1
|
Rahimi F, Nurzed B, Eigentler TW, Berangi M, Oberacker E, Kuehne A, Ghadjar P, Millward JM, Schuhmann R, Niendorf T. Helmet Radio Frequency Phased Array Applicators Enhance Thermal Magnetic Resonance of Brain Tumors. Bioengineering (Basel) 2024; 11:733. [PMID: 39061815 PMCID: PMC11273942 DOI: 10.3390/bioengineering11070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Thermal Magnetic Resonance (ThermalMR) integrates Magnetic Resonance Imaging (MRI) diagnostics and targeted radio-frequency (RF) heating in a single theranostic device. The requirements for MRI (magnetic field) and targeted RF heating (electric field) govern the design of ThermalMR applicators. We hypothesize that helmet RF applicators (HPA) improve the efficacy of ThermalMR of brain tumors versus an annular phased RF array (APA). An HPA was designed using eight broadband self-grounded bow-tie (SGBT) antennae plus two SGBTs placed on top of the head. An APA of 10 equally spaced SGBTs was used as a reference. Electromagnetic field (EMF) simulations were performed for a test object (phantom) and a human head model. For a clinical scenario, the head model was modified with a tumor volume obtained from a patient with glioblastoma multiforme. To assess performance, we introduced multi-target evaluation (MTE) to ensure whole-brain slice accessibility. We implemented time multiplexed vector field shaping to optimize RF excitation. Our EMF and temperature simulations demonstrate that the HPA improves performance criteria critical to MRI and enhances targeted RF and temperature focusing versus the APA. Our findings are a foundation for the experimental implementation and application of a HPA en route to ThermalMR of brain tumors.
Collapse
Affiliation(s)
- Faezeh Rahimi
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- FG Theoretische Elektrotechnik, Technical University of Berlin, 10587 Berlin, Germany;
| | - Bilguun Nurzed
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- Technische Universität Berlin, Chair of Medical Engineering, 10587 Berlin, Germany;
- Berliner Hochschule für Technik, 13353 Berlin, Germany
| | - Thomas W. Eigentler
- Technische Universität Berlin, Chair of Medical Engineering, 10587 Berlin, Germany;
| | - Mostafa Berangi
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- MRI.TOOLS GmbH, 13125 Berlin, Germany;
| | - Eva Oberacker
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
| | | | - Pirus Ghadjar
- Department Radiation Oncology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Jason M. Millward
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- Experimental and Clinical Research Center, Joint Cooperation between Charité Unversitätsmedizin and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Rolf Schuhmann
- FG Theoretische Elektrotechnik, Technical University of Berlin, 10587 Berlin, Germany;
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (B.N.); (M.B.); (E.O.); (J.M.M.)
- MRI.TOOLS GmbH, 13125 Berlin, Germany;
- Experimental and Clinical Research Center, Joint Cooperation between Charité Unversitätsmedizin and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
2
|
Hájek M, Flögel U, S Tavares AA, Nichelli L, Kennerley A, Kahn T, Futterer JJ, Firsiori A, Grüll H, Saha N, Couñago F, Aydogan DB, Caligiuri ME, Faber C, Bell LC, Figueiredo P, Vilanova JC, Santini F, Mekle R, Waiczies S. MR beyond diagnostics at the ESMRMB annual meeting: MR theranostics and intervention. MAGMA (NEW YORK, N.Y.) 2024; 37:323-328. [PMID: 38865057 PMCID: PMC11316697 DOI: 10.1007/s10334-024-01176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Affiliation(s)
- Milan Hájek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adriana A S Tavares
- Centre for Cardiovascular Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Lucia Nichelli
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France
- Department of Neuroradiology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Aneurin Kennerley
- Department of Sports and Exercise Science, Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Biology, University of York, York, UK
| | - Thomas Kahn
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Jurgen J Futterer
- Minimally Invasive Image-Guided Intervention Center (MAGIC), Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Aikaterini Firsiori
- Unit of Diagnostic and Interventional Neuroradiology, Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Holger Grüll
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Nandita Saha
- Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010, Madrid, Spain
| | - Dogu Baran Aydogan
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Università Degli Studi "Magna Graecia", Catanzaro, Italy
| | - Cornelius Faber
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Münster, Germany
| | - Laura C Bell
- Early Clinical Development, Genentech Inc., South San Francisco, USA
| | - Patrícia Figueiredo
- Institute for Systems and Robotics, ISR-Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joan C Vilanova
- Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging (IDI) Girona, University of Girona, 17004, Girona, Spain
| | - Francesco Santini
- Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Ralf Mekle
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sonia Waiczies
- Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation Between the Charité Medical Faculty and the MDC, Berlin, Germany.
| |
Collapse
|
3
|
Jeong H, Andersson J, Hess A, Jezzard P. Effect of subject-specific head morphometry on specific absorption rate estimates in parallel-transmit MRI at 7 T. Magn Reson Med 2023; 89:2376-2390. [PMID: 36656151 PMCID: PMC10952207 DOI: 10.1002/mrm.29589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/02/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023]
Abstract
PURPOSE To assess the accuracy of morphing an established reference electromagnetic head model to a subject-specific morphometry for the estimation of specific absorption rate (SAR) in 7T parallel-transmit (pTx) MRI. METHODS Synthetic T1 -weighted MR images were created from three high-resolution open-source electromagnetic head voxel models. The accuracy of morphing a "reference" (multimodal image-based detailed anatomical [MIDA]) electromagnetic model into a different subject's native space (Duke and Ella) was compared. Both linear and nonlinear registration methods were evaluated. Maximum 10-g averaged SAR was estimated for circularly polarized mode and for 5000 random RF shim sets in an eight-channel transmit head coil, and comparison made between the morphed MIDA electromagnetic models and the native Duke and Ella electromagnetic models, respectively. RESULTS The averaged error in maximum 10-g averaged SAR estimation across pTx MRI shim sets between the MIDA and the Duke target model was reduced from 17.5% with only rigid-body registration, to 11.8% when affine linear registration was used, and further reduced to 10.7% when nonlinear registration was used. The corresponding figures for the Ella model were 16.7%, 11.2%, and 10.1%. CONCLUSION We found that morphometry accounts for up to half of the subject-specific differences in pTx SAR. Both linear and nonlinear morphing of an electromagnetic model into a target subject improved SAR agreement by better matching head size, morphometry, and position. However, differences remained, likely arising from details in tissue composition estimation. Thus, the uncertainty of the head morphometry and tissue composition may need to be considered separately to achieve personalized SAR estimation.
Collapse
Affiliation(s)
- Hongbae Jeong
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Aaron Hess
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Centre for Clinical Magnetic Resonance Research, Department of Cardiovascular MedicineUniversity of OxfordOxfordUK
- British Heart Foundation Centre for Research ExcellenceOxfordUK
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Saha N, Kuehne A, Millward JM, Eigentler TW, Starke L, Waiczies S, Niendorf T. Advanced Radio Frequency Applicators for Thermal Magnetic Resonance Theranostics of Brain Tumors. Cancers (Basel) 2023; 15:cancers15082303. [PMID: 37190232 DOI: 10.3390/cancers15082303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Thermal Magnetic Resonance (ThermalMR) is a theranostic concept that combines diagnostic magnetic resonance imaging (MRI) with targeted thermal therapy in the hyperthermia (HT) range using a radiofrequency (RF) applicator in an integrated system. ThermalMR adds a therapeutic dimension to a diagnostic MRI device. Focused, targeted RF heating of deep-seated brain tumors, accurate non-invasive temperature monitoring and high-resolution MRI are specific requirements of ThermalMR that can be addressed with novel concepts in RF applicator design. This work examines hybrid RF applicator arrays combining loop and self-grounded bow-tie (SGBT) dipole antennas for ThermalMR of brain tumors, at magnetic field strengths of 7.0 T, 9.4 T and 10.5 T. These high-density RF arrays improve the feasible transmission channel count, and provide additional degrees of freedom for RF shimming not afforded by using dipole antennas only, for superior thermal therapy and MRI diagnostics. These improvements are especially relevant for ThermalMR theranostics of deep-seated brain tumors because of the small surface area of the head. ThermalMR RF applicators with the hybrid loop+SGBT dipole design outperformed applicators using dipole-only and loop-only designs, with superior MRI performance and targeted RF heating. Array variants with a horse-shoe configuration covering an arc (270°) around the head avoiding the eyes performed better than designs with 360° coverage, with a 1.3 °C higher temperature rise inside the tumor while sparing healthy tissue. Our EMF and temperature simulations performed on a virtual patient with a clinically realistic intracranial tumor provide a technical foundation for implementation of advanced RF applicators tailored for ThermalMR theranostics of brain tumors.
Collapse
Affiliation(s)
- Nandita Saha
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Andre Kuehne
- MRI.TOOLS GmbH, 13125 Berlin, Germany
- Brightmind.AI GmbH, 1010 Vienna, Austria
| | - Jason M Millward
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Thomas Wilhelm Eigentler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
| | - Ludger Starke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, 14482 Potsdam, Germany
| | - Sonia Waiczies
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.), 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- MRI.TOOLS GmbH, 13125 Berlin, Germany
| |
Collapse
|
5
|
Zanoli M, Ek E, Dobšíček Trefná H. Antenna Arrangement in UWB Helmet Brain Applicators for Deep Microwave Hyperthermia. Cancers (Basel) 2023; 15:cancers15051447. [PMID: 36900238 PMCID: PMC10000505 DOI: 10.3390/cancers15051447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Deep microwave hyperthermia applicators are typically designed as narrow-band conformal antenna arrays with equally spaced elements, arranged in one or more rings. This solution, while adequate for most body regions, might be sub-optimal for brain treatments. The introduction of ultra-wide-band semi-spherical applicators, with elements arranged around the head and not necessarily aligned, has the potential to enhance the selective thermal dose delivery in this challenging anatomical region. However, the additional degrees of freedom in this design make the problem non-trivial. We address this by treating the antenna arrangement as a global SAR-based optimization process aiming at maximizing target coverage and hot-spot suppression in a given patient. To enable the quick evaluation of a certain arrangement, we propose a novel E-field interpolation technique which calculates the field generated by an antenna at any location around the scalp from a limited number of initial simulations. We evaluate the approximation error against full array simulations. We demonstrate the design technique in the optimization of a helmet applicator for the treatment of a medulloblastoma in a paediatric patient. The optimized applicator achieves 0.3 °C higher T90 than a conventional ring applicator with the same number of elements.
Collapse
|
6
|
Fang Y, Bakian-Dogaheh K, Moghaddam M. Real-Time 3D Microwave Medical Imaging With Enhanced Variational Born Iterative Method. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:268-280. [PMID: 36166569 DOI: 10.1109/tmi.2022.3210494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this paper, we present a new variational Born iterative method (VBIM) for real-time microwave imaging (MWI) applications. The S-parameter volume integral equation and waveport vector Green's function are implemented to utilize the measured signal of the MWI system. Meanwhile, the real and imaginary separation (RIS) approach is used at each iterative step to simultaneously reconstruct the dielectric permittivity and conductivity of unknown objects. Compared with the Born iterative method and distorted Born iterative method, VBIM requires less computational time to reach the convergence threshold. The graphics processing unit based acceleration technique is implemented for real-time imaging. To demonstrate the efficiency and accuracy of this VBIM-RIS method, synthetic analysis of a complex multi-layer spherical phantom is first conducted. Then, the algorithm is tested with measured data using our new MWI system prototype. Finally, a synthetic brain-tumor phantom model under a thermal therapy procedure is monitored to exemplify the real-time imaging with about 5 seconds per reconstruction frame.
Collapse
|
7
|
Montes-Robles R, Montanaro H, Capstick M, Ibáñez-Civera J, Masot-Peris R, García-Breijo E, Laguarda-Miró N, Martínez-Máñez R. Tailored cancer therapy by magnetic nanoparticle hyperthermia: A virtual scenario simulation method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107185. [PMID: 36279641 DOI: 10.1016/j.cmpb.2022.107185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Hyperthermia is a cancer treatment aiming to induce cell death by directly warming cancerous tissues above 40 °C. This technique can be applied both individually and together with other cancer therapies. The main challenge for researchers and medics is to heat only tumoral cells avoiding global or localized heating of sane tissues. The objective in this study is to provide a realistic virtual scenario to develop an optimized multi-site injection plan for tailored magnetic nanoparticle-mediated hyperthermia applications. METHODS A three-dimensional model of a cat's back was tested in three different simulation scenarios, showing the impact of magnetic nanoparticles in each specific environment configuration. RESULTS As a result of this study. This simulation method can, minimising the affection to healthy tissue. CONCLUSIONS This virtual method will help real and personalized therapy planning and tailor the dose and distribution of magnetic nanoparticles for an enhanced hyperthermia cancer treatment.
Collapse
Affiliation(s)
- Roberto Montes-Robles
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), Valencia, Spain
| | - Hazael Montanaro
- ITIS Foundation for Research on Information Technologies in Society, Zurich, Switzerland; Swiss Federal Institute of Technology (ETHZ), Zurich, Switzerland
| | - Myles Capstick
- ITIS Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Javier Ibáñez-Civera
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), Valencia, Spain
| | - Rafael Masot-Peris
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), Valencia, Spain
| | - Eduardo García-Breijo
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), Valencia, Spain
| | - Nicolás Laguarda-Miró
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), Valencia, Spain.
| | - Ramón Martínez-Máñez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), Universitat Politècnica de València (UPV), Universitat de València (UV), Valencia, Spain; CIBER in the Subject Area of de Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; ITIS Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| |
Collapse
|
8
|
Eigentler TW, Kuehne A, Boehmert L, Dietrich S, Els A, Waiczies H, Niendorf T. 32-Channel self-grounded bow-tie transceiver array for cardiac MR at 7.0T. Magn Reson Med 2021; 86:2862-2879. [PMID: 34169546 DOI: 10.1002/mrm.28885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/20/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Design, implementation, evaluation, and application of a 32-channel Self-Grounded Bow-Tie (SGBT) transceiver array for cardiac MR (CMR) at 7.0T. METHODS The array consists of 32 compact SGBT building blocks. Transmission field ( B 1 + ) shimming and radiofrequency safety assessment were performed with numerical simulations and benchmarked against phantom experiments. In vivo B 1 + efficiency mapping was conducted with actual flip angle imaging. The array's applicability for accelerated high spatial resolution 2D FLASH CINE imaging of the heart was examined in a volunteer study (n = 7). RESULTS B 1 + shimming provided a uniform field distribution suitable for female and male subjects. Phantom studies demonstrated an excellent agreement between simulated and measured B 1 + efficiency maps (7% mean difference). The SGBT array afforded a spatial resolution of (0.8 × 0.8 × 2.5) mm3 for 2D CINE FLASH which is by a factor of 12 superior to standardized cardiovascular MR (CMR) protocols. The density of the SGBT array supports 1D acceleration of up to R = 4 (mean signal-to-noise ratio (whole heart) ≥ 16.7, mean contrast-to-noise ratio ≥ 13.5) without impairing image quality significantly. CONCLUSION The compact SGBT building block facilitates a modular high-density array that supports accelerated and high spatial resolution CMR at 7.0T. The array provides a technological basis for future clinical assessment of parallel transmission techniques.
Collapse
Affiliation(s)
- Thomas Wilhelm Eigentler
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Chair of Medical Engineering, Technische Universität Berlin, Berlin, Germany
| | | | - Laura Boehmert
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sebastian Dietrich
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Antje Els
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,MRI.TOOLS GmbH, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|