1
|
Lee KN, Huynh MA. Role of Metastasis-Directed Therapy in Genitourinary Cancers. Curr Treat Options Oncol 2024; 25:605-616. [PMID: 38573430 DOI: 10.1007/s11864-024-01199-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
OPINION STATEMENT The treatment of oligometastatic genitourinary cancers is a rapidly advancing field with ablative radiotherapy as one of the critical treatment components. The oligometastatic disease state, which can be defined as 1-5 metastatic sites with a controlled primary, represents a distinct clinical state where comprehensive ablative local therapies may provide improved outcomes. Enhanced imaging has increased the number of patients identified with oligometastatic disease. Evidence for improved outcomes with metastasis-directed therapy (MDT) in oligometastatic genitourinary cancers is increasing, and previously published outcome data continues to mature with an increasing body of prospective data to inform the role of MDT in histology-specific settings or in the context of systemic therapy. In select patients, MDT can offer benefits beyond improved local control and allow for time off of systemic therapy, prolonged time until next therapy, or even the hope of cure. However, treatment decisions for locally ablative therapy must be balanced with consideration towards safety. There are exciting advances in technologies to target and adapt treatment in real-time which have expanded options for safer delivery and dose escalation to metastatic targets near critical organs at risk. The role of systemic therapies in conjunction with MDT and incorporation of tumor genetic information to further refine prognostication and treatment decision-making in the oligometastatic setting is actively being investigated. These developments highlight the evolving field of treatment of oligometastatic disease. Future prospective studies combining MDT with enhanced imaging and integrating MDT with evolving systemic therapies will enable the optimal selection of patients most likely to benefit from this "all-or-none" approach and reveal settings in which a combination of therapies could result in synergistic outcomes.
Collapse
Affiliation(s)
- Katie N Lee
- Harvard Radiation Oncology Program, Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA
| | - Mai Anh Huynh
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, 75 Francis St., Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Kalantar R, Curcean S, Winfield JM, Lin G, Messiou C, Blackledge MD, Koh DM. Deep Learning Framework with Multi-Head Dilated Encoders for Enhanced Segmentation of Cervical Cancer on Multiparametric Magnetic Resonance Imaging. Diagnostics (Basel) 2023; 13:3381. [PMID: 37958277 PMCID: PMC10647438 DOI: 10.3390/diagnostics13213381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
T2-weighted magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) are essential components of cervical cancer diagnosis. However, combining these channels for the training of deep learning models is challenging due to image misalignment. Here, we propose a novel multi-head framework that uses dilated convolutions and shared residual connections for the separate encoding of multiparametric MRI images. We employ a residual U-Net model as a baseline, and perform a series of architectural experiments to evaluate the tumor segmentation performance based on multiparametric input channels and different feature encoding configurations. All experiments were performed on a cohort of 207 patients with locally advanced cervical cancer. Our proposed multi-head model using separate dilated encoding for T2W MRI and combined b1000 DWI and apparent diffusion coefficient (ADC) maps achieved the best median Dice similarity coefficient (DSC) score, 0.823 (confidence interval (CI), 0.595-0.797), outperforming the conventional multi-channel model, DSC 0.788 (95% CI, 0.568-0.776), although the difference was not statistically significant (p > 0.05). We investigated channel sensitivity using 3D GRAD-CAM and channel dropout, and highlighted the critical importance of T2W and ADC channels for accurate tumor segmentation. However, our results showed that b1000 DWI had a minor impact on the overall segmentation performance. We demonstrated that the use of separate dilated feature extractors and independent contextual learning improved the model's ability to reduce the boundary effects and distortion of DWI, leading to improved segmentation performance. Our findings could have significant implications for the development of robust and generalizable models that can extend to other multi-modal segmentation applications.
Collapse
Affiliation(s)
- Reza Kalantar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK; (R.K.); (J.M.W.); (C.M.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Sebastian Curcean
- Department of Radiation Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Jessica M. Winfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK; (R.K.); (J.M.W.); (C.M.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Guishan, Taoyuan 333, Taiwan;
| | - Christina Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK; (R.K.); (J.M.W.); (C.M.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Matthew D. Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK; (R.K.); (J.M.W.); (C.M.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK; (R.K.); (J.M.W.); (C.M.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| |
Collapse
|
3
|
Chick J, Alexander S, Herbert T, Huddart R, Ingle M, Mitchell A, Nill S, Oelfke U, Dunlop A, Hafeez S. Evaluation of non-vendor magnetic resonance imaging sequences for use in bladder cancer magnetic resonance image guided radiotherapy. Phys Imaging Radiat Oncol 2023; 27:100481. [PMID: 37655122 PMCID: PMC10465927 DOI: 10.1016/j.phro.2023.100481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Hybrid systems that combine Magnetic Resonance Imaging (MRI) and linear accelerators are available clinically to guide and adapt radiotherapy. Vendor-approved MRI sequences are provided, however alternative sequences may offer advantages. The aim of this study was to develop a systematic approach for non-vendor sequence evaluation, to determine safety, accuracy and overall clinical application of two potential sequences for bladder cancer MRI guided radiotherapy. Non-vendor sequences underwent and passed clinical image qualitative review, phantom quality assurance, and radiotherapy planning assessments. Volunteer workflow tests showed the potential for one sequence to reduce workflow time by 27% compared to the standard vendor sequence.
Collapse
Affiliation(s)
- Joan Chick
- The Joint Department of Physics at The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Sophie Alexander
- The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Trina Herbert
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Robert Huddart
- The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Manasi Ingle
- The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Adam Mitchell
- The Joint Department of Physics at The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Simeon Nill
- The Joint Department of Physics at The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Uwe Oelfke
- The Joint Department of Physics at The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Alex Dunlop
- The Joint Department of Physics at The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| | - Shaista Hafeez
- The Institute of Cancer Research & The Royal Marsden NHS Foundation Trust, Downs Road, Sutton SM2 5PT, UK
| |
Collapse
|
4
|
Kalaei Z, Manafi-Farid R, Rashidi B, Kiani FK, Zarei A, Fathi M, Jadidi-Niaragh F. The Prognostic and therapeutic value and clinical implications of fibroblast activation protein-α as a novel biomarker in colorectal cancer. Cell Commun Signal 2023; 21:139. [PMID: 37316886 DOI: 10.1186/s12964-023-01151-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
The identification of contributing factors leading to the development of Colorectal Cancer (CRC), as the third fatal malignancy, is crucial. Today, the tumor microenvironment has been shown to play a key role in CRC progression. Fibroblast-Activation Protein-α (FAP) is a type II transmembrane cell surface proteinase expressed on the surface of cancer-associated fibroblasts in tumor stroma. As an enzyme, FAP has di- and endoprolylpeptidase, endoprotease, and gelatinase/collagenase activities in the Tumor Microenvironment (TME). According to recent reports, FAP overexpression in CRC contributes to adverse clinical outcomes such as increased lymph node metastasis, tumor recurrence, and angiogenesis, as well as decreased overall survival. In this review, studies about the expression level of FAP and its associations with CRC patients' prognosis are reviewed. High expression levels of FAP and its association with clinicopathological factors have made as a potential target. In many studies, FAP has been evaluated as a therapeutic target and diagnostic factor into which the current review tries to provide a comprehensive insight. Video Abstract.
Collapse
Affiliation(s)
- Zahra Kalaei
- Department of Biology, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
| | - Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Rashidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asieh Zarei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Ng J, Gregucci F, Pennell RT, Nagar H, Golden EB, Knisely JPS, Sanfilippo NJ, Formenti SC. MRI-LINAC: A transformative technology in radiation oncology. Front Oncol 2023; 13:1117874. [PMID: 36776309 PMCID: PMC9911688 DOI: 10.3389/fonc.2023.1117874] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Advances in radiotherapy technologies have enabled more precise target guidance, improved treatment verification, and greater control and versatility in radiation delivery. Amongst the recent novel technologies, Magnetic Resonance Imaging (MRI) guided radiotherapy (MRgRT) may hold the greatest potential to improve the therapeutic gains of image-guided delivery of radiation dose. The ability of the MRI linear accelerator (LINAC) to image tumors and organs with on-table MRI, to manage organ motion and dose delivery in real-time, and to adapt the radiotherapy plan on the day of treatment while the patient is on the table are major advances relative to current conventional radiation treatments. These advanced techniques demand efficient coordination and communication between members of the treatment team. MRgRT could fundamentally transform the radiotherapy delivery process within radiation oncology centers through the reorganization of the patient and treatment team workflow process. However, the MRgRT technology currently is limited by accessibility due to the cost of capital investment and the time and personnel allocation needed for each fractional treatment and the unclear clinical benefit compared to conventional radiotherapy platforms. As the technology evolves and becomes more widely available, we present the case that MRgRT has the potential to become a widely utilized treatment platform and transform the radiation oncology treatment process just as earlier disruptive radiation therapy technologies have done.
Collapse
Affiliation(s)
- John Ng
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States,*Correspondence: John Ng,
| | - Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States,Department of Radiation Oncology, Miulli General Regional Hospital, Acquaviva delle Fonti, Bari, Italy
| | - Ryan T. Pennell
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Himanshu Nagar
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Encouse B. Golden
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | | | | | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
6
|
MRI-guided Radiotherapy (MRgRT) for treatment of Oligometastases: Review of clinical applications and challenges. Int J Radiat Oncol Biol Phys 2022; 114:950-967. [PMID: 35901978 DOI: 10.1016/j.ijrobp.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Early clinical results on the application of magnetic resonance imaging (MRI) coupled with a linear accelerator to deliver MR-guided radiation therapy (MRgRT) have demonstrated feasibility for safe delivery of stereotactic body radiotherapy (SBRT) in treatment of oligometastatic disease. Here we set out to review the clinical evidence and challenges associated with MRgRT in this setting. METHODS AND MATERIALS We performed a systematic review of the literature pertaining to clinical experiences and trials on the use of MRgRT primarily for the treatment of oligometastatic cancers. We reviewed the opportunities and challenges associated with the use of MRgRT. RESULTS Benefits of MRgRT pertaining to superior soft-tissue contrast, real-time imaging and gating, and online adaptive radiotherapy facilitate safe and effective dose escalation to oligometastatic tumors while simultaneously sparing surrounding healthy tissues. Challenges concerning further need for clinical evidence and technical considerations related to planning, delivery, quality assurance (QA) of hypofractionated doses, and safety in the MRI environment must be considered. CONCLUSIONS The promising early indications of safety and effectiveness of MRgRT for SBRT-based treatment of oligometastatic disease in multiple treatment locations should lead to further clinical evidence to demonstrate the benefit of this technology.
Collapse
|
7
|
Percutaneous microwave ablation of disappearing colorectal liver metastases using US-MR fusion imaging guidance with integration of pre-chemotherapy imaging: a case report. CURRENT PROBLEMS IN CANCER: CASE REPORTS 2022. [DOI: 10.1016/j.cpccr.2022.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
8
|
Leveraging Blood-Based Diagnostics to Predict Tumor Biology and Extend the Application and Personalization of Radiotherapy in Liver Cancers. Int J Mol Sci 2022; 23:ijms23041926. [PMID: 35216045 PMCID: PMC8879105 DOI: 10.3390/ijms23041926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
While the incidence of primary liver cancers has been increasing worldwide over the last few decades, the mortality has remained consistently high. Most patients present with underlying liver disease and have limited treatment options. In recent years, radiotherapy has emerged as a promising approach for some patients; however, the risk of radiation induced liver disease (RILD) remains a limiting factor for some patients. Thus, the discovery and validation of biomarkers to measure treatment response and toxicity is critical to make progress in personalizing radiotherapy for liver cancers. While tissue biomarkers are optimal, hepatocellular carcinoma (HCC) is typically diagnosed radiographically, making tumor tissue not readily available. Alternatively, blood-based diagnostics may be a more practical option as blood draws are minimally invasive, widely availability and may be performed serially during treatment. Possible blood-based diagnostics include indocyanine green test, plasma or serum levels of HGF or cytokines, circulating blood cells and genomic biomarkers. The albumin–bilirubin (ALBI) score incorporates albumin and bilirubin to subdivide patients with well-compensated underlying liver dysfunction (Child–Pugh score A) into two distinct groups. This review provides an overview of the current knowledge on circulating biomarkers and blood-based scores in patients with malignant liver disease undergoing radiotherapy and outlines potential future directions.
Collapse
|
9
|
Torres-Jiménez J, Esteban-Villarrubia J, Ferreiro-Monteagudo R, Carrato A. Local Treatments in the Unresectable Patient with Colorectal Cancer Metastasis: A Review from the Point of View of the Medical Oncologist. Cancers (Basel) 2021; 13:5938. [PMID: 34885047 PMCID: PMC8656541 DOI: 10.3390/cancers13235938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
For patients with isolated liver metastases from colorectal cancer who are not candidates for potentially curative resections, non-surgical local treatments may be useful. Non-surgical local treatments are classified according to how the treatment is administered. Local treatments are applied directly on hepatic parenchyma, such as radiofrequency, microwave hyperthermia and cryotherapy. Locoregional therapies are delivered through the hepatic artery, such as chemoinfusion, chemoembolization or selective internal radiation with Yttrium 90 radioembolization. The purpose of this review is to describe the different interventional therapies that are available for these patients in routine clinical practice, the most important clinical trials that have tried to demonstrate the effectiveness of each therapy and recommendations from principal medical oncologic societies.
Collapse
Affiliation(s)
- Javier Torres-Jiménez
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (R.F.-M.)
| | - Jorge Esteban-Villarrubia
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (R.F.-M.)
| | - Reyes Ferreiro-Monteagudo
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (R.F.-M.)
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain;
| |
Collapse
|