1
|
Lan W, Xiao X, Nian J, Wang Z, Zhang X, Wu Y, Zhang D, Chen J, Bao W, Li C, Zhang Y, Zhu A, Zhang F. Senolytics Enhance the Longevity of Caenorhabditis elegans by Altering Betaine Metabolism. J Gerontol A Biol Sci Med Sci 2024; 79:glae221. [PMID: 39434620 DOI: 10.1093/gerona/glae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Indexed: 10/23/2024] Open
Abstract
Aging triggers physiological changes in organisms that are tightly linked to metabolic changes. Senolytics targeting many fundamental aging processes are currently being developed. However, the host metabolic response to natural senescence and the molecular mechanism underlying the antiaging benefits of senolytics remain poorly understood. In this study, we investigated metabolic changes during natural senescence based on the Caenorhabditis elegans model and pinpointed potential biomarkers linked to the benefits of senolytics. These results suggest that age-dependent metabolic changes during natural aging occur in C elegans. Betaine was identified as a crucial metabolite in the natural aging process. We explored the metabolic effects of aging interventions by administering 3 antiaging drugs-metformin, quercetin, and minocycline-to nematodes. Notably, betaine expression significantly increased under the 3 antiaging drug treatments. Our findings demonstrated that betaine supplementation extends lifespan, primarily through pathways associated with the forkhead box transcription factor (FoxO) signaling pathway, the p38-mitogen-activated protein kinase (MAPK) signaling pathway, autophagy, the longevity regulating pathway, and the target of rapamycin (mTOR) signaling pathway. In addition, autophagy and free radicals are altered in betaine-treated nematodes. Overall, we found that betaine is a critical metabolite during natural aging and that senolytics extend the lifespan of nematodes by increasing betaine levels and promoting autophagy and antioxidant activity. This finding suggests that betaine could be a novel therapeutic target for promoting longevity.
Collapse
Affiliation(s)
- Wenning Lan
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| | - Xiaolian Xiao
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
- Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, China
| | - Jingjing Nian
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ziran Wang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojing Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yajiao Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dongcheng Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Junkun Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Wenqiang Bao
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Chutao Li
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yun Zhang
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
- Institute of Material and Chemistry, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, China
| | - An Zhu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Šimunić E, Podgorski II, Pinterić M, Hadžija MP, Belužić R, Paradžik M, Dončević L, Balog T, Kaloper M, Habisch H, Madl T, Korać A, Sobočanec S. Sirtuin 3 drives sex-specific responses to age-related changes in mouse embryonic fibroblasts. Mech Ageing Dev 2024; 222:111996. [PMID: 39395563 DOI: 10.1016/j.mad.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
The aging process is a complex phenomenon characterised by a gradual decline in physiological functions and an increased susceptibility to age-related diseases. An important factor in aging is mitochondrial dysfunction, which leads to an accumulation of cellular damage over time. Mitochondrial Sirtuin 3 (Sirt3), an important regulator of energy metabolism, plays a central role in maintaining mitochondrial function. Loss of Sirt3 can lead to reduced energy levels and an impaired ability to repair cellular damage, a hallmark of the aging process. In this study we investigated the impact of Sirt3 loss on mitochondrial function, metabolic responses and cellular aging processes in male and female mouse embryonic fibroblasts (MEF) exposed to etoposide-induced DNA damage, which is commonly associated with cellular dysfunction and senescence. We found that Sirt3 contributes to the sex-specific metabolic response to etoposide treatment. While male MEF exhibited minimal damage suggesting potential prior adaptation to stress due to Sirt3 loss, female MEF lacking Sirt3 experienced higher vulnerability to genotoxic stress, implying a pivotal role of Sirt3 in their resistance to such challenges. These findings offer potential insights into therapeutic strategies targeting Sirt3- and sex-specific signalling pathways in diseases associated with DNA damage that play a critical role in the aging process.
Collapse
Affiliation(s)
- Ena Šimunić
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Iva I Podgorski
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Marija Pinterić
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Marijana Popović Hadžija
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Robert Belužić
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Mladen Paradžik
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Lucija Dončević
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb 10 000, Croatia.
| | - Tihomir Balog
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| | - Marta Kaloper
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Ravnice 48, Zagreb 10 000, Croatia.
| | - Hansjörg Habisch
- Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria.
| | - Tobias Madl
- BioTechMed Graz, Mozartgasse 12/II, Graz 8010, Austria.
| | - Aleksandra Korać
- Faculty of Biology, University of Belgrade, Studentski trg 16, Beograd 11158, Serbia.
| | - Sandra Sobočanec
- Division for Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb 10 000, Croatia.
| |
Collapse
|
3
|
Neuß T, Chen MC, Wirges N, Usluer S, Oellinger R, Lier S, Dudek M, Madl T, Jastroch M, Steiger K, Schmitz W, Einwächter H, Schmid RM. Metabolic Reprogramming Is an Initial Step in Pancreatic Carcinogenesis That Can Be Targeted to Inhibit Acinar-to-Ductal Metaplasia. Cancer Res 2024; 84:2297-2312. [PMID: 39005053 DOI: 10.1158/0008-5472.can-23-2213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/03/2024] [Accepted: 05/01/2024] [Indexed: 07/16/2024]
Abstract
Metabolic reprogramming is a hallmark of cancer and is crucial for cancer progression, making it an attractive therapeutic target. Understanding the role of metabolic reprogramming in cancer initiation could help identify prevention strategies. To address this, we investigated metabolism during acinar-to-ductal metaplasia (ADM), the first step of pancreatic carcinogenesis. Glycolytic markers were elevated in ADM lesions compared with normal tissue from human samples. Comprehensive metabolic assessment in three mouse models with pancreas-specific activation of KRAS, PI3K, or MEK1 using Seahorse measurements, nuclear magnetic resonance metabolome analysis, mass spectrometry, isotope tracing, and RNA sequencing analysis revealed a switch from oxidative phosphorylation to glycolysis in ADM. Blocking the metabolic switch attenuated ADM formation. Furthermore, mitochondrial metabolism was required for de novo synthesis of serine and glutathione (GSH) but not for ATP production. MYC mediated the increase in GSH intermediates in ADM, and inhibition of GSH synthesis suppressed ADM development. This study thus identifies metabolic changes and vulnerabilities in the early stages of pancreatic carcinogenesis. Significance: Metabolic reprogramming from oxidative phosphorylation to glycolysis mediated by MYC plays a crucial role in the development of pancreatic cancer, revealing a mechanism driving tumorigenesis and potential therapeutic targets. See related commentary by Storz, p. 2225.
Collapse
Affiliation(s)
- Thorsten Neuß
- Department of Clinical Medicine-Clinical Department for Internal Medicine II, TUM School of Medicine and Health, University Medical Center, Technical University of Munich, Munich, Germany
| | - Min-Chun Chen
- Department of Clinical Medicine-Clinical Department for Internal Medicine II, TUM School of Medicine and Health, University Medical Center, Technical University of Munich, Munich, Germany
| | - Nils Wirges
- Technical University of Munich, TUM School of Medicine and Health, Institute of Pathology, Comparative Experimental Pathology, Munich, Germany
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, BioTechMed-Graz, Graz, Austria
| | - Rupert Oellinger
- TUM School of Medicine and Health, Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, Munich, Germany
| | - Svenja Lier
- Department of Clinical Medicine-Clinical Department for Internal Medicine II, TUM School of Medicine and Health, University Medical Center, Technical University of Munich, Munich, Germany
| | - Michael Dudek
- TUM School of Medicine and Health, Institute of Molecular Immunology and Experimental Oncology, University Medical Center, Technical University of Munich, Munich, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, BioTechMed-Graz, Graz, Austria
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Katja Steiger
- Technical University of Munich, TUM School of Medicine and Health, Institute of Pathology, Comparative Experimental Pathology, Munich, Germany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Henrik Einwächter
- Department of Clinical Medicine-Clinical Department for Internal Medicine II, TUM School of Medicine and Health, University Medical Center, Technical University of Munich, Munich, Germany
| | - Roland M Schmid
- Department of Clinical Medicine-Clinical Department for Internal Medicine II, TUM School of Medicine and Health, University Medical Center, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Yin KL, Sun T, Duan YX, Ye WT, Ming Li, Liao R. Nomograms incorporating hsa_circ_0029325 highly expressed in exosomes of hepatocellular carcinoma predict the postoperative outcomes. Discov Oncol 2024; 15:212. [PMID: 38836972 PMCID: PMC11153441 DOI: 10.1007/s12672-024-01060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Liquid biopsies, for example, exosomal circular RNA (circRNA) can be used to assess potential predictive markers for hepatocellular carcinoma (HCC) in patients after curative resection. This study aimed to search for effective prognostic biomarkers for HCC in patients after surgical resection based on exosomal circRNA expression profiles. We developed two nomograms incorporating circRNAs to predict the postoperative recurrence-free survival (RFS) and overall survival (OS) of HCC patients. METHOD Plasma exosomes isolated from HCC patients and healthy individuals were used for circRNA microarray analysis to explore differentially expressed circRNAs. Pearson correlation analysis was used to evaluate the correlation between circRNAs and clinicopathological features. Cox regression analysis was used to explore the correlation between circRNA and postoperative survival time as well as recurrence time. A nomogram based on circRNA and clinicopathological characteristics was established and further evaluated to predict prognosis and recurrence. RESULT Among 60 significantly upregulated circRNAs and 25 downregulated circRNAs, hsa_circ_0029325 was selected to verify its power for predicting HCC outcomes. The high expression level of exosomal hsa_circ_0029325 was significantly correlated with OS (P = 0.001, HR = 2.04, 95% CI 1.41-3.32) and RFS (P = 0.009, HR = 1.62, 95% CI 1.14-2.30). Among 273 HCC patients, multivariate regression analysis showed that hsa_circ_0029325 (HR = 1.96, 95% CI 1.21-3.18), tumor size (HR = 2.11, 95% CI 1.33-3.32), clinical staging (HR = 2.31, 95% CI 1.54-3.48), and tumor thrombus (HR = 1.74, 95% CI 1.12-2.7) were independent risk factors for poor prognosis in HCC patients after radical resection. These independent predictors of prognosis were incorporated into the two nomograms. The AUCs under the 1-year, 3-year, and 5-year survival and recurrence curves of the OS and RFS nomograms were 0.755, 0.749, and 0.742 and 0.702, 0.685, and 0.642, respectively. The C-index, calibration curves, and clinical decision curves showed that the two prediction models had good predictive performance. These results were verified in the validation cohort with 90 HCC patients. CONCLUSION Our study established two reliable nomograms for predicting recurrence and prognosis in HCC patients. We also show that it is feasible to screen potential predictive markers for HCC after curative resection through exosomal circRNA expression profile analysis.
Collapse
Affiliation(s)
- Kun-Li Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Chongqing, 400016, China
| | - Taiwei Sun
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Xin Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Chongqing, 400016, China
| | - Wen-Tao Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Chongqing, 400016, China
| | - Ming Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Chongqing, 400016, China.
| | - Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Rd, Chongqing, 400016, China.
| |
Collapse
|
5
|
Cheng Y, Xing Y, Du J, Hu D, Liang X, Liu C, Yang Y. Data-independent acquisition for proteomic applications in early-stage endometrial cancer progression. J Obstet Gynaecol Res 2024; 50:233-244. [PMID: 37984439 DOI: 10.1111/jog.15834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
AIM Most endometrial cancer (EC) patients are diagnosed at an early-stage (FIGO stage I or II), with a favorable prognosis. However, some high-grade, early-stage EC patients have unexpected recurrences and undesirable results, the molecular alterations that underlie these tumors are far from being fully understood. Our goal was to use proteome analysis to examine dysregulated pathways in this specific subgroup of EC. METHODS We used data-independent acquisition (DIA) quantitative proteomics to analyze cancer and matched paracancerous tissues from 20 EC patients (10 high-grade and 10 low-grade). Immunohistochemistry (IHC) analysis was used to validate protein expression of six hub genes. RESULTS In total, 7107 proteins were quantified, while 225 downregulated and 366 upregulated proteins in high-grade cancer tissues, 130 downregulated and 413 upregulated proteins in high-grade paracancerous tissues. The pathway associated with oxidative phosphorylation (OXPHOS) was upregulated and have similar expression patterns in high-grade EC tissues and matched paracancerous tissues. OXPHOS-related protein, ATP5F1D showed the best classification and diagnostic ability in distinguishing high-grade from low-grade EC. In both cancer and paracancerous tissues, double-label immunofluorescence demonstrated ITGA4 and COL4A1 co-localized at the basal membrane. CONCLUSIONS Our present works elucidate that metabolism reprogramming is associated with high-grade, early-stage EC, particularly OXPHOS is upregulated. Noticeably, the paracancerous tissues have undergone molecular changes similar to cancer tissues, maybe they have signal exchange via secreted proteins (ITGA4 and COL4A1). The upregulation of OXPHOS-related proteins may be the potential biomarker for EC diagnosis, and targeting OXPHOS metabolism might be an effective treatment for high-grade, early-stage EC.
Collapse
Affiliation(s)
- Yuemei Cheng
- The First Clinical Medical College of Lanzhou University, Department of Obstetrics and Gynecology, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, Gansu, China
| | - Yijuan Xing
- The First Clinical Medical College of Lanzhou University, Department of Obstetrics and Gynecology, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Department of Obstetrics and Gynecology, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, Gansu, China
| | - Dan Hu
- The First Clinical Medical College of Lanzhou University, Department of Obstetrics and Gynecology, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, Gansu, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, Gansu, China
| | - Chang Liu
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Circulating Metabolic Markers Related to the Diagnosis of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7840606. [DOI: 10.1155/2022/7840606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Primary liver carcinoma is the sixth most common cancer worldwide, while hepatocellular carcinoma (HCC) is the most dominant cancer type. Chronic hepatitis B and C virus infections and aflatoxin exposure are the main risk factors, while nonalcoholic fatty liver disease caused by obesity, diabetes, and metabolic syndrome are the more common risk factors for HCC. Metabolic disorders caused by these high-risk factors are closely related to the tumor microenvironment of HCC, revealing a possible cause-and-effect relationship between the two. These metabolic disorders involve many complex metabolic pathways, such as carbohydrate, lipid, lipid derivative, amino acid, and amino acid derivative metabolic processes. The resulting metabolites with significant abnormal changes in the concentration level in circulating blood may be used as biomarkers to guide the diagnosis, treatment, or prognosis of HCC. At present, there are high-throughput technologies that can quickly detect small molecular metabolites in many samples. Compared to tissue biopsy, blood samples are easier to obtain, and patients’ willingness to participate is higher, which makes it possible to study blood HCC biomarkers. Over the past few years, a substantial body of research has been performed worldwide, and other potential biomarkers have been identified. Unfortunately, due to the limitations of each study, only a few markers have been widely verified and are suitable for clinical use. This review briefly summarizes the potential blood metabolic markers related to the diagnosis of HCC, mainly focusing on amino acids and their derivative metabolism, lipids and their derivative metabolism, and other possible related metabolisms.
Collapse
|
7
|
Lan W, Wang Y, Zhou Z, Sun X, Zhang Y, Zhang F. Metabolic Regulation of Hepatitis B Virus Infection in HBV-Transgenic Mice. Metabolites 2022; 12:287. [PMID: 35448475 PMCID: PMC9031567 DOI: 10.3390/metabo12040287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/20/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a worldwide health burden. Metabolomics analysis has revealed HBV-induced metabolism dysregulation in liver tissues and hepatocytes. However, as an infectious disease, the tissue-specific landscape of metabolic profiles of HBV infection remains unclear. To fill this gap, we applied untargeted nuclear magnetic resonance (NMR) metabolomic analysis of the heart, liver, spleen, lung, kidney, pancreas, and intestine (duodenum, jejunum, ileum) in HBV-transgenic mice and their wild-type littermates. Strikingly, we found systemic metabolic alterations induced by HBV in liver and extrahepatic organs. Significant changes in metabolites have been observed in most tissues of HBV-transgenic mice, except for ileum. The metabolic changes may provide novel therapeutic targets for the treatment of HBV infection. Moreover, tissue-specific metabolic profiles could speed up the study of HBV induced systemic metabolic reprogramming, which could help follow the progression of HBV infection and explain the underlying pathogenesis.
Collapse
Affiliation(s)
- Wenning Lan
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341001, China
| | - Yang Wang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou 350122, China;
| | - Zixiong Zhou
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
| | - Yun Zhang
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China;
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China;
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
8
|
Wang KX, Du GH, Qin XM, Gao L. Compound Kushen Injection intervenes metabolic reprogramming and epithelial-mesenchymal transition of HCC via regulating β-catenin/c-Myc signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153781. [PMID: 34649212 DOI: 10.1016/j.phymed.2021.153781] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most extensive and most deadly cancers worldwide. The invasion and metastasis characteristics of HCC dramatically affect the prognosis and survival of HCC patients. Compound Kushen Injection (CKI) is a GMP produced, proverbially applied traditional Chinese medicine formula in China to treat cancer-associated pains, and used as an adjunctive therapy for HCC. Until so far, whether CKI could suppress the metastasis of HCC through regulation of epithelial-mesenchymal transition or metabolic reprogramming is still ambiguous. PURPOSE In this study, the anti-metastasis effects of CKI were clarified and its pharmacological mechanisms were systematically explored. METHODS Cell invasion and cell adhesion assay were performed in SMMC-7721 cells to assess the anti-metastasis role of CKI, and the histopathological evaluation and biochemical detection were utilized in DEN-induced HCC rats to verify the anti-HCC effect of CKI. Serum and liver samples were analyzed with 1H NMR metabolomics approach to screen the differential metabolites and further target quantification the content of key metabolites. Finally, western blotting and immunofluorescence assay were applied to verify the crucial signaling pathway involved in metabolites. RESULTS CKI markedly repressed the invasion and adhesion in SMMC-7721 cells and significantly improved the liver function of DEN-induced HCC rats. CKI significantly regulated the expression of epithelial-mesenchymal transition (EMT) markers (Vimentin and E-cadherin). Metabolomics results showed that CKI regulated the metabolic reprogramming of HCC by inhibiting the key metabolites (citrate and lactate) and enzymes (HK and PK) in glycolysis process. Importantly, we found that c-Myc mediates the inhibitory effect of CKI on glycolysis. We further demonstrated that CKI inhibits c-Myc expression through modulating Wnt/β-catenin pathway in SMMC-7721 cells and DEN-induced HCC rats. Furthermore, through activating Wnt/β-catenin pathway with LiCl, the inhibitory effects of CKI on HCC were diminished. CONCLUSION Together, this study reveals that CKI intervenes metabolic reprogramming and epithelial-mesenchymal transition of HCC via regulating β-catenin/c-Myc signaling pathway. Our research provides a new understanding of the mechanism of CKI against invasion and metastasis of HCC from the perspective of metabolic reprogramming.
Collapse
Affiliation(s)
- Ke-Xin Wang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| |
Collapse
|
9
|
Cui D, Li W, Jiang D, Wu J, Xie J, Wu Y. Advances in Multi-Omics Applications in HBV-Associated Hepatocellular Carcinoma. Front Med (Lausanne) 2021; 8:754709. [PMID: 34660653 PMCID: PMC8514776 DOI: 10.3389/fmed.2021.754709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) specifically infects liver cells, leading to progressive liver cirrhosis and significantly increasing the risk of hepatocellular carcinoma (HCC). The maturity of sequencing technology, improvement in bioinformatics data analysis and progress of omics technologies had improved research efficiency. The occurrence and progression of HCC are affected by multisystem and multilevel pathological changes. With the application of single-omics technologies, including genomics, transcriptomics, metabolomics and proteomics in tissue and body fluid samples, and even the novel development of multi-omics analysis on a single-cell platform, HBV-associated HCC changes can be better analyzed. The review summarizes the application of single omics and combined analysis of multi-omics data in HBV-associated HCC and proposes the importance of multi-omics analysis in the type of HCC, which provide the possibility for the precise diagnosis and therapy of HBV-associated HCC.
Collapse
Affiliation(s)
- Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Li
- Center of Research Laboratory, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianguo Wu
- Department of Laboratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingping Wu
- Department of Laboratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|