1
|
Fan L, Lin Y, Fu Y, Wang J. Small cell lung cancer with liver metastases: from underlying mechanisms to treatment strategies. Cancer Metastasis Rev 2024; 44:5. [PMID: 39585433 DOI: 10.1007/s10555-024-10220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Small cell lung cancer (SCLC) represents an aggressive neuroendocrine (NE) tumor within the pulmonary region, characterized by very poor prognoses. Druggable targets for SCLC remain limited, thereby constraining treatment options available to patients. Immuno-chemotherapy has emerged as a pivotal therapeutic strategy for extensive-stage SCLC (ES-SCLC), yet it fails to confer significant efficacy in cases involving liver metastases (LMs) originating from SCLC. Therefore, our attention is directed towards the challenging subset of SCLC patients with LMs. Disease progression of LM-SCLC patients is affected by various factors in the tumor microenvironment (TME), including immune cells, blood vessels, inflammatory mediators, metabolites, and NE substances. Beyond standard immuno-chemotherapy, ongoing efforts to manage LMs in SCLC encompass anti-angiogenic therapy, radiotherapy, microwave ablation (MWA) / radiofrequency ablation (RFA), trans-arterial chemoembolization (TACE), and systemic therapies in conjunction with local interventions. Prospective experimental and clinical investigations into SCLC should prioritize precise and individualized approaches to enhance the prognosis across distinct patient cohorts.
Collapse
Affiliation(s)
- Linjie Fan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiwen Lin
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yunjie Fu
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Sen T, Takahashi N, Chakraborty S, Takebe N, Nassar AH, Karim NA, Puri S, Naqash AR. Emerging advances in defining the molecular and therapeutic landscape of small-cell lung cancer. Nat Rev Clin Oncol 2024; 21:610-627. [PMID: 38965396 DOI: 10.1038/s41571-024-00914-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
Small-cell lung cancer (SCLC) has traditionally been considered a recalcitrant cancer with a dismal prognosis, with only modest advances in therapeutic strategies over the past several decades. Comprehensive genomic assessments of SCLC have revealed that most of these tumours harbour deletions of the tumour-suppressor genes TP53 and RB1 but, in contrast to non-small-cell lung cancer, have failed to identify targetable alterations. The expression status of four transcription factors with key roles in SCLC pathogenesis defines distinct molecular subtypes of the disease, potentially enabling specific therapeutic approaches. Overexpression and amplification of MYC paralogues also affect the biology and therapeutic vulnerabilities of SCLC. Several other attractive targets have emerged in the past few years, including inhibitors of DNA-damage-response pathways, epigenetic modifiers, antibody-drug conjugates and chimeric antigen receptor T cells. However, the rapid development of therapeutic resistance and lack of biomarkers for effective selection of patients with SCLC are ongoing challenges. Emerging single-cell RNA sequencing data are providing insights into the plasticity and intratumoural and intertumoural heterogeneity of SCLC that might be associated with therapeutic resistance. In this Review, we provide a comprehensive overview of the latest advances in genomic and transcriptomic characterization of SCLC with a particular focus on opportunities for translation into new therapeutic approaches to improve patient outcomes.
Collapse
Affiliation(s)
- Triparna Sen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Nobuyuki Takahashi
- Department of Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Subhamoy Chakraborty
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Naoko Takebe
- Developmental Therapeutics Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Amin H Nassar
- Division of Oncology, Yale University School of Medicine, New Haven, CT, USA
| | - Nagla A Karim
- Inova Schar Cancer Institute Virginia, Fairfax, VA, USA
| | - Sonam Puri
- Division of Medical Oncology, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Abdul Rafeh Naqash
- Medical Oncology/ TSET Phase 1 program, University of Oklahoma, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Bhattacharyya S, Ehsan SF, Karacosta LG. Phenotypic maps for precision medicine: a promising systems biology tool for assessing therapy response and resistance at a personalized level. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1256104. [PMID: 37964768 PMCID: PMC10642209 DOI: 10.3389/fnetp.2023.1256104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023]
Abstract
In this perspective we discuss how tumor heterogeneity and therapy resistance necessitate a focus on more personalized approaches, prompting a shift toward precision medicine. At the heart of the shift towards personalized medicine, omics-driven systems biology becomes a driving force as it leverages high-throughput technologies and novel bioinformatics tools. These enable the creation of systems-based maps, providing a comprehensive view of individual tumor's functional plasticity. We highlight the innovative PHENOSTAMP program, which leverages high-dimensional data to construct a visually intuitive and user-friendly map. This map was created to encapsulate complex transitional states in cancer cells, such as Epithelial-Mesenchymal Transition (EMT) and Mesenchymal-Epithelial Transition (MET), offering a visually intuitive way to understand disease progression and therapeutic responses at single-cell resolution in relation to EMT-related single-cell phenotypes. Most importantly, PHENOSTAMP functions as a reference map, which allows researchers and clinicians to assess one clinical specimen at a time in relation to their phenotypic heterogeneity, setting the foundation on constructing phenotypic maps for personalized medicine. This perspective argues that such dynamic predictive maps could also catalyze the development of personalized cancer treatment. They hold the potential to transform our understanding of cancer biology, providing a foundation for a future where therapy is tailored to each patient's unique molecular and cellular tumor profile. As our knowledge of cancer expands, these maps can be continually refined, ensuring they remain a valuable tool in precision oncology.
Collapse
Affiliation(s)
- Sayantan Bhattacharyya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shafqat F. Ehsan
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loukia G. Karacosta
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Wang Y, Zhang L, Tan J, Zhang Z, Liu Y, Hu X, Lu B, Gao Y, Tong L, Liu Z, Zhang H, Lin PP, Li B, Gires O, Zhang T. Longitudinal detection of subcategorized CD44v6 + CTCs and circulating tumor endothelial cells (CTECs) enables novel clinical stratification and improves prognostic prediction of small cell lung cancer: A prospective, multi-center study. Cancer Lett 2023; 571:216337. [PMID: 37553013 DOI: 10.1016/j.canlet.2023.216337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Current management of small cell lung cancer (SCLC) remains challenging. Effective biomarkers are needed to subdivide patients presenting distinct treatment response and clinical outcomes. An understanding of heterogeneous phenotypes of aneuploid CD31- circulating tumor cells (CTCs) and CD31+ circulating tumor endothelial cells (CTECs) may provide novel insights in the clinical management of SCLC. In the present translational and prospective study, increased cancer metastasis-related cell proliferation and motility, accompanied with up-regulated mesenchymal marker vimentin but down-regulated epithelial marker E-cadherin, were observed in both lentivirus infected SCLC and NSCLC cells overexpressing the stemness marker CD44v6. Aneuploid CTCs and CTECs expressing CD44v6 were longitudinally detected by SE-iFISH in 120 SCLC patients. Positive detection of baseline CD44v6+ CTCs and CD44v6+ CTECs was significantly associated with enhanced hepatic metastasis. Karyotype analysis revealed that chromosome 8 (Chr8) in CD44v6+ CTCs shifted from trisomy 8 towards multiploidy in post-therapeutic patients compared to pre-treatment subjects. Furthermore, the burden of baseline CD44v6+ CTCs (t0) or amid the therapy (t1-2), the ratio of baseline CD31+ CTEC/CD31- CTC (t0), and CTC-WBC clusters (t0) were correlated with treatment response and distant metastases, particularly brain metastasis, in subjects with limited disease (LD-SCLC) but not in those with extensive disease (ED-SCLC). Multivariate survival analysis validated that longitudinally detected CD44v6+/CD31- CTCs was an independent prognostic factor for inferior survival in SCLC patients. Our study provides evidence for the first time that comprehensive analyses of CTCs, CTECs, and their respective CD44v6+ subtypes enable clinical stratification and improve prognostic prediction of SCLC, particularly for potentially curable LD-SCLC.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Lina Zhang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinjing Tan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhiyun Zhang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yanxia Liu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Baohua Lu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Yuan Gao
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Li Tong
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Zan Liu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Hongxia Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | | | - Baolan Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU, Munich, Germany.
| | - Tongmei Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China.
| |
Collapse
|
5
|
Seo J, Kumar M, Mason J, Blackhall F, Matsumoto N, Dive C, Hicks J, Kuhn P, Shishido SN. Plasticity of circulating tumor cells in small cell lung cancer. Sci Rep 2023; 13:11775. [PMID: 37479829 PMCID: PMC10362013 DOI: 10.1038/s41598-023-38881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with low five-year survival rates. Recently described molecular phenotypes of SCLC exhibit differential vulnerabilities heralding potential for stratified treatment. Whilst tumor biopsy in SCLC is challenging, circulating tumor cells in the liquid biopsy are prevalent and can be repeatedly sampled accommodating the dynamic plasticity of SCLC phenotypes. The aim of this study was to characterize the heterogeneity of rare circulating cells with confirmed tumor origin and to explore a liquid biopsy approach for future clinical trials of targeted therapies. This study applied the 3rd generation of a previously validated direct imaging platform to 14 chemo-naive SCLC patients and 10 non-cancerous normal donor (ND) samples. Phenotypic heterogeneity of circulating rare cells in SCLC was observed and a patient-level classification model was established to stratify SCLC patients from non-cancerous donors. Eight rare cell groups, with combinations of epithelial, endothelial, and mesenchymal biomarker expression patterns, were phenotypically characterized. The single-cell genomic analysis confirmed the cancer cell plasticity in every rare cell group harboring clonal genomic alterations. This study shows rare cell heterogeneity and confirms cellular plasticity in SCLC providing a valuable resource for better opportunities to discover novel therapeutic targets in SCLC.
Collapse
Affiliation(s)
- Jiyoun Seo
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mihir Kumar
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jeremy Mason
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA
| | - Fiona Blackhall
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Nicholas Matsumoto
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
| | - Caroline Dive
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester and University College London, Manchester, UK
- CRUK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Stephanie N Shishido
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
6
|
Bendahl PO, Belting M, Gezelius E. Longitudinal Assessment of Circulating Tumor Cells and Outcome in Small Cell Lung Cancer: A Sub-Study of RASTEN-A Randomized Trial with Low Molecular Weight Heparin. Cancers (Basel) 2023; 15:3176. [PMID: 37370786 DOI: 10.3390/cancers15123176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/04/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Circulating tumor cells (CTCs) may provide a liquid biopsy approach to disease monitoring in small cell lung cancer (SCLC), a particularly aggressive tumor subtype. Yet, the prognostic role of CTCs during and after treatment in relation to baseline remains ill-defined. Here, we assessed the value of longitudinal CTC analysis and the potential of low-molecular-weight heparin (LMWH) to reduce CTC abundance in SCLC patients from a randomized trial (RASTEN). Blood samples were collected at baseline, before chemotherapy Cycle 3, and at 2-month follow-up from 42 patients in total, and CTCs were quantified using the FDA-approved CellSearch system. We found a gradual decline in CTC count during and after treatment, independently of the addition of LMWH to standard therapy. Detectable CTCs at baseline correlated significantly to reduced survival compared to undetectable CTCs (unadjusted hazard ratio (HR) of 2.75 (95% CI 1.05-7.20; p = 0.040)). Furthermore, a persistent CTC count at 2-month follow-up was associated with a HR of 4.22 (95% CI 1.20-14.91; p = 0.025). Our findings indicate that persistently detectable CTCs during and after completion of therapy offer further prognostic information in addition to baseline CTC, suggesting a role for CTC in the individualized management of SCLC.
Collapse
Affiliation(s)
- Pär-Ola Bendahl
- Department of Clinical Sciences, Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85 Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85 Lund, Sweden
- Department of Hematology, Radiophysics and Oncology, Skåne University Hospital, Lasarettsgatan 23A, SE-221 85 Lund, Sweden
- Department of Immunology, Pathology, and Genetics, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden
| | - Emelie Gezelius
- Department of Clinical Sciences, Lund, Division of Oncology, Lund University, Barngatan 4, SE-221 85 Lund, Sweden
- Department of Respiratory Medicine, Lund University Hospital, Entrégatan 7, SE-221 85 Lund, Sweden
| |
Collapse
|
7
|
[Research Progress on the Application of Liquid Biopsy in the Diagnosis
and Treatment of Small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:609-614. [PMID: 36002198 PMCID: PMC9411954 DOI: 10.3779/j.issn.1009-3419.2022.101.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small cell lung cancer (SCLC) is a malignant tumor with strong invasiveness and high mortality. It has the characteristics of easy metastasis, fast growth, high degree of malignancy and strong invasiveness. The prognosis of patients is generally poor. The current clinical diagnosis of SCLC is mainly based on tissue biopsy, which is invasive, long cycle time and high cost. In recent years, liquid biopsy has been gradually applied because of its non-invasive, comprehensive and real-time characteristics that traditional tissue biopsy does not have. The main detection objects of liquid biopsy include circulating tumor DNA (ctDNA), circulating tumor cells (CTCs) and exosomes in peripheral blood. The application of liquid biopsy in the clinical treatment of SCLC will help clinicians to improve the detailed diagnosis of SCLC patients, as well as the timely control and response to the treatment response of patients.
.
Collapse
|
8
|
Morabito A, Rolfo C. Small Cell Lung Cancer: A New Era Is Beginning? Cancers (Basel) 2021; 13:2646. [PMID: 34071158 PMCID: PMC8197965 DOI: 10.3390/cancers13112646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Small cell lung cancer (SCLC) accounts for about 15% of all lung cancers and it is the most aggressive one [...].
Collapse
Affiliation(s)
- Alessandro Morabito
- Medical Oncology, Thoracic Department, Istituto Nazionale Tumori “Fondazione G. Pascale”-IRCCS, 80131 Napoli, Italy
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai System & Icahn School of Medicine, Mount Sinai, New York, NY 10128, USA
| |
Collapse
|
9
|
The Evolving Concept of Complete Resection in Lung Cancer Surgery. Cancers (Basel) 2021; 13:cancers13112583. [PMID: 34070418 PMCID: PMC8197519 DOI: 10.3390/cancers13112583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary In the surgical treatment of lung cancer, the complete removal of the portion of the lung where the cancer is and of the involved adjacent structures is of paramount importance to achieve long-term survival. The International Association for the Study of Lung Cancer (IASLC) proposed a definition of complete resection that included a well-defined type of removal of the regional lymph nodes as a fundamental step. The lymph nodes may contain cancer cells and, if left behind, cancer will soon progress. The IASLC also defined incomplete resection when there is any evidence of persistent cancer after the operation. It also defined an intermediate condition, uncertain resection, when no evidence of residual disease can be proved, but all the conditions of complete resection are not fulfilled. Four validations of the definitions have proved their prognostic value and, therefore, the definitions should be followed when a surgical resection of lung cancer is planned. Abstract Different definitions of complete resection were formulated to complement the residual tumor (R) descriptor proposed by the American Joint Committee on Cancer in 1977. The definitions went beyond resection margins to include the status of the visceral pleura, the most distant nodes and the nodal capsule and the performance of a complete mediastinal lymphadenectomy. In 2005, the International Association for the Study of Lung Cancer (IASLC) proposed definitions for complete, incomplete and uncertain resections for international implementation. Central to the IASLC definition of complete resection is an adequate nodal evaluation either by systematic nodal dissection or lobe-specific systematic nodal dissection, as well as the integrity of the highest mediastinal node, the nodal capsule and the resection margins. When there is evidence of cancer remaining after treatment, the resection is incomplete, and when all margins are free of tumor, but the conditions for complete resection are not fulfilled, the resection is defined as uncertain. The prognostic relevance of the definitions has been validated by four studies. The definitions can be improved in the future by considering the cells spread through air spaces, the residual tumor cells, DNA or RNA in the blood, and the determination of the adequate margins and lymphadenectomy in sublobar resections.
Collapse
|