1
|
Jembrek MJ. Inhibition of Oxidative Stress and Related Signaling Pathways in Neuroprotection. Antioxidants (Basel) 2024; 13:1033. [PMID: 39334692 PMCID: PMC11428803 DOI: 10.3390/antiox13091033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress, characterized by increased production of reactive oxygen species (ROS) and disturbed redox homeostasis, is one of the key mechanisms underlying synaptic loss and neuronal death in various neurodegenerative diseases [...].
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Wesołowska O, Duda-Madej A, Błaszczyk M, Środa-Pomianek K, Kozłowska J, Anioł M. Interaction of selected alkoxy naringenin oximes with model and bacterial membranes. Biomed Pharmacother 2024; 174:116581. [PMID: 38636394 DOI: 10.1016/j.biopha.2024.116581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Naringenin is a flavonoid found in many fruits and herbs, most notably in grapefruits. In recent years, this compound and its derivatives have been of great interest due to their high biological activity, including fungicidal and bactericidal effects, also in relation to multidrug-resistant bacteria. Membrane interactions of naringenin oxime (NO) and its 7-O-alkyl (7-alkoxy) derivatives, such as methyl (7MENO), ethyl (7ETNO), isopropyl (7IPNO), n-butyl (7BUNO) and n-pentyl (7PENO) were studied. Thermotropic properties of model membranes were investigated via differential scanning calorimetry (DSC), the influence on lipid raft mimicking giant unilamellar vesicles (GUVs) via fluorescence microscopy, and membrane permeability via measuring calcein leakage from liposomes. Molecular calculations supplemented the study. The influence of naringenin oximes on two strains of multidrug resistant bacteria: Staphylococcus aureus KJ and Enterococcus faecalis 37VRE was also investigated. In DSC studies all compounds reduced the temperature and enthalpy of main phase transition and caused disappearing of the pretransition. NO was the least active. The reduction in the area of surface domains in GUVs was observed for NO. Compounds NO and 7BUNO resulted in very low secretion of calcein from liposomes (permeability < 3 %). The highest results were observed for 7MENO (88.4 %) and 7IPNO (78.5 %). When bacterial membrane permeability was investigated all compounds caused significant release of propidium iodide from S. aureus (31.6-87.0 % for concentration 128 μg/mL). In the case of E. faecalis, 7ETNO (75.7 %) and NO (28.8 %) were the most active. The rest of the tested compounds showed less activity (permeability < 13.9 %). The strong evidence was observed that antibacterial activity of the tested compounds may be associated with their interaction with bacterial membrane.
Collapse
Affiliation(s)
- Olga Wesołowska
- Department of Biophysics and Neuroscience, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland.
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Poland
| | - Maria Błaszczyk
- Department of Biophysics and Neuroscience, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Joanna Kozłowska
- Department of Biocatalysis and Food Chemistry, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Mirosław Anioł
- Department of Biocatalysis and Food Chemistry, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
3
|
Li GZ, Hu YH, Lu YN, Yang QY, Fu D, Chen F, Li YM. CaMKII and Ca V3.2 T-type calcium channel mediate Connexin-43-dependent inflammation by activating astrocytes in vincristine-induced neuropathic pain. Cell Biol Toxicol 2023; 39:679-702. [PMID: 34286406 DOI: 10.1007/s10565-021-09631-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Vincristine (VCR), an alkaloid isolated from vinca, is a commonly used chemotherapeutic drug. However, VCR therapy can lead to dose-dependent peripheral neurotoxicity, mainly manifesting as neuropathic pain, which is one of the dominant reasons for limiting its utility. Experimentally, we discovered that VCR-induced neuropathic pain (VINP) was accompanied by astrocyte activation; the upregulation of phospho-CaMKII (p-CaMKII), CaV3.2, and Connexin-43 (Cx43) expression; and the production and release of inflammatory cytokines and chemokines in the spinal cord. Similar situations were also observed in astrocyte cultures. Interestingly, these alterations were all reversed by intrathecal injection of KN-93 (a CaMKII inhibitor) or L-Ascorbic acid (a CaV3.2 inhibitor). In addition, KN-93 and L-Ascorbic acid inhibited the increase in [Ca2+]i associated with astrocyte activation. We also verified that knocking down or inhibiting Cx43 level via intrathecal injection of Cx43 siRNA or Gap27 (a Cx43 mimetic peptide) relieved pain hypersensitivity and reduced the release of inflammatory factors; however, they did not affect astrocyte activation or p-CaMKII and CaV3.2 expression. Besides, the overexpression of Cx43 through the transfection of the Cx43 plasmid did not affect p-CaMKII and CaV3.2 expressions in vitro. Therefore, CaMKII and CaV3.2 may activate astrocytes by increasing [Ca2+]i, thereby mediating Cx43-dependent inflammation in VINP. Moreover, we demonstrated that the CaMKII signalling pathway was involved in VCR-induced inflammation, apoptosis, and mitochondrial damage. Collectively, our findings show a novel mechanism by which CaMKII and CaV3.2 mediate Cx43-dependent inflammation by activating astrocytes in neuropathic pain induced by VCR.
Collapse
Affiliation(s)
- Gui-Zhou Li
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Ya-Hui Hu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Yi-Ni Lu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Qing-Yan Yang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Di Fu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Yun-Man Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
4
|
Alini M, Diwan AD, Erwin WM, Little CB, Melrose J. An update on animal models of intervertebral disc degeneration and low back pain: Exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics. JOR Spine 2023; 6:e1230. [PMID: 36994457 PMCID: PMC10041392 DOI: 10.1002/jsp2.1230] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 02/03/2023] Open
Abstract
Animal models have been invaluable in the identification of molecular events occurring in and contributing to intervertebral disc (IVD) degeneration and important therapeutic targets have been identified. Some outstanding animal models (murine, ovine, chondrodystrophoid canine) have been identified with their own strengths and weaknesses. The llama/alpaca, horse and kangaroo have emerged as new large species for IVD studies, and only time will tell if they will surpass the utility of existing models. The complexity of IVD degeneration poses difficulties in the selection of the most appropriate molecular target of many potential candidates, to focus on in the formulation of strategies to effect disc repair and regeneration. It may well be that many therapeutic objectives should be targeted simultaneously to effect a favorable outcome in human IVD degeneration. Use of animal models in isolation will not allow resolution of this complex issue and a paradigm shift and adoption of new methodologies is required to provide the next step forward in the determination of an effective repairative strategy for the IVD. AI has improved the accuracy and assessment of spinal imaging supporting clinical diagnostics and research efforts to better understand IVD degeneration and its treatment. Implementation of AI in the evaluation of histology data has improved the usefulness of a popular murine IVD model and could also be used in an ovine histopathological grading scheme that has been used to quantify degenerative IVD changes and stem cell mediated regeneration. These models are also attractive candidates for the evaluation of novel anti-oxidant compounds that counter inflammatory conditions in degenerate IVDs and promote IVD regeneration. Some of these compounds also have pain-relieving properties. AI has facilitated development of facial recognition pain assessment in animal IVD models offering the possibility of correlating the potential pain alleviating properties of some of these compounds with IVD regeneration.
Collapse
Affiliation(s)
| | - Ashish D. Diwan
- Spine Service, Department of Orthopedic Surgery, St. George & Sutherland Campus, Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - W. Mark Erwin
- Department of SurgeryUniversity of TorontoOntarioCanada
| | - Chirstopher B. Little
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
5
|
Zhang C, Liu Y, Liu X, Chen X, Chen R. Comprehensive Review of Recent Advances in Chiral A-Ring Flavonoid Containing Compounds: Structure, Bioactivities, and Synthesis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010365. [PMID: 36615559 PMCID: PMC9822200 DOI: 10.3390/molecules28010365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
Flavonoids are a group of natural polyphenolic substances that are abundant in vegetables, fruits, grains, and tea. Chiral A-ring-containing flavonoids are an important group of natural flavonoid derivatives applicable in a wide range of biological activities such as, cytotoxic, anti-inflammatory, anti-microbial, antioxidant, and enzyme inhibition. The desirable development of chiral A-ring-containing flavonoids by isolation, semi-synthesis or total synthesis in a short duration proves their great value in medicinal chemistry research. In this review, the research progress of chiral A-ring-containing flavonoids, including isolation and extraction, structural identification, pharmacological activities, and synthetic methods, is comprehensively and systematically summarized. Furthermore, we provide suggestions for future research on the synthesis and biomedical applications of flavonoids.
Collapse
Affiliation(s)
- Changyue Zhang
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yanzhi Liu
- College of Basic Medicine, Jining Medical University, Jining 272067, China
| | | | - Xiaochuan Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ruijiao Chen
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
6
|
Rajasree R, Ittiyavirah SP, Poonkuzhi Naseef P, Saheer Kuruniyan M, Elayadeth-Meethal M, Sankar S. The anti-inflammatory properties of the methanolic extract of Cucumis melo Linn. against prostate enlargement in Wistar rats. Saudi J Biol Sci 2022; 29:103396. [PMID: 35942162 PMCID: PMC9356295 DOI: 10.1016/j.sjbs.2022.103396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
In different parts of the world, Cucumis melo Linn. (C melo) is used for its medicinal properties. The present study examined the effects of a methanolic extract of C melo Linn. (F1 hybrid, MECM) on benign prostatic hyperplasia in adult male Wistar rats and evaluated its anti-inflammatory activity in vivo. MECM treatment reduced prostate weight mildly. Histopathological studies showed that the extract produced a strong protective effect against the development of BPH by testosterone. The MECM also showed protection from testosterone-induced benign prostatic hyperplasia (BPH). MECM was tested against carrageenan-induced inflammation in rats' paws to determine its anti-inflammatory activity. It was shown that MECM had a pronounced effect on the inflammatory response in the late phase, i.e., one hour after carrageenan injection. Prostaglandins and nitric oxide are primarily responsible for this phase indicating that MECM can modify the production and release of prostaglandin and nitric oxide. A novel formulation containing C melo may be able to treat the conditions mentioned above.
Collapse
Affiliation(s)
- R.S. Rajasree
- College of Pharmaceutical Sciences, Government Thirumala Devaswom Medical College, Alappuzha 688005, India
| | - Sibi P. Ittiyavirah
- Department of Pharmaceutical Sciences, Centre for Professional and Advanced Sciences Cheruvandoor, Kottayam 686631, India
| | - Punnoth Poonkuzhi Naseef
- Department of Pharmaceutics, Moulana College of Pharmacy, Perinthalmanna 679321, India
- Corresponding author.
| | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammed Elayadeth-Meethal
- Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad 675621, India
| | - S Sankar
- Department of Pathology, Govt Medical College, Kottayam 686008, India
| |
Collapse
|
7
|
Odajiu I, Covantsev S, Sivapalan P, Mathioudakis AG, Jensen JUS, Davidescu EI, Chatzimavridou-Grigoriadou V, Corlateanu A. Peripheral neuropathy: A neglected cause of disability in COPD - A narrative review. Respir Med 2022; 201:106952. [PMID: 36029697 DOI: 10.1016/j.rmed.2022.106952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/17/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory syndrome with systemic involvement leading to various cardiovascular, metabolic, and neurological comorbidities. It is well known that conditions associated with oxygen deprivation and metabolic disturbance are associated with polyneuropathy, but current data regarding the relationship between COPD and peripheral nervous system pathology is limited. This review summarizes the available data on the association between COPD and polyneuropathy, including possible pathophysiological mechanisms such as the role of hypoxia, proinflammatory state, and smoking in nerve damage; the role of cardiovascular and metabolic comorbidities, as well as the diagnostic methods and screening tools for identifying polyneuropathy. Furthermore, it outlines the available options for managing and preventing polyneuropathy in COPD patients. Overall, current data suggest that optimal screening strategies to diagnose polyneuropathy early should be implemented in COPD patients due to their relatively common association and the additional burden of polyneuropathy on quality of life.
Collapse
Affiliation(s)
- Irina Odajiu
- Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania
| | | | - Pradeesh Sivapalan
- Department of Medicine, Section of Respiratory Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester Academic Health Science Centre, UK; The North-West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.
| | - Jens-Ulrik Stæhr Jensen
- Department of Medicine, Section of Respiratory Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eugenia Irene Davidescu
- Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania; Department of Clinical Neurosciences, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Alexandru Corlateanu
- Department of Respiratory Medicine, State University of Medicine and Pharmacy "Nicolae Testemitanu", Chisinau, Moldavia.
| |
Collapse
|
8
|
Semis HS, Kandemir FM, Caglayan C, Kaynar O, Genc A, Arıkan SM. Protective effect of naringin against oxaliplatin-induced peripheral neuropathy in rats: A behavioral and molecular study. J Biochem Mol Toxicol 2022; 36:e23121. [PMID: 35670529 DOI: 10.1002/jbt.23121] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/07/2022] [Accepted: 05/29/2022] [Indexed: 11/11/2022]
Abstract
Oxaliplatin (OXL) is a chemotherapeutic drug used for metastatic and other types of cancer, but it causes peripheral neuropathy as a dose-limiting side effect. Herein, we used the rat model of OXL-induced peripheral neuropathy to demonstrate the protective effects of naringin (NRG) in this neuropathy. In this study, rats were injected with OXL (4 mg/kg, body weight, i.p.) in 5% glucose solution 30 min after oral administration of NRG (50 and 100 mg/kg, body weight) on the 1st, 2nd, 5th, and 6th days. OXL caused sensory and motor neuropathy (as revealed by the hot plate, tail flick, rota-rod, and cold hyperalgesia tests) in the sciatic nerve of rats. Coadministration of oral NRG alleviated OXL-induced sensory and motor neuropathy. Levels of superoxide dismutase, catalase, glutathione peroxidase, nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, nuclear factor-κ B, tumor necrosis factor-α, interleukin-1β, Bax, Bcl-2, caspase-3, paraoxonase, mitogen-activated protein kinase 14, neuronal nitric oxide synthase (nNOS), acetylcholinesterase, and arginase 2 in the sciatic nerve tissues were assessed by real-time polymerase chain reaction. Moreover, the protein levels of caspase-3, Bax, Bcl-2, intercellular adhesion molecules-1, glial fibrillary acidic protein, and nNOS were examined by Western blot analysis. NRG treatment significantly improved all the above-mentioned parameters and reduced OXL-induced oxidative stress, inflammation, and apoptosis in the sciatic nerve tissue. In conclusion, this study demonstrated that NRG significantly attenuated OXL-induced peripheral neuropathy and might be considered as a new protective agent to prevent the OXL-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Halil S Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih M Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Aydın Genc
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Sefik M Arıkan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Ferreira M, Costa D, Sousa Â. Flavonoids-Based Delivery Systems towards Cancer Therapies. Bioengineering (Basel) 2022; 9:197. [PMID: 35621475 PMCID: PMC9137930 DOI: 10.3390/bioengineering9050197] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Cervical cancer, for instance, is considered a major scourge in low-income countries. Its development is mostly associated with the human papillomavirus persistent infection and despite the availability of preventive vaccines, they are only widely administered in more developed countries, thus leaving a large percentage of unvaccinated women highly susceptible to this type of cancer. Current treatments are based on invasive techniques, being far from effective. Therefore, the search for novel, advanced and personalized therapeutic approaches is imperative. Flavonoids belong to a group of natural polyphenolic compounds, well recognized for their great anticancer capacity, thus promising to be incorporated in cancer therapy protocols. However, their use is limited due to their low solubility, stability and bioavailability. To surpass these limitations, the encapsulation of flavonoids into delivery systems emerged as a valuable strategy to improve their stability and bioavailability. In this context, the aim of this review is to present the most reliable flavonoids-based delivery systems developed for anticancer therapies and the progress accomplished, with a special focus on cervical cancer therapy. The gathered information revealed the high therapeutic potential of flavonoids and highlights the relevance of delivery systems application, allowing a better understanding for future studies on effective cancer therapy.
Collapse
Affiliation(s)
| | - Diana Costa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Ângela Sousa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
10
|
Systemic Effects Reflected in Specific Biomarker Patterns Are Instrumental for the Paradigm Change in Prostate Cancer Management: A Strategic Paper. Cancers (Basel) 2022; 14:cancers14030675. [PMID: 35158943 PMCID: PMC8833369 DOI: 10.3390/cancers14030675] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is reported as the most common malignancy and second leading cause of death in America. In Europe, PCa is considered the leading type of tumour in 28 European countries. The costs of treating PCa are currently increasing more rapidly than those of any other cancer. Corresponding economic burden is enormous, due to an overtreatment of slowly developing disease on one hand and underestimation/therapy resistance of particularly aggressive PCa subtypes on the other hand. The incidence of metastatic PCa is rapidly increasing that is particularly characteristic for young adults. PCa is a systemic multi-factorial disease resulting from an imbalanced interplay between risks and protective factors. Sub-optimal behavioural patterns, abnormal stress reactions, imbalanced antioxidant defence, systemic ischemia and inflammation, mitochondriopathies, aberrant metabolic pathways, gene methylation and damage to DNA, amongst others, are synergistically involved in pathomechanisms of PCa development and progression. To this end, PCa-relevant systemic effects are reflected in liquid biopsies such as blood patterns which are instrumental for predictive diagnostics, targeted prevention and personalisation of medical services (PPPM/3P medicine) as a new paradigm in the overall PCa management. This strategic review article highlights systemic effects in prostate cancer development and progression, demonstrates evident challenges in PCa management and provides expert recommendations in the framework of 3P medicine.
Collapse
|
11
|
Mezzanotte JN, Grimm M, Shinde NV, Nolan T, Worthen-Chaudhari L, Williams NO, Lustberg MB. Updates in the Treatment of Chemotherapy-Induced Peripheral Neuropathy. Curr Treat Options Oncol 2022; 23:29-42. [PMID: 35167004 PMCID: PMC9642075 DOI: 10.1007/s11864-021-00926-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
OPINION STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a common toxicity associated with treatment with platinum-based agents, taxanes, vinca alkaloids, and other specific agents. The long-term consequences of this condition can result in decreased patient quality of life and can lead to reduced dose intensity, which can negatively impact disease outcomes. There are currently no evidence-based preventative strategies for CIPN and only limited options for treatment. However, there are several strategies that can be utilized to improve patient experience and outcomes as more data are gathered in the prevention and treatment setting. Before treatment, patient education on the potential side effects of chemotherapy is key, and although trials have been limited, recommending exercise and a healthy lifestyle before and while undergoing chemotherapy may provide some overall benefit. In patients who develop painful CIPN, our approach is to offer duloxetine and titrate up to 60 mg daily. Chemotherapy doses may also need to be reduced if intolerable symptoms develop during treatment. Some patients may also try acupuncture and physical therapy to help address their symptoms, although this can be limited by cost, time commitment, and patient motivation. Additionally, data on these modalities are currently limited, as studies are ongoing. Overall, approaching each patient on an individual level and tailoring treatment options for them based on overall physical condition, their disease burden, goals of care and co-morbid health conditions, and willingness to trial different approaches is necessary when addressing CIPN.
Collapse
Affiliation(s)
- Jessica N. Mezzanotte
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, 395 W 12th Avenue, Room 334B, Columbus, OH 43210
| | - Michael Grimm
- The Ohio State University Comprehensive Cancer Center, 460 W. 10th Avenue, Columbus, OH 43210
| | - Namrata V. Shinde
- Department of Radiology, The Ohio State University Wexner Medical Center, 395 W 12th Avenue, Columbus, OH 43210
| | - Timiya Nolan
- The Ohio State University College of Nursing, 1585 Neil Avenue, Columbus, OH 43210
| | - Lise Worthen-Chaudhari
- Department of Physical Medicine and Rehabilitation, The Ohio State University Wexner Medical Center, 480 Medical Center Drive, Dodd Hall, Suite 1060, Columbus, OH 43210
| | - Nicole O. Williams
- Department of Medical Oncology, The Ohio State University Wexner Medical Center, 1800 Cannon Drive, 1310K Lincoln Tower, Columbus, OH 43210
| | - Maryam B. Lustberg
- Smilow Cancer Hospital/Yale Cancer Center, 35 Park Street, New Haven, CT 06519
| |
Collapse
|
12
|
Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J 2021; 12:559-587. [PMID: 34950252 PMCID: PMC8648878 DOI: 10.1007/s13167-021-00257-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022]
Abstract
AbstractInflammation is an essential pillar of the immune defense. On the other hand, chronic inflammation is considered a hallmark of cancer initiation and progression. Chronic inflammation demonstrates a potential to induce complex changes at molecular, cellular, and organ levels including but not restricted to the stagnation and impairment of healing processes, uncontrolled production of aggressive ROS/RNS, triggered DNA mutations and damage, compromised efficacy of the DNA repair machinery, significantly upregulated cytokine/chemokine release and associated patho-physiologic protein synthesis, activated signaling pathways involved in carcinogenesis and tumor progression, abnormal tissue remodeling, and created pre-metastatic niches, among others. The anti-inflammatory activities of flavonoids demonstrate clinically relevant potential as preventive and therapeutic agents to improve individual outcomes in diseases linked to the low-grade systemic and chronic inflammation, including cancers. To this end, flavonoids are potent modulators of pro-inflammatory gene expression being, therefore, of great interest as agents selectively suppressing molecular targets within pro-inflammatory pathways. This paper provides in-depth analysis of anti-inflammatory properties of flavonoids, highlights corresponding mechanisms and targeted molecular pathways, and proposes potential treatment models for multi-level cancer prevention in the framework of predictive, preventive, and personalized medicine (PPPM / 3PM). To this end, individualized profiling and patient stratification are essential for implementing targeted anti-inflammatory approaches. Most prominent examples are presented for the proposed application of flavonoid-conducted anti-inflammatory treatments in overall cancer management.
Collapse
|