH) as a molecular diagnostic and prognostic liquid biopsy for retinoblastoma (RB). METHODS This is a prospective, observational study wherein an AH liquid biopsy is performed at diagnosis and longitudinally through therapy for patients with RB. Tumor-derived cell-free DNA is isolated and sequenced for single nucleotide variant analysis of the RB1 gene and detection of somatic copy number alterations (SCNAs). The SCNAs are used to determine tumor fraction (TFx). Specific SCNAs, including 6p gain and focal MycN gain, along with TFx, are prospectively correlated with intraocular tumor relapse, response to therapy, and globe salvage. RESULTS A total of 26 eyes of 21 patients were included with AH taken at diagnosis. Successful ocular salvage was achieved in 19 of 26 (73.1%) eyes. Mutational analysis of 26 AH samples identified 23 pathogenic RB1 variants and 2 focal RB1 deletions; variant allele fraction ranged from 30.5% to 100% (median 93.2%). At diagnosis, SCNAs were detectable in 17 of 26 (65.4%) AH samples. Eyes with 6p gain and/or focal MycN gain had significantly greater odds of poor therapeutic outcomes (odds ratio = 6.75, 95% CI = 1.06-42.84, P = .04). Higher AH TFx was observed in eyes with vitreal progression (TFx = 46.0% ± 40.4) than regression (22.0 ± 29.1; difference: -24.0; P = .049). CONCLUSIONS Establishing an AH liquid biopsy for RB is aimed at addressing (1) our inability to biopsy tumor tissue and (2) the lack of molecular biomarkers for intraocular prognosis. Current management decisions for RB are made based solely on clinical features without objective molecular testing. This prognostic study shows great promise for using AH as a companion diagnostic. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
Affiliation(s)
- Jesse L Berry
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.); the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.); Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California (J.L.B., P.K., J.H.).
| | - Sarah Pike
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.)
| | - Rachana Shah
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles (R.S.)
| | - Mark W Reid
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.)
| | - Chen-Ching Peng
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.)
| | - Yingfei Wang
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles (R.S.); Department of Quantitative and Computational Biology, University of Southern California (Y.W.)
| | - Venkata Yellapantula
- the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.); Center for Personalized Medicine, Children's Hospital Los Angeles (V.Y., J.B.)
| | - Jaclyn Biegel
- the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.)
| | - Peter Kuhn
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California (J.L.B., P.K., J.H.); USC Michelson Center for Convergent Biosciences and Department of Biological Sciences (P.K., J.H.), Los Angeles, California, USA
| | - James Hicks
- Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California (J.L.B., P.K., J.H.); USC Michelson Center for Convergent Biosciences and Department of Biological Sciences (P.K., J.H.), Los Angeles, California, USA
| | - Liya Xu
- From the Vision Center, Children's Hospital Los Angeles (J.L.B., S.P., M.W.R., C.-C.P., L.X.); USC Roski Eye Institute, Keck School of Medicine of the University of Southern California (J.L.B., S.P., M.W.R., C.-C.P., L.X.); the Saban Research Institute, Children's Hospital Los Angeles (J.L.B., V.Y., J.B., L.X.)
| |
Collapse
|
4
|
Mangum R, Lin FY, Parsons DW. Recent Advancements and Innovations in Pediatric Precision Oncology. J Pediatr Hematol Oncol 2024; 46:262-271. [PMID: 38857189 DOI: 10.1097/mph.0000000000002871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/29/2024] [Indexed: 06/12/2024]
Abstract
Precision oncology incorporates comprehensive genomic profiling into the individualized clinical care of pediatric cancer patients. In recent years, comprehensive pan-cancer analyses have led to the successful implementation of genomics-based pediatric trials and accelerated approval of novel targeted agents. In addition, disease-specific studies have resulted in molecular subclassification of myriad cancer types with subsequent tailoring of treatment intensity based on the patient's prognostic factors. This review discusses the progress of the field and highlights developments that are leading to more personalized cancer care and improved patient outcomes. Increased understanding of the evolution of precision oncology over recent decades emphasizes the tremendous impact of improved genomic applications. New technologies and improved diagnostic modalities offer further promise for future advancements within the field.
Collapse
Affiliation(s)
- Ross Mangum
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ
| | - Frank Y Lin
- Department of Pediatrics, Texas Children's Cancer Center
- The Dan L. Duncan Cancer Center
| | - D Williams Parsons
- Department of Pediatrics, Texas Children's Cancer Center
- The Dan L. Duncan Cancer Center
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
5
|
Price EA, Sagoo MS, Reddy MA, Onadim Z. An overview of RB1 transcript alterations detected during retinoblastoma genetic screening. Ophthalmic Genet 2024; 45:235-245. [PMID: 37932244 DOI: 10.1080/13816810.2023.2270570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/24/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Identification of pathogenic RB1 variants aids in the clinical management of families with retinoblastoma. We routinely screen DNA for RB1 variants, but transcript analysis can also be used for variant screening, and to help decide variant pathogenicity. DNA was screened by conformation analysis followed by Sanger sequencing. Large deletion/insertions were detected by polymorphism analysis, MLPA and quantitative-PCR. Methylation-specific PCR was used to detect hypermethylation. RNA screening was performed when a DNA pathogenic variant was missing, or to determine effects on splicing.Two hundred and thirteen small coding variants were predicted to affect splicing in 207 patients. Splice donor (sd) variants were nearly twice as frequent as splice acceptor (sa) with the most affected positions being sd + 1 and sa-1. Some missense and nonsense codons altered splicing, while some splice consensus variants did not. Large deletion/insertions can disrupt splicing, but RNA analysis showed that some of these are more complex than indicated by DNA testing. RNA screening found pathogenic variants in 53.8% of samples where DNA analysis did not. RB1 splicing is altered by changes at consensus splice sites, some missense and nonsense codons, deep intronic changes and large deletion/insertions. Common alternatively spliced transcripts may complicate analysis. An effective molecular screening strategy would include RNA analysis to help determine pathogenicity.
Collapse
Affiliation(s)
- Elizabeth A Price
- Retinoblastoma Genetic Screening Unit, Barts Health NHS Trust, London, UK
| | - Mandeep S Sagoo
- Retinoblastoma Service, Royal London Hospital, Barts Health NHS Trust, London, UK
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, Institute of Ophthalmology, University College London, London, UK
| | - M Ashwin Reddy
- Retinoblastoma Service, Royal London Hospital, Barts Health NHS Trust, London, UK
- Faculty of Medicine, Queen Mary University of London, London, UK
| | - Zerrin Onadim
- Retinoblastoma Genetic Screening Unit, Barts Health NHS Trust, London, UK
- Faculty of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Wang S, Zhao Y, Yao F, Wei P, Ma L, Zhang S. An anti-GD2 aptamer-based bifunctional spherical nucleic acid nanoplatform for synergistic therapy targeting MDM2 for retinoblastoma. Biomed Pharmacother 2024; 174:116437. [PMID: 38522240 DOI: 10.1016/j.biopha.2024.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024] Open
Abstract
Retinoblastoma (RB) is a type of pediatric solid tumor in the fundus. The lack of precision therapies combined with the difficulty of delivering small interfering RNA (siRNA) into the eyes means that there is currently no nucleic acid-based therapy for RB in clinical practice. Here, we reported on anti-GD2 and glutathione-responsive spherical nucleic acids (SNAs), loaded with siRNA and the inhibitor NVP-CGM097, which jointly blocked the oncogenic factor n in RB cells (Y79 and WERI-RB-1). The SNAs were formed through the self-assembly of bifunctional cholesterol amphiphiles containing aptamers that specifically targeted GD2-positive RB cells, allowing for the formation of an SNA with a dense DNA shell. The aptamer/siRNA component functioned both as a carrier and a payload, enhancing the specific recognition and delivery of both components and constituting an active agent for MDM2 regulation. Following SNA endocytosis by RB cells, siRNA and NVP-CGM097 were released from the SNA particles by glutathione, which synergistically blocked the MDM2-p53 pathway, increasing p53 protein content and inducing cell apoptosis. This study showed a potent antitumor effect following intravitreal injection of SNAs in Y79 tumor-bearing mice through clinical manifestation and tumor pathological analysis. In hematological analysis and hepatotoxicity assays, SNAs were safer for mice than melphalan, the favored drug for treating RB in clinical practice. Our results illustrated the potential of intravitreally injected SNAs as a precision medicine for treating RB.
Collapse
Affiliation(s)
- Shijing Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, 18 Zetian Road, Futian District, Shenzhen 518040, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
| | - Yan Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518107, China
| | - Fei Yao
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, 18 Zetian Road, Futian District, Shenzhen 518040, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China
| | - Pengxue Wei
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Guangqiao Road, Guangming District, Shenzhen 518107, China.
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, 18 Zetian Road, Futian District, Shenzhen 518040, China.
| |
Collapse
|
7
|
Gerrish A, Mashayamombe-Wolfgarten C, Stone E, Román-Montañana C, Abbott J, Jenkinson H, Millen G, Gurney S, McCalla M, Staveley SJ, Kainth A, Kirk M, Bowen C, Cavanagh S, Bunstone S, Carney M, Mohite A, Clokie S, Reddy MA, Foster A, Allen S, Parulekar M, Cole T. Genetic Diagnosis of Retinoblastoma Using Aqueous Humour-Findings from an Extended Cohort. Cancers (Basel) 2024; 16:1565. [PMID: 38672657 PMCID: PMC11049382 DOI: 10.3390/cancers16081565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The identification of somatic RB1 variation is crucial to confirm the heritability of retinoblastoma. We and others have previously shown that, when tumour DNA is unavailable, cell-free DNA (cfDNA) derived from aqueous humour (AH) can be used to identify somatic RB1 pathogenic variation. Here we report RB1 pathogenic variant detection, as well as cfDNA concentration in an extended cohort of 75 AH samples from 68 patients. We show cfDNA concentration is highly variable and significantly correlated with the collection point of the AH. Cell-free DNA concentrations above 5 pg/µL enabled the detection of 93% of known or expected RB1 pathogenic variants. In AH samples collected during intravitreal chemotherapy treatment (Tx), the yield of cfDNA above 5 pg/µL and subsequent variant detection was low (≤46%). However, AH collected by an anterior chamber tap after one to three cycles of primary chemotherapy (Dx1+) enabled the detection of 75% of expected pathogenic variants. Further limiting our analysis to Dx1+ samples taken after ≤2 cycles (Dx ≤ 2) provided measurable levels of cfDNA in all cases, and a subsequent variant detection rate of 95%. Early AH sampling is therefore likely to be important in maximising cfDNA concentration and the subsequent detection of somatic RB1 pathogenic variants in retinoblastoma patients undergoing conservative treatment.
Collapse
Affiliation(s)
- Amy Gerrish
- West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B15 2TG, UK (E.S.); (C.R.-M.); (S.C.); (S.A.)
| | - Chipo Mashayamombe-Wolfgarten
- West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B15 2TG, UK (E.S.); (C.R.-M.); (S.C.); (S.A.)
| | - Edward Stone
- West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B15 2TG, UK (E.S.); (C.R.-M.); (S.C.); (S.A.)
- North West Genomic Laboratory Hub (Manchester), St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (S.B.); (M.C.)
| | - Claudia Román-Montañana
- West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B15 2TG, UK (E.S.); (C.R.-M.); (S.C.); (S.A.)
| | - Joseph Abbott
- Birmingham Children’s Hospital Eye Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Helen Jenkinson
- Birmingham Children’s Hospital Eye Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Gerard Millen
- Birmingham Children’s Hospital Eye Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Sam Gurney
- Birmingham Children’s Hospital Eye Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Maureen McCalla
- Birmingham Children’s Hospital Eye Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Sarah-Jane Staveley
- Birmingham Children’s Hospital Eye Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Anu Kainth
- Birmingham Children’s Hospital Eye Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Maria Kirk
- Birmingham Children’s Hospital Eye Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Claire Bowen
- Birmingham Children’s Hospital Histopathology Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK (S.C.)
| | - Susan Cavanagh
- Birmingham Children’s Hospital Histopathology Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK (S.C.)
| | - Sancha Bunstone
- North West Genomic Laboratory Hub (Manchester), St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (S.B.); (M.C.)
| | - Megan Carney
- North West Genomic Laboratory Hub (Manchester), St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK; (S.B.); (M.C.)
| | - Ajay Mohite
- Birmingham Children’s Hospital Eye Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Samuel Clokie
- West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B15 2TG, UK (E.S.); (C.R.-M.); (S.C.); (S.A.)
| | - M. Ashwin Reddy
- Retinoblastoma Unit, Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Alison Foster
- West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B15 2TG, UK (E.S.); (C.R.-M.); (S.C.); (S.A.)
| | - Stephanie Allen
- West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B15 2TG, UK (E.S.); (C.R.-M.); (S.C.); (S.A.)
| | - Manoj Parulekar
- Birmingham Children’s Hospital Eye Department, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Trevor Cole
- West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham Women’s and Children’s NHS Foundation Trust, Birmingham B15 2TG, UK (E.S.); (C.R.-M.); (S.C.); (S.A.)
| |
Collapse
|
8
|
Cobrinik D. Retinoblastoma Origins and Destinations. N Engl J Med 2024; 390:1408-1419. [PMID: 38631004 DOI: 10.1056/nejmra1803083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Affiliation(s)
- David Cobrinik
- From the Vision Center, Department of Surgery, and Saban Research Institute, Children's Hospital Los Angeles, and the Departments of Ophthalmology and Biochemistry and Molecular Medicine, Roski Eye Institute, and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California - both in Los Angeles
| |
Collapse
|
9
|
Abramson DH, Robbins MA, Gobin YP, Dunkel IJ, Francis JH. Circulating Tumor DNA Posttreatment Measurements and Clinical Correlates in Retinoblastoma. JAMA Ophthalmol 2024; 142:257-261. [PMID: 38300595 PMCID: PMC10835605 DOI: 10.1001/jamaophthalmol.2023.6516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 02/02/2024]
Abstract
Importance Plasma measurements of RB1 circulating tumor DNA (ctDNA) after completion of treatment may be associated with the development of metastases in patients with retinoblastoma. Objective To determine if the absence of previously detectable plasma ctDNA is associated with metastasis-free survival in patients with a minimum of 1 year follow-up after treatment of retinoblastoma. Design, Setting, and Participants This cohort study was conducted from June 2019 to September 2023. Patients with retinoblastoma who had measurable ctDNA levels at diagnosis and had repeated ctDNA measurements after ocular treatment (enucleation or intra-arterial chemotherapy) with a minimum of 1 year of follow-up (mean [SD], 28.2 [10.3] months) were included in the study. Patients were recruited from a single-center, tertiary cancer hospital. Exposure Memorial Sloan Kettering's New York State-approved gene test, which interrogates 129 known cancer genes (called ACCESS), was performed on plasma samples before and after ocular treatments. All exons of the RB1 gene are included in the test and listed as ctDNA in this article. Main Outcomes and Measures Plasma ctDNA level before treatment, after completion of ocular treatment, and development or absence of metastases. Results A total of 24 patients (mean [SD] age, 20.7 [17.1] months; 15 female [62.5%]) were included in the study. None of the 23 patients who had a measurable ctDNA level and then no detectable ctDNA level after completion of ocular treatment developed metastases with a minimum of 1 year of follow-up. One patient had persistent measurable ctDNA after initial treatment and developed metastases. Conclusion and Relevance Patients with retinoblastoma who had a measurable ctDNA level at diagnosis did not develop metastases if the plasma ctDNA level became unrecordable after ocular treatment; 1 patient who had persistent measurable ctDNA after treatment did develop metastasis.
Collapse
Affiliation(s)
- David H. Abramson
- Ophthalmic Oncology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa A. Robbins
- Ophthalmic Oncology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Y. Pierre Gobin
- Department of Neurosurgery, Weill Cornell Medical Center, New York, New York
| | - Ira J. Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jasmine H. Francis
- Ophthalmic Oncology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
10
|
Muniyandi A, Jensen NR, Devanathan N, Dimaras H, Corson TW. The Potential of Aqueous Humor Sampling in Diagnosis, Prognosis, and Treatment of Retinoblastoma. Invest Ophthalmol Vis Sci 2024; 65:18. [PMID: 38180770 PMCID: PMC10774694 DOI: 10.1167/iovs.65.1.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Retinoblastoma (RB) is a rare malignant tumor that arises in the developing retina in one or both eyes of children. Pathogenic variants of the RB1 tumor suppressor gene drive the majority of germline and sporadic RB tumors. Considering the risk of tumor spread, the biopsy of RB tumor tissue is contraindicated. Advancement of chemotherapy has led to preservation of more eye globes. However, this has reduced access to tumor material from enucleation specimens. Recently, liquid biopsy of aqueous humor (AH) has advanced the RB tumor- or eye-specific genetic analysis. In particular, nucleic acid analysis of AH demonstrates the genomic copy number profiles and RB1 pathogenic variants akin to that of enucleated RB eye tissue. This advance reduces the previous limitation that genetic assessment of the primary tumor could be done only after enucleation of the eye. Additionally, nucleic acid evaluation of AH allows the exploration of the genomic landscape of RB tumors at diagnosis and during and after treatment. This review explores how AH sampling and AH nucleic acid analysis in RB patients assist in diagnosis, prognosis, and comprehending the pathophysiology of RB, which will ultimately benefit individualized treatment decisions to carefully manage this ocular cancer in children.
Collapse
Affiliation(s)
- Anbukkarasi Muniyandi
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Nathan R. Jensen
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Ophthalmology, University of Utah, Salt Lake City, Utah, United States
| | - Nirupama Devanathan
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Helen Dimaras
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, Ontario, Canada
- Child Health Evaluative Sciences Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario
- Division of Clinical Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Timothy W. Corson
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, United States
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Milman T, Grossniklaus HE, Goldman-Levy G, Kivelä TT, Coupland SE, White VA, Mudhar HS, Eberhart CG, Verdijk RM, Heegaard S, Gill AJ, Jager MJ, Rodríguez-Reyes AA, Esmaeli B, Hodge JC, Cree IA. The 5th Edition of the World Health Organization Classification of Tumours of the Eye and Orbit. Ocul Oncol Pathol 2023; 9:71-95. [PMID: 37900189 PMCID: PMC10601864 DOI: 10.1159/000530730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 10/31/2023] Open
Affiliation(s)
- Tatyana Milman
- Departments of Ophthalmology and Pathology, Wills Eye Hospital, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Hans E. Grossniklaus
- Departments of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gabrielle Goldman-Levy
- World Health Organization, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Tero T. Kivelä
- Ophthalmic Pathology Laboratory, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sarah E. Coupland
- George Holt Chair of Pathology/Consultant Histopathologist, Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Valerie A. White
- World Health Organization, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Hardeep Singh Mudhar
- National Specialist Ophthalmic Pathology Service (NSOPS), Department of Histopathology, Royal Hallamshire Hospital, Sheffield, UK
| | - Charles G. Eberhart
- Departments of Pathology and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert M. Verdijk
- Section Ophthalmic Pathology, Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steffen Heegaard
- Department of Pathology, Eye Pathology Section and Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anthony J. Gill
- Department of Pathology, University of Sydney, Sydney, NSW, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards NSW, St Leonards, NSW, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards NSW, St Leonards, NSW, Australia
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Abelardo A. Rodríguez-Reyes
- Ophthalmic Pathology Service, Asociación para Evitar la Ceguera en México, I.A.P. Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Bita Esmaeli
- Orbital Oncology and Ophthalmic Plastic Surgery, Department of Plastic Surgery, MDAnderson Cancer Center, Houston, TX, USA
| | | | - Ian A. Cree
- World Health Organization, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - on behalf of the WHO Classification of Tumours Editorial Board
- Departments of Ophthalmology and Pathology, Wills Eye Hospital, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- Departments of Ophthalmology and Pathology, Emory University School of Medicine, Atlanta, GA, USA
- World Health Organization, International Agency for Research on Cancer, World Health Organization, Lyon, France
- Ophthalmic Pathology Laboratory, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- George Holt Chair of Pathology/Consultant Histopathologist, Liverpool Clinical Laboratories, Liverpool University Hospitals Foundation Trust, Liverpool, UK
- National Specialist Ophthalmic Pathology Service (NSOPS), Department of Histopathology, Royal Hallamshire Hospital, Sheffield, UK
- Departments of Pathology and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Section Ophthalmic Pathology, Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Eye Pathology Section and Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, University of Sydney, Sydney, NSW, Australia
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital St Leonards NSW, St Leonards, NSW, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards NSW, St Leonards, NSW, Australia
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
- Ophthalmic Pathology Service, Asociación para Evitar la Ceguera en México, I.A.P. Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Orbital Oncology and Ophthalmic Plastic Surgery, Department of Plastic Surgery, MDAnderson Cancer Center, Houston, TX, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Munier FL. Special Issue of Cancers: "Retinoblastoma: Current Challenges and Promising New Approaches". Cancers (Basel) 2023; 15:cancers15082293. [PMID: 37190221 DOI: 10.3390/cancers15082293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Despite being a rare pediatric cancer arising in the developing retina from red/green cone precursors, retinoblastoma is the most common eye cancer worldwide and occupies an emblematic position in oncology and human genetics for the following reasons:-Historically, the discovery of RB1 and the recessive nature of its mutations led to the prototypic description of anti-oncogenes or tumor suppressor genes [...].
Collapse
Affiliation(s)
- Francis L Munier
- Faculté de Médecine et Biologie, University of Lausanne, 1002 Lausanne, Switzerland
| |
Collapse
|
13
|
Im DH, Pike S, Reid MW, Peng CC, Sirivolu S, Grossniklaus HE, Hubbard GB, Skalet AH, Bellsmith KN, Shields CL, Lally SE, Stacey AW, Reiser BJ, Nagiel A, Shah R, Xu L, Berry JL. A multicenter analysis of nucleic acid quantification using aqueous humor liquid biopsy in retinoblastoma – Implications for clinical testing. OPHTHALMOLOGY SCIENCE 2023; 3:100289. [PMID: 37025945 PMCID: PMC10070901 DOI: 10.1016/j.xops.2023.100289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
Purpose Retinoblastoma (RB) is most often diagnosed with clinical features and not diagnosed with tumor biopsy. This study describes tumor-derived analyte concentrations from aqueous humor (AH) liquid biopsy and its use in clinical assays. Design Case series study. Participants Sixty-two RB eyes from 55 children and 14 control eyes from 12 children from 4 medical centers. Methods This study included 128 RB AH samples including: diagnostic (DX) samples, samples from eyes undergoing treatment (TX), samples after completing treatment (END), and during bevacizumab injection for radiation therapy after completing RB treatment (BEV). Fourteen-control AH were analyzed for unprocessed analytes (double-stranded DNA [dsDNA], single-stranded DNA [ssDNA], micro-RNA [miRNA], RNA, and protein) with Qubit fluorescence assays. Double-stranded DNA from 2 RB AH samples underwent low-pass whole-genome sequencing to detect somatic copy number alterations. Logistic regression was used to predict disease burden given analyte concentrations. Main Outcome Measures Unprocessed analyte (dsDNA, ssDNA, miRNA, RNA and protein) concentrations. Results Results revealed dsDNA, ssDNA, miRNA, and proteins, but not RNA, were quantifiable in most samples (up to 98%) with Qubit fluorescence assays. Median dsDNA concentration was significantly higher in DX (3.08 ng/μl) compared to TX (0.18 ng/μl; P < 0.0001) at an order of 17 times greater and 20 times greater than END samples (0.15 ng/μl; P = 0.001). Using logistic regression, nucleic acid concentrations were useful in predicting higher versus lower RB disease burden. Retinoblastoma somatic copy number alterations were identified in a TX, but not in a BEV sample, indicating the correlation with RB activity. Conclusions Aqueous humor liquid biopsy in RB is a high-yield source of dsDNA, ssDNA, miRNA, and protein. Diagnostic samples are most useful for RB 1 gene mutational analyses. Genomic analysis may be more informative of tumor activity status than quantification alone and can be performed even with smaller analyte concentrations obtained from TX samples. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Deborah H. Im
- Department of Surgery, Division of Ophthalmology, The Vision Center at Children’s Hospital Los Angeles, Los Angeles, California
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Sarah Pike
- Department of Surgery, Division of Ophthalmology, The Vision Center at Children’s Hospital Los Angeles, Los Angeles, California
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Mark W. Reid
- Department of Surgery, Division of Ophthalmology, The Vision Center at Children’s Hospital Los Angeles, Los Angeles, California
| | - Chen-Ching Peng
- Department of Surgery, Division of Ophthalmology, The Vision Center at Children’s Hospital Los Angeles, Los Angeles, California
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Shreya Sirivolu
- Department of Surgery, Division of Ophthalmology, The Vision Center at Children’s Hospital Los Angeles, Los Angeles, California
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | | | - G. Baker Hubbard
- Emory Eye Center, Emory University School of Medicine, Atlanta, Georgia
| | - Alison H. Skalet
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Kellyn N. Bellsmith
- Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Carol L. Shields
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sara E. Lally
- Ocular Oncology Service, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew W. Stacey
- Division of Ophthalmology, Department of Ophthalmology, Seattle Children’s Hospital, University of Washington, Seattle, Washington
| | - Bibiana J. Reiser
- Department of Surgery, Division of Ophthalmology, The Vision Center at Children’s Hospital Los Angeles, Los Angeles, California
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Aaron Nagiel
- Department of Surgery, Division of Ophthalmology, The Vision Center at Children’s Hospital Los Angeles, Los Angeles, California
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Rachana Shah
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, California
| | - Liya Xu
- Department of Surgery, Division of Ophthalmology, The Vision Center at Children’s Hospital Los Angeles, Los Angeles, California
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Jesse L. Berry
- Department of Surgery, Division of Ophthalmology, The Vision Center at Children’s Hospital Los Angeles, Los Angeles, California
- USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California
- Correspondence: Jesse L. Berry, MD, Director of Ocular Oncology, Children’s Hospital Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027.
| |
Collapse
|
14
|
Retinoblastoma: From genes to patient care. Eur J Med Genet 2022; 66:104674. [PMID: 36470558 DOI: 10.1016/j.ejmg.2022.104674] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Retinoblastoma is the most common paediatric neoplasm of the retina, and one of the earliest model of cancer genetics since the identification of the master tumour suppressor gene RB1. Tumorigenesis has been shown to be driven by pathogenic variants of the RB1 locus, but also genomic and epigenomic alterations outside the locus. The increasing knowledge on this "mutational landscape" is used in current practice for precise genetic testing and counselling. Novel methods provide access to pre-therapeutic tumour DNA, by isolating cell-free DNA from aqueous humour or plasma. This is expected to facilitate assessment of the constitutional status of RB1, to provide an early risk stratification using molecular prognostic markers, to follow the response to the treatment in longitudinal studies, and to predict the response to targeted therapies. The aim of this review is to show how molecular genetics of retinoblastoma drives diagnosis, treatment, monitoring of the disease and surveillance of the patients and relatives. We first recap the current knowledge on retinoblastoma genetics and its use in every-day practice. We then focus on retinoblastoma subgrouping at the era of molecular biology, and the expected input of cell-free DNA in the field.
Collapse
|
15
|
Li HT, Xu L, Weisenberger DJ, Li M, Zhou W, Peng CC, Stachelek K, Cobrinik D, Liang G, Berry JL. Characterizing DNA methylation signatures of retinoblastoma using aqueous humor liquid biopsy. Nat Commun 2022; 13:5523. [PMID: 36130950 PMCID: PMC9492718 DOI: 10.1038/s41467-022-33248-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023] Open
Abstract
Retinoblastoma (RB) is a cancer that forms in the developing retina of babies and toddlers. The goal of therapy is to cure the tumor, save the eye and maximize vision. However, it is difficult to predict which eyes are likely to respond to therapy. Predictive molecular biomarkers are needed to guide prognosis and optimize treatment decisions. Direct tumor biopsy is not an option for this cancer; however, the aqueous humor (AH) is an alternate source of tumor-derived cell-free DNA (cfDNA). Here we show that DNA methylation profiling of the AH is a valid method to identify the methylation status of RB tumors. We identify 294 genes directly regulated by methylation that are implicated in p53 tumor suppressor (RB1, p53, p21, and p16) and oncogenic (E2F) pathways. Finally, we use AH to characterize molecular subtypes that can potentially be used to predict the likelihood of treatment success for retinoblastoma patients.
Collapse
Affiliation(s)
- Hong-Tao Li
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
| | - Liya Xu
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Meng Li
- Norris Medical Library, University of Southern California, Los Angeles, CA, 90033, USA
| | - Wanding Zhou
- University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Chen-Ching Peng
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - Kevin Stachelek
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
| | - David Cobrinik
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90089, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Jesse L Berry
- Children's Hospital Los Angeles Vision Center & USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90027, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, 90089, USA.
| |
Collapse
|
16
|
Abstract
PURPOSE Retinoblastoma (RB) is the most common intraocular malignancy in children. The diagnosis of RB is mainly based on clinical features and imaging characteristics. Prognosis is based on stage of disease and response to treatment. In salvaged globes, direct tumor biopsy for genetic analysis and prognostication is an absolute contraindication at this point of time for the fear of extraocular tumor spread. Currently, there is a search for surrogate markers to allow accurate diagnosis and for prognostication, to predict the chances of globe salvage in RB. Therefore, biofluids such as plasma or aqueous humor have been studied to detect circulating tumor DNA (ctDNA) or cell-free DNA (cfDNA), respectively, to allow for treatment decision making, monitoring treatment response, and prognostic counselling. METHODS A search of electronic databases (PubMed, Google Scholar and MEDLINE) of all articles on liquid biopsy in retinoblastoma published in English was performed. The keywords used for the search included "retinoblastoma", "liquid biopsy", "aqueous humor" "circulating tumor cells", "cell-free DNA", "cfDNA", "circulating tumor DNA", "ctDNA", "tumor fraction", "RB1 mutation" and "SNCA". Additionally, historic articles on the advent of liquid biopsy in medicine were also reviewed. Pertinent cross-references from the studies were reviewed. Retrospective interventional and observational case series, observational case series, prospective cohort studies, reviews, case reports, surgical techniques, invited commentary and letters were included. RESULTS A total of 40 relevant articles were selected. Biomarkers in aqueous humor, serum and cerebrospinal fluid and their clinical applications are discussed. CONCLUSION Harvesting aqueous humor from eyes with retinoblastoma has been found safe and superior to blood for the detection of chromosomal changes. cfDNA from aqueous can be a surrogate marker to detect somatic copy number alterations and other genetic alterations in RB. ctDNA in plasma also has potential to help in diagnosis and prognosis of RB. Liquid biopsy in RB is an emerging topic, which could pave way for a better understanding of mechanisms for treatment response, resistance and recurrence in RB as well as possibly provide specific therapeutic targets to improve globe salvage.
Collapse
Affiliation(s)
- Neha Ghose
- Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India
| | - Swathi Kaliki
- Operation Eyesight Universal Institute for Eye Cancer, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
17
|
Liu W, Luo Y, Dai J, Yang L, Huang L, Wang R, Chen W, Huang Y, Sun S, Cao J, Wu J, Han M, Fan J, He M, Qian K, Fan X, Jia R. Monitoring Retinoblastoma by Machine Learning of Aqueous Humor Metabolic Fingerprinting. SMALL METHODS 2022; 6:e2101220. [PMID: 35041286 DOI: 10.1002/smtd.202101220] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Indexed: 06/14/2023]
Abstract
The most common intraocular pediatric malignancy, retinoblastoma (RB), accounts for ≈10% of cancer in children. Efficient monitoring can enhance living quality of patients and 5-year survival ratio of RB up to 95%. However, RB monitoring is still insufficient in regions with limited resources and the mortality may even reach over 70% in such areas. Here, an RB monitoring platform by machine learning of aqueous humor metabolic fingerprinting (AH-MF) is developed, using nanoparticle enhanced laser desorption/ionization mass spectrometry (LDI MS). The direct AH-MF of RB free of sample pre-treatment is recorded, with both high reproducibility (coefficient of variation < 10%) and sensitivity (low to 0.3 pmol) at sample volume down to 40 nL only. Further, early and advanced RB patients with area-under-the-curve over 0.9 and accuracy over 80% are differentiated, through machine learning of AH-MF. Finally, a metabolic biomarker panel of 7 metabolites through accurate MS and tandem MS (MS/MS) with pathway analysis to monitor RB is identified. This work can contribute to advanced metabolic analysis of eye diseases including but not limited to RB and screening of new potential metabolic targets toward therapeutic intervention.
Collapse
Affiliation(s)
- Wanshan Liu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yingxiu Luo
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Jingjing Dai
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Ludi Yang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Lin Huang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Ruimin Wang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Wei Chen
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Yida Huang
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Shiyu Sun
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jing Cao
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jiao Wu
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Minglei Han
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Jiayan Fan
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Mengjia He
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xianqun Fan
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Renbing Jia
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| |
Collapse
|