1
|
Li Y, Hong X, Xu W, Guo J, Su Y, Li H, Xie Y, Chen X, Zheng X, Qiu S. Identification and validation of a prognostic risk model based on radiosensitivity-related genes in nasopharyngeal carcinoma. Transl Oncol 2025; 52:102243. [PMID: 39675252 PMCID: PMC11713735 DOI: 10.1016/j.tranon.2024.102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Despite advancements with intensity-modulated radiation therapy (IMRT), about 10 % of nasopharyngeal carcinoma (NPC) patients remain resistant to radiotherapy, leading to recurrence and poor prognosis. This study aims to identify radiosensitivity-related genes in NPC and develop a prognostic model to predict patient outcomes. METHODS We analyzed 179 NPC samples from Fujian Cancer Hospital using RNA sequencing. Differentially expressed genes (DEGs) were identified between radiotherapy-sensitive and resistant samples. Machine learning algorithms and Cox regression were used to construct a prognostic risk model, validated in the GSE102349 dataset. Additional analyses included functional pathway, immune infiltration, and drug sensitivity. RESULTS A risk model based on six genes (LCN8, IGSF1, RIMS2, RBP4, TBX10, ETV4) was developed. Kaplan-Meier analysis showed significantly shorter progression-free survival (PFS) in the high-risk group. The model's AUC values were 0.872, 0.807, and 0.802 for 1-year, 3-year, and 5-year predictions. A nomogram including clinical factors was created, and enrichment analysis linked the high-risk group to radiotherapy resistance mechanisms. CONCLUSIONS This study established a novel radiosensitivity-related prognostic model, offering insights into NPC prognosis and radiotherapy resistance mechanisms.
Collapse
Affiliation(s)
- Yi Li
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Xinyi Hong
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Wenqian Xu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | | | | | - Haolan Li
- Fujian Medical University, Fuzhou, China
| | | | - Xing Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China
| | - Xiong Zheng
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.
| | - Sufang Qiu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China; Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, China.
| |
Collapse
|
2
|
Minne RL, Luo NY, Mork CM, Wopat MR, Esbona K, Javeri S, Nickel KP, Hernandez R, LeBeau AM, Kimple RJ, Baschnagel AM. Evaluation of a Novel MET-Targeting Camelid-Derived Antibody in Head and Neck Cancer. Mol Pharm 2024. [PMID: 39513517 DOI: 10.1021/acs.molpharmaceut.4c00938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
In head and neck squamous cell carcinoma (HNSCC), the mesenchymal epithelial transition (MET) receptor drives cancer growth, proliferation, and metastasis. MET is known to be overexpressed in HNSCC and, therefore, is an appealing therapeutic target. In this study, we evaluated MET expression in patients with HNSCC and investigated the potential imaging application of a novel MET-binding single-domain camelid antibody using positron emission tomography/computed tomography (PET/CT) in a preclinical MET-expressing HNSCC model. Multiplex immunostaining for MET protein performed on a tissue microarray from 203 patients with HNSCC found 86% of patients to have MET expression, with 14% having high expression and 53% having low MET expression. Using The Cancer Genome Atlas (TCGA) database, high MET RNA expression was associated with worse progression-free survival and overall survival in patients with HPV-negative HSNCC. Utilizing flow cytometry and immunofluorescence, our novel camelid antibody fused to a human IgG Fc chain (1E7-Fc) showed high binding affinity and specificity to high MET-expressing Detroit 562 cells but not to low MET-expressing HNSCC cells. The efficacy and biodistribution of [89Zr]Zr-1E7-Fc as a PET imaging agent was then investigated in a MET-expressing head and neck xenograft model. [89Zr]Zr-1E7-Fc rapidly localized and showed high tumor uptake in Detroit 562 xenografts (8.4% ID/g at 72 h postinjection), with rapid clearance from the circulatory system (2.7 tumor-to-blood radioactivity ratio at 72 h postinjection). Our preclinical data suggest that the camelid antibody 1E7-Fc could be a potential theranostic agent for HNSCC. Further investigations are warranted to confirm these findings in patients and to evaluate 1E7-Fc as an imaging agent and platform to deliver radionuclide or drug therapy to MET-driven cancers.
Collapse
Affiliation(s)
- Rachel L Minne
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
| | - Natalie Y Luo
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
| | - Caroline M Mork
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
| | - Madalynn R Wopat
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
| | - Karla Esbona
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
| | - Saahil Javeri
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
| | - Kwangok P Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
| | - Reinier Hernandez
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
| | - Aaron M LeBeau
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
| | - Andrew M Baschnagel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, United States
| |
Collapse
|
3
|
Gowda SV, Kim NY, Harsha KB, Gowda D, Suresh RN, Deivasigamani A, Mohan CD, Hui KM, Sethi G, Ahn KS, Rangappa KS. A new 1,2,3-triazole-indirubin hybrid suppresses tumor growth and pulmonary metastasis by mitigating the HGF/c-MET axis in hepatocellular carcinoma. J Adv Res 2024:S2090-1232(24)00377-1. [PMID: 39216686 DOI: 10.1016/j.jare.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a fatal cancer that is often diagnosed at the advanced stages which limits the available therapeutic options. The interaction of HGF with c-MET (a receptor tyrosine kinase) results in the activation of c-MET which subsequently triggers the PI3K/Akt/mTOR axis. Overexpression of c-MET in HCC tissues has been demonstrated to contribute to tumor progression and metastasis. OBJECTIVES We aimed to synthesize triazole-indirubin conjugates, examine their growth suppressor efficacy in cell-based assays, and investigate the antitumor as well as antimetastatic activity of lead cytotoxic agent in the orthotopic mice model. METHODS A series of triazole-indirubin hybrids were synthesized and cytotoxicity, apoptogenic, and antimigratory effect of the lead compound (CRI9) was evaluated using MTT assay, cell cycle analysis, annexin-V/PI assay, TUNEL assay, and wound healing assay. The effect of CRI9 on the operation of the HGF/c-MET/PI3K/Akt/mTOR axis was examined using western blotting and transfection experiments. Acute toxicity, antitumor, and antimetastatic activity of CRI9 were examined in NCr nude mice. The expression of c-MET/PI3K/Akt/mTOR, CD31, and Ki-67 was examined using immunohistochemistry and western blotting. RESULTS Among the new compounds, CRI9 consistently displayed potent cytotoxicity against HGF-induced HCC cells. CRI9 induced apoptosis as evidenced by increased sub G1 cells, annexin-V+/PI+ cells, TUNEL+ cells, and cleavage of procaspase-3 and PARP. CRI9 inhibited HGF-induced phosphorylation of c-METY1234/1235 and subsequently suppressed the PI3K/Akt/mTOR axis. Also, depletion of c-MET or inhibition of c-MET by CRI9 resulted in suppression of the PI3K/Akt/mTOR axis. CRI9 showed no toxic effects in NCr nude mice and displayed a potent antitumor and antimetastatic effect in the orthotopic HCC mice model. CRI9 also reduced the levels of phospho-c-MET, CD31, and Ki-67 and suppressed the activation of the PI3K/Akt/mTOR axis in tumor tissues. CONCLUSION CRI9 has been identified as a new inhibitor of the c-MET/PI3K/Akt/mTOR axis in HCC preclinical models.
Collapse
Affiliation(s)
- Shalini V Gowda
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| | - Na Young Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Kachigere B Harsha
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| | - Darshini Gowda
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| | - Rajaghatta N Suresh
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| | - Amudha Deivasigamani
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | | |
Collapse
|
4
|
Routila E, Mahran R, Salminen S, Irjala H, Haapio E, Kytö E, Ventelä S, Petterson K, Routila J, Gidwani K, Leivo J. Identification of stemness-related glycosylation changes in head and neck squamous cell carcinoma. BMC Cancer 2024; 24:443. [PMID: 38600440 PMCID: PMC11005150 DOI: 10.1186/s12885-024-12161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Altered glycosylation is a hallmark of cancer associated with therapy resistance and tumor behavior. In this study, we investigated the glycosylation profile of stemness-related proteins OCT4, CIP2A, MET, and LIMA1 in HNSCC tumors. METHODS Tumor, adjacent normal tissue, and blood samples of 25 patients were collected together with clinical details. After tissue processing, lectin-based glycovariant screens were performed. RESULTS Strong correlation between glycosylation profiles of all four stemness-related proteins was observed in tumor tissue, whereas glycosylation in tumor tissue, adjacent normal tissue, and serum was differential. CONCLUSIONS A mannose- and galactose-rich glycosylation niche associated with stemness-related proteins was identified.
Collapse
Affiliation(s)
- E Routila
- Department of Life Technologies, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
- InFLAMES Research Flagship, University of Turku, 20014, Turku, Finland.
- FICAN West Cancer Centre, Turku, Finland.
| | - R Mahran
- Department of Life Technologies, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
- FICAN West Cancer Centre, Turku, Finland
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - S Salminen
- Department of Life Technologies, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
- FICAN West Cancer Centre, Turku, Finland
| | - H Irjala
- Department for Otorhinolaryngology- Head and Neck surgery, University of Turku and Turku University Hospital, Savitehtaankatu 5, 20520, Turku, Finland
| | - E Haapio
- Department for Otorhinolaryngology- Head and Neck surgery, University of Turku and Turku University Hospital, Savitehtaankatu 5, 20520, Turku, Finland
| | - E Kytö
- Department for Otorhinolaryngology- Head and Neck surgery, University of Turku and Turku University Hospital, Savitehtaankatu 5, 20520, Turku, Finland
| | - S Ventelä
- FICAN West Cancer Centre, Turku, Finland
- Department for Otorhinolaryngology- Head and Neck surgery, University of Turku and Turku University Hospital, Savitehtaankatu 5, 20520, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - K Petterson
- Department of Life Technologies, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - J Routila
- FICAN West Cancer Centre, Turku, Finland
- Department for Otorhinolaryngology- Head and Neck surgery, University of Turku and Turku University Hospital, Savitehtaankatu 5, 20520, Turku, Finland
| | - K Gidwani
- Department of Life Technologies, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - J Leivo
- Department of Life Technologies, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014, Turku, Finland
- FICAN West Cancer Centre, Turku, Finland
| |
Collapse
|
5
|
Ramesh S, Cifci A, Javeri S, Minne RL, Longhurst CA, Nickel KP, Kimple RJ, Baschnagel AM. MET Inhibitor Capmatinib Radiosensitizes MET Exon 14-Mutated and MET-Amplified Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 118:1379-1390. [PMID: 37979706 DOI: 10.1016/j.ijrobp.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE The objective of this study was to investigate the effects of inhibiting the MET receptor with capmatinib, a potent and clinically relevant ATP-competitive tyrosine kinase inhibitor, in combination with radiation in MET exon 14-mutated and MET-amplified non-small cell lung (NSCLC) cancer models. METHODS AND MATERIALS In vitro effects of capmatinib and radiation on cell proliferation, colony formation, MET signaling, apoptosis, and DNA damage repair were evaluated. In vivo tumor responses were assessed in cell line xenograft and patient-derived xenograft models. Immunohistochemistry was used to confirm the in vitro results. RESULTS In vitro clonogenic survival assays demonstrated radiosensitization with capmatinib in both MET exon 14-mutated and MET-amplified NSCLC cell lines. No radiation-enhancing effect was observed in MET wild-type NSCLC and a human bronchial epithelial cell line. Minimal apoptosis was detected with the combination of capmatinib and radiation. Capmatinib plus radiation compared with radiation alone resulted in inhibition of DNA double-strand break repair, as measured by prolonged expression of γH2AX. In vivo, the combination of capmatinib and radiation significantly delayed tumor growth compared with vehicle control, capmatinib alone, or radiation alone. Immunohistochemistry indicated inhibition of phospho-MET and phospho-S6 and a decrease in Ki67 with inhibition of MET. CONCLUSIONS Inhibition of MET with capmatinib enhances the effect of radiation in both MET exon 14-mutated and MET-amplified NSCLC models.
Collapse
Affiliation(s)
- Shrey Ramesh
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ahmet Cifci
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Saahil Javeri
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Rachel L Minne
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Colin A Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Kwangok P Nickel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Randall J Kimple
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.
| | - Andrew M Baschnagel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
6
|
Schniewind I, Besso MJ, Klicker S, Schwarz FM, Hadiwikarta WW, Richter S, Löck S, Linge A, Krause M, Dubrovska A, Baumann M, Kurth I, Peitzsch C. Epigenetic Targeting to Overcome Radioresistance in Head and Neck Cancer. Cancers (Basel) 2024; 16:730. [PMID: 38398123 PMCID: PMC10886471 DOI: 10.3390/cancers16040730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: The sensitivity of head and neck squamous cell carcinoma (HNSCC) to ionizing radiation, among others, is determined by the number of cells with high clonogenic potential and stem-like features. These cellular characteristics are dynamically regulated in response to treatment and may lead to an enrichment of radioresistant cells with a cancer stem cell (CSC) phenotype. Epigenetic mechanisms, particularly DNA and histone methylation, are key regulators of gene-specific transcription and cellular plasticity. Therefore, we hypothesized that specific epigenetic targeting may prevent irradiation-induced plasticity and may sensitize HNSCC cells to radiotherapy. (2) Methods: We compared the DNA methylome and intracellular concentrations of tricarboxylic acid cycle metabolites in radioresistant FaDu and Cal33 cell lines with their parental controls, as well as aldehyde dehydrogenase (ALDH)-positive CSCs with negative controls. Moreover, we conducted a screen of a chemical library targeting enzymes involved in epigenetic regulation in combination with irradiation and analyzed the clonogenic potential, sphere formation, and DNA repair capacity to identify compounds with both radiosensitizing and CSC-targeting potential. (3) Results: We identified the histone demethylase inhibitor GSK-J1, which targets UTX (KDM6A) and JMJD3 (KDM6B), leading to increased H3K27 trimethylation, heterochromatin formation, and gene silencing. The clonogenic survival assay after siRNA-mediated knock-down of both genes radiosensitized Cal33 and SAS cell lines. Moreover, high KDM6A expression in tissue sections of patients with HNSCC was associated with improved locoregional control after primary (n = 137) and post-operative (n = 187) radio/chemotherapy. Conversely, high KDM6B expression was a prognostic factor for reduced overall survival. (4) Conclusions: Within this study, we investigated cellular and molecular mechanisms underlying irradiation-induced cellular plasticity, a key inducer of radioresistance, with a focus on epigenetic alterations. We identified UTX (KDM6A) as a putative prognostic and therapeutic target for HNSCC patients treated with radiotherapy.
Collapse
Affiliation(s)
- Iñaki Schniewind
- National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (I.S.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Department of Neurology, Carl Gustav Carus University Hospital, Dresden University of Technology, 01307 Dresden, Germany
| | - Maria José Besso
- German Cancer Research Center (DKFZ), Division Radiooncology/Radiobiology, 69120 Heidelberg, Germany
| | - Sebastian Klicker
- National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (I.S.)
| | - Franziska Maria Schwarz
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Wahyu Wijaya Hadiwikarta
- German Cancer Research Center (DKFZ), Division Radiooncology/Radiobiology, 69120 Heidelberg, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | - Steffen Löck
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Annett Linge
- National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (I.S.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Mechthild Krause
- National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (I.S.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (I.S.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Michael Baumann
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), Division Radiooncology/Radiobiology, 69120 Heidelberg, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), Division Radiooncology/Radiobiology, 69120 Heidelberg, Germany
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany; (I.S.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden University of Technology, 01307 Dresden, Germany
| |
Collapse
|
7
|
Vukovic Đerfi K, Vasiljevic T, Matijevic Glavan T. Recent Advances in the Targeting of Head and Neck Cancer Stem Cells. APPLIED SCIENCES 2023; 13:13293. [DOI: 10.3390/app132413293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a very heterogeneous cancer with a poor overall response to therapy. One of the reasons for this therapy resistance could be cancer stem cells (CSCs), a small population of cancer cells with self-renewal and tumor-initiating abilities. Tumor cell heterogeneity represents hurdles for therapeutic elimination of CSCs. Different signaling pathway activations, such as Wnt, Notch, and Sonic-Hedgehog (SHh) pathways, lead to the expression of several cancer stem factors that enable the maintenance of CSC features. Identification and isolation of CSCs are based either on markers (CD133, CD44, and aldehyde dehydrogenase (ALDH)), side populations, or their sphere-forming ability. A key challenge in cancer therapy targeting CSCs is overcoming chemotherapy and radiotherapy resistance. However, in novel therapies, various approaches are being employed to address this hurdle such as targeting cell surface markers, other stem cell markers, and different signaling or metabolic pathways, but also, introducing checkpoint inhibitors and natural compounds into the therapy can be beneficial.
Collapse
Affiliation(s)
- Kristina Vukovic Đerfi
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Tea Vasiljevic
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Tanja Matijevic Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Ruđer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Ramesh S, Cifci A, Javeri S, Minne R, Longhurst CA, Nickel KP, Kimple RJ, Baschnagel AM. MET Inhibitor Capmatinib Radiosensitizes MET Exon 14-Mutated and MET-Amplified Non-Small Cell Lung Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564232. [PMID: 37961176 PMCID: PMC10634863 DOI: 10.1101/2023.10.26.564232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Purpose The objective of this study was to investigate the effects of inhibiting the MET receptor with capmatinib, a potent and clinically relevant ATP-competitive tyrosine kinase inhibitor, in combination with radiation in MET exon 14-mutated and MET-amplified non-small cell lung (NSCLC) cancer models. Methods and Materials In vitro effects of capmatinib and radiation on cell proliferation, colony formation, MET signaling, apoptosis, and DNA damage repair were evaluated. In vivo tumor responses were assessed in cell line xenograft and patient-derived xenograft models. Immunohistochemistry (IHC) was used to confirm in vitro results. Results In vitro clonogenic survival assays demonstrated radiosensitization with capmatinib in both MET exon 14-mutated and MET-amplified NSCLC cell lines. No radiation-enhancing effect was observed in MET wild-type NSCLC and human bronchial epithelial cell line. Minimal apoptosis was detected with the combination of capmatinib and radiation. Capmatinib plus radiation compared to radiation alone resulted in inhibition of DNA double-strand break repair as measured by prolonged expression of γH2AX. In vivo, the combination of capmatinib and radiation significantly delayed tumor growth compared to vehicle control, capmatinib alone, or radiation alone. IHC indicated inhibition of phospho-MET and phospho-S6 and a decrease in Ki67 with inhibition of MET. Conclusions Inhibition of MET with capmatinib enhanced the effect of radiation in both MET exon 14-mutated and MET-amplified NSCLC models.
Collapse
Affiliation(s)
- Shrey Ramesh
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Ahmet Cifci
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Saahil Javeri
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Rachel Minne
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Colin A. Longhurst
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Randall J. Kimple
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Andrew M. Baschnagel
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Bingham PM, Zachar Z. Toward a Unifying Hypothesis for Redesigned Lipid Catabolism as a Clinical Target in Advanced, Treatment-Resistant Carcinomas. Int J Mol Sci 2023; 24:14365. [PMID: 37762668 PMCID: PMC10531647 DOI: 10.3390/ijms241814365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
We review extensive progress from the cancer metabolism community in understanding the specific properties of lipid metabolism as it is redesigned in advanced carcinomas. This redesigned lipid metabolism allows affected carcinomas to make enhanced catabolic use of lipids in ways that are regulated by oxygen availability and is implicated as a primary source of resistance to diverse treatment approaches. This oxygen control permits lipid catabolism to be an effective energy/reducing potential source under the relatively hypoxic conditions of the carcinoma microenvironment and to do so without intolerable redox side effects. The resulting robust access to energy and reduced potential apparently allow carcinoma cells to better survive and recover from therapeutic trauma. We surveyed the essential features of this advanced carcinoma-specific lipid catabolism in the context of treatment resistance and explored a provisional unifying hypothesis. This hypothesis is robustly supported by substantial preclinical and clinical evidence. This approach identifies plausible routes to the clinical targeting of many or most sources of carcinoma treatment resistance, including the application of existing FDA-approved agents.
Collapse
Affiliation(s)
- Paul M. Bingham
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA;
| | | |
Collapse
|
10
|
Lang L, Chen F, Li Y, Shay C, Yang F, Dan H, Chen ZG, Saba NF, Teng Y. Adaptive c-Met-PLXDC2 Signaling Axis Mediates Cancer Stem Cell Plasticity to Confer Radioresistance-associated Aggressiveness in Head and Neck Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:659-671. [PMID: 37089864 PMCID: PMC10114932 DOI: 10.1158/2767-9764.crc-22-0289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/22/2022] [Accepted: 01/03/2023] [Indexed: 04/25/2023]
Abstract
Radiotherapy plays an essential role in the treatment of head and neck squamous cell carcinoma (HNSCC), yet radioresistance remains a major barrier to therapeutic efficacy. A better understanding of the predominant pathways determining radiotherapy response could help develop mechanism-informed therapies to improve cancer management. Here we report that radioresistant HNSCC cells exhibit increased tumor aggressiveness. Using unbiased proteome profiler antibody arrays, we identify that upregulation of c-Met phosphorylation is one of the critical mechanisms for radioresistance in HNSCC cells. We further uncover that radioresistance-associated HNSCC aggressiveness is effectively exacerbated by c-Met but is suppressed by its genetic knockdown and pharmacologic inactivation. Mechanistically, the resulting upregulation of c-Met promotes elevated expression of plexin domain containing 2 (PLXDC2) through activating ERK1/2-ELK1 signaling, which in turn modulates cancer cell plasticity by epithelial-mesenchymal transition (EMT) induction and enrichment of the cancer stem cell (CSC) subpopulation, leading to resistance of HNSCC cells to radiotherapy. Depletion of PLXDC2 overcomes c-Met-mediated radioresistance through reversing the EMT progress and blunting the self-renewal capacity of CSCs. Therapeutically, the addition of SU11274, a selective and potent c-Met inhibitor, to radiation induces tumor shrinkage and limits tumor metastasis to lymph nodes in an orthotopic mouse model. Collectively, these significant findings not only demonstrate a novel mechanism underpinning radioresistance-associated aggressiveness but also provide a possible therapeutic strategy to target radioresistance in patients with HNSCC. Significance This work provides novel insights into c-Met-PLXDC2 signaling in radioresistance-associated aggressiveness and suggests a new mechanism-informed therapeutic strategy to overcome failure of radiotherapy in patients with HNSCC.
Collapse
Affiliation(s)
- Liwei Lang
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Fanghui Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, Georgia
| | - Yamin Li
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York
| | - Chloe Shay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory, University, Atlanta, Georgia
| | - Fan Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, Georgia
| | - Hancai Dan
- Department of Pathology, University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, Georgia
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, Georgia
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Georgia Cancer Center, Augusta University, Augusta, Georgia
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, School of Medicine, Atlanta, Georgia
| |
Collapse
|
11
|
Identity matters: cancer stem cells and tumour plasticity in head and neck squamous cell carcinoma. Expert Rev Mol Med 2023; 25:e8. [PMID: 36740973 DOI: 10.1017/erm.2023.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents frequent yet aggressive tumours that encompass complex ecosystems of stromal and neoplastic components including a dynamic population of cancer stem cells (CSCs). Recently, research in the field of CSCs has gained increased momentum owing in part to their role in tumourigenicity, metastasis, therapy resistance and relapse. We provide herein a comprehensive assessment of the latest progress in comprehending CSC plasticity, including newly discovered influencing factors and their possible application in HNSCC. We further discuss the dynamic interplay of CSCs within tumour microenvironment considering our evolving appreciation of the contribution of oral microbiota and the pressing need for relevant models depicting their features. In sum, CSCs and tumour plasticity represent an exciting and expanding battleground with great implications for cancer therapy that are only beginning to be appreciated in head and neck oncology.
Collapse
|
12
|
2-Hydroxy-3-methylanthraquinone inhibits homologous recombination repair in osteosarcoma through the MYC-CHK1-RAD51 axis. Mol Med 2023; 29:15. [PMID: 36717782 PMCID: PMC9887913 DOI: 10.1186/s10020-023-00611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Osteosarcoma is a malignant bone tumor that usually affects adolescents aged 15-19 y. The DNA damage response (DDR) is significantly enhanced in osteosarcoma, impairing the effect of systemic chemotherapy. Targeting the DDR process was considered a feasible strategy benefitting osteosarcoma patients. However, the clinical application of DDR inhibitors is not impressive because of their side effects. Chinese herbal medicines with high anti-tumor effects and low toxicity in the human body have gradually gained attention. 2-Hydroxy-3-methylanthraquinone (HMA), a Chinese medicine monomer found in the extract of Oldenlandia diffusa, exerts significant inhibitory effects on various tumors. However, its anti-osteosarcoma effects and defined molecular mechanisms have not been reported. METHODS After HMA treatment, the proliferation and metastasis capacity of osteosarcoma cells was detected by CCK-8, colony formation, transwell assays and Annexin V-fluorescein isothiocyanate/propidium iodide staining. RNA-sequence, plasmid infection, RNA interference, Western blotting and immunofluorescence assay were used to investigate the molecular mechanism and effects of HMA inhibiting osteosarcoma. Rescue assay and CHIP assay was used to further verified the relationship between MYC, CHK1 and RAD51. RESULTS HMA regulate MYC to inhibit osteosarcoma proliferation and DNA damage repair through PI3K/AKT signaling pathway. The results of RNA-seq, IHC, Western boltting etc. showed relationship between MYC, CHK1 and RAD51. Rescue assay and CHIP assay further verified HMA can impair homologous recombination repair through the MYC-CHK1-RAD51 pathway. CONCLUSION HMA significantly inhibits osteosarcoma proliferation and homologous recombination repair through the MYC-CHK1-RAD51 pathway, which is mediated by the PI3K-AKT signaling pathway. This study investigated the exact mechanism of the anti-osteosarcoma effect of HMA and provided a potential feasible strategy for the clinical treatment of human osteosarcoma.
Collapse
|
13
|
Petroni G, Cantley LC, Santambrogio L, Formenti SC, Galluzzi L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat Rev Clin Oncol 2022; 19:114-131. [PMID: 34819622 PMCID: PMC9004227 DOI: 10.1038/s41571-021-00579-w] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
A variety of targeted anticancer agents have been successfully introduced into clinical practice, largely reflecting their ability to inhibit specific molecular alterations that are required for disease progression. However, not all malignant cells rely on such alterations to survive, proliferate, disseminate and/or evade anticancer immunity, implying that many tumours are intrinsically resistant to targeted therapies. Radiotherapy is well known for its ability to activate cytotoxic signalling pathways that ultimately promote the death of cancer cells, as well as numerous cytoprotective mechanisms that are elicited by cellular damage. Importantly, many cytoprotective mechanisms elicited by radiotherapy can be abrogated by targeted anticancer agents, suggesting that radiotherapy could be harnessed to enhance the clinical efficacy of these drugs. In this Review, we discuss preclinical and clinical data that introduce radiotherapy as a tool to elicit or amplify clinically actionable signalling pathways in patients with cancer.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Lewis C Cantley
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|