1
|
Wang Y, Zhang J, Wu X, Huang L, Xiao W, Guo C. The Potential of PARP Inhibitors as Antitumor Drugs and the Perspective of Molecular Design. J Med Chem 2024. [PMID: 39723587 DOI: 10.1021/acs.jmedchem.4c02642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
PARP (poly-ADP ribose polymerase) has received widespread attention in cancer treatment. Research has shown that PARP plays a crucial role in DNA damage repair and has become a popular target for drug design. Based on the mechanism of "synthetic lethality", multiple PARPis (PARP inhibitors) have been launched for the treatment of BRCA deficient tumors. For example, the approved PARPis have shown significant potential in cancer treatment, particularly in breast cancer and cancers associated with BRCA1/BRCA2 deficiencies. However, the clinical efficacy and safety of PARP inhibitors in different cancers remain issues that cannot be overlooked. The design of PARPis aims to eliminate their resistance and broaden their application scope. Designing selective PARP-1 inhibitors is also a potential strategy. PROTACs (Proteolysis Targeting Chimeras) to degrade PARP have become a potential novel cancer treatment strategy.
Collapse
Affiliation(s)
- Yinghan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingtao Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Longjiang Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenjing Xiao
- Department of Radiation Therapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
2
|
Bogdanov FB, Balakhonov RY, Volkov ES, Sonin IV, Andreeva OE, Sorokin DV, Piven YA, Scherbakov AM, Shirinian VZ. Photochemical Metal-Free synthesis and biological Assessment of isocryptolepine analogues targeting estrogen receptor Alpha in breast cancer cells. Bioorg Chem 2024; 153:107942. [PMID: 39515131 DOI: 10.1016/j.bioorg.2024.107942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The aim of this study was to develop a new series of isocryptolepines and evaluate their antiproliferative and antiestrogenic activities on cancer cells. A series of isocryptolepine derivatives were synthesized using developed one-pot photochemical, metal-free protocol, employing readily available 2-arylindoles as starting compounds. The resulting isocryptolepines demonstrated (sub)micromolar inhibitory activity against selected breast cancer cell lines. The IC50 values of lead compound 3c against hormone-dependent breast cancer types (MCF7 and T47D) were 0.3 μM and 0.12 μM, respectively, and significantly greater than 3 μM against estrogen receptor α (ERα)-deficient cell lines, MDA-MB-231 and HCC1954, respectively. To assess the antiestrogenic potency of compound 3c, MCF7 cells were transfected with a plasmid containing a luciferase reporter gene under the control of an estrogen-responsive element (ERE), creating the MCF7/ERE-LUC cell subline. In these cells, luciferase activity was induced by the natural ERα ligand, 17β-estradiol (E2). Compound 3c inhibited luciferase activity by 50 % at a concentration of 0.12 μM, highlighting its potent inhibitory effect on ERα. Molecular modeling further indicated that compound 3c could directly bind to ERα. Compound 3c induced apoptosis, as evidenced by PARP cleavage and downregulation of p-Bcl-2 and Bcl-2, and demonstrated synergistic effects in combination with the chemotherapeutic agent 5-fluorouracil. Compound 3c also showed selectivity towards hormone-dependent breast cancer cells, likely targeting ERα - a key driver in this cancer subtype. In summary, we report the development of a first-in-class antiestrogenic isocryptolepine with notable pro-apoptotic efficacy.
Collapse
Affiliation(s)
- F B Bogdanov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia; Faculty of Medicine, Moscow State University, Lomonosov prospect 27 bldg.1, 119991 Moscow, Russia.
| | - R Yu Balakhonov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| | - E S Volkov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| | - I V Sonin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| | - O E Andreeva
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia.
| | - D V Sorokin
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia.
| | - Yu A Piven
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Akad. Kuprevicha st. 5/2, Minsk 220084, Belarus.
| | - A M Scherbakov
- Department of Experimental Tumor Biology, N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse 24 bldg.15, 115522 Moscow, Russia; Gause Institute of New Antibiotics, Bol'shaya Pirogovskaya ulitsa 11, 119021 Moscow, Russia.
| | - V Z Shirinian
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russia.
| |
Collapse
|
3
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
4
|
Kim D, Go SH, Song Y, Lee DK, Park JR. Decursin Induces G1 Cell Cycle Arrest and Apoptosis through Reactive Oxygen Species-Mediated Endoplasmic Reticulum Stress in Human Colorectal Cancer Cells in In Vitro and Xenograft Models. Int J Mol Sci 2024; 25:9939. [PMID: 39337425 PMCID: PMC11432441 DOI: 10.3390/ijms25189939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Decursin, a coumarin isolated from Angelica gigas Nakai, possesses anti-inflammatory and anti-cancer properties. However, the molecular mechanisms underlying its anti-cancer effects against human colorectal cancer (CRC) are unclear. Therefore, this study aimed to evaluate the biological activities of decursin in CRC in vitro and in vivo and to determine its underlying mechanism of action. Decursin exhibited anti-tumor activity in vitro, accompanied by an increase in G1 cell cycle arrest and apoptosis in HCT-116 and HCT-8 CRC cells. Decursin also induced the production of reactive oxygen species (ROS), thereby activating the endoplasmic reticulum (ER) stress apoptotic pathway in CRC cells. Furthermore, the role of ROS in decursin-induced apoptosis was investigated using the antioxidant N-acetyl-L-cysteine. Inhibiting ROS production reversed decursin-induced ER stress. Moreover, decursin significantly suppressed tumor growth in a subcutaneous xenograft mouse model of HCT-116 and HCT-8 CRC cells without causing host toxicity. Decursin also decreased cell proliferation, as documented by Ki-67, and partly increased cleaved caspase 3 expression in tumor tissues by activating ER stress apoptotic pathways. These findings suggest that decursin induces cell cycle arrest and apoptosis in human CRC cells via ROS-mediated ER stress, suggesting that decursin could be a therapeutic agent for CRC.
Collapse
Affiliation(s)
| | | | | | - Dong-Keon Lee
- Division of Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Republic of Korea; (D.K.); (S.-H.G.); (Y.S.)
| | - Jeong-Ran Park
- Division of Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Republic of Korea; (D.K.); (S.-H.G.); (Y.S.)
| |
Collapse
|
5
|
Zhang M, Ji X, Li Y, Chen X, Wu X, Tan R, Jiang H. Anthriscus sylvestris: An overview on Bioactive Compounds and Anticancer Mechanisms from a Traditional Medicinal Plant to Modern Investigation. Mini Rev Med Chem 2024; 24:1162-1176. [PMID: 38288817 DOI: 10.2174/0113895575271848231116095447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 07/16/2024]
Abstract
Anthriscus sylvestris (L.) Hoffm. Gen. is a biennial or perennial herb commonly found in China. It has a long history of use in traditional Chinese medicine to treat various ailments such as cough, gastric disorders, spleen deficiency, and limb weakness. Recently, its potential as an anticancer agent has gained considerable attention and has been the subject of extensive research focusing on extract efficacy, identification of active compounds, and proposed molecular mechanisms. Nevertheless, further high-quality research is still required to fully evaluate its potential as an anticancer drug. This review aims to comprehensively summarize the anticancer properties exhibited by the active components found in Anthriscus sylvestris. We conducted a comprehensive search, collation, and analysis of published articles on anticancer activity and active compounds of A. sylvestris using various databases that include, but are not limited to, PubMed, Web of Science, Science Direct and Google Scholar. The primary chemical composition of A. sylvestris consists of phenylpropanoids, flavonoids, steroids, fatty acids, and organic acids, showcasing an array of pharmacological activities like anticancer, antioxidant, anti-aging, and immunoregulatory properties. Thus, this review highlights the active compounds isolated from A. sylvestris extracts, which provide potential leads for the development of novel anticancer drugs and a better understanding of the plant's pharmacological effects, particularly its anticancer mechanism of action.
Collapse
Affiliation(s)
- Mengyu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Xiaoyun Ji
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Yuxin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu/ Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Xiaoqing Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| |
Collapse
|
6
|
Sharma S, Chandra K, Naik A, Sharma A, Sharma R, Thakur A, Grewal AS, Dhingra AK, Banerjee A, Liou JP, Guru SK, Nepali K. Flavone-based dual PARP-Tubulin inhibitor manifesting efficacy against endometrial cancer. J Enzyme Inhib Med Chem 2023; 38:2276665. [PMID: 37919954 PMCID: PMC10627047 DOI: 10.1080/14756366.2023.2276665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
Structural tailoring of the flavone framework (position 7) via organopalladium-catalyzed C-C bond formation was attempted in this study. The impact of substituents with varied electronic effects (phenyl ring, position 2 of the benzopyran scaffold) on the antitumor properties was also assessed. Resultantly, the efforts yielded a furyl arm bearing benzopyran possessing a 4-fluoro phenyl ring (position 2) (14) that manifested a magnificent antitumor profile against the Ishikawa cell lines mediated through dual inhibition of PARP and tubulin [(IC50 (PARP1) = 74 nM, IC50 (PARP2) = 109 nM) and tubulin (IC50 = 1.4 µM)]. Further investigations confirmed the ability of 14 to induce apoptosis as well as autophagy and cause cell cycle arrest at the G2/M phase. Overall, the outcome of the study culminated in a tractable dual PARP-tubulin inhibitor endowed with an impressive activity profile against endometrial cancer.
Collapse
Affiliation(s)
- Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Kavya Chandra
- Department of Biological Sciences, BITS Pilani KK Birla Goa campus, Goa, India
| | - Aliva Naik
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | | | | | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa campus, Goa, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Thakur A, Rana M, Ritika, Mathew J, Nepali S, Pan CH, Liou JP, Nepali K. Small molecule tractable PARP inhibitors: Scaffold construction approaches, mechanistic insights and structure activity relationship. Bioorg Chem 2023; 141:106893. [PMID: 37783100 DOI: 10.1016/j.bioorg.2023.106893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Diverse drug design strategies viz. molecular hybridization, substituent installation, scaffold hopping, isosteric replacement, high-throughput screening, induction and separation of chirality, structure modifications of phytoconstituents and use of structural templates have been exhaustively leveraged in the last decade to load the chemical toolbox of PARP inhibitors. Resultantly, numerous promising scaffolds have been pinpointed that in turn have led to the resuscitation of the credence to PARP inhibitors as cancer therapeutics. This review briefly presents the physiological functions of PARPs, the pharmacokinetics, and pharmacodynamics, and the interaction profiles of FDA-approved PARP inhibitors. Comprehensively covered is the section on the drug design strategies employed by drug discovery enthusiasts for furnishing PARP inhibitors. The impact of structural variations in the template of designed scaffolds on enzymatic and cellular activity (structure-activity relationship studies) has been discussed. The insights gained through the biological evaluation such as profiling of physicochemical properties andin vitroADME properties, PK assessments, and high-dose pharmacology are covered.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Ritika
- College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Sanya Nepali
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
8
|
Capaci V, Monasta L, Aloisio M, Sommella E, Salviati E, Campiglia P, Basilicata MG, Kharrat F, Licastro D, Di Lorenzo G, Romano F, Ricci G, Ura B. A Multi-Omics Approach Revealed Common Dysregulated Pathways in Type One and Type Two Endometrial Cancers. Int J Mol Sci 2023; 24:16057. [PMID: 38003247 PMCID: PMC10671314 DOI: 10.3390/ijms242216057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Endometrial cancer (EC) is the most frequent gynecologic cancer in postmenopausal women. Pathogenetic mechanisms that are related to the onset and progression of the disease are largely still unknown. A multi-omics strategy can help identify altered pathways that could be targeted for improving therapeutical approaches. In this study we used a multi-omics approach on four EC cell lines for the identification of common dysregulated pathways in type 1 and 2 ECs. We analyzed proteomics and metabolomics of AN3CA, HEC1A, KLE and ISHIKAWA cell lines by mass spectrometry. The bioinformatic analysis identified 22 common pathways that are in common with both types of EC. In addition, we identified five proteins and 13 metabolites common to both types of EC. Western blotting analysis on 10 patients with type 1 and type 2 EC and 10 endometria samples confirmed the altered abundance of NPEPPS. Our multi-omics analysis identified dysregulated proteins and metabolites involved in EC tumor growth. Further studies are needed to understand the role of these molecules in EC. Our data can shed light on common pathways to better understand the mechanisms involved in the development and growth of EC, especially for the development of new therapies.
Collapse
Affiliation(s)
- Valeria Capaci
- Institute for Maternal and Child Health, IRCCS Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (F.K.); (G.D.L.); (F.R.); (G.R.); (B.U.)
| | - Lorenzo Monasta
- Institute for Maternal and Child Health, IRCCS Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (F.K.); (G.D.L.); (F.R.); (G.R.); (B.U.)
| | - Michelangelo Aloisio
- Institute for Maternal and Child Health, IRCCS Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (F.K.); (G.D.L.); (F.R.); (G.R.); (B.U.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy; (E.S.); (E.S.); (P.C.); (M.G.B.)
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy; (E.S.); (E.S.); (P.C.); (M.G.B.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Salerno, Italy; (E.S.); (E.S.); (P.C.); (M.G.B.)
| | | | - Feras Kharrat
- Institute for Maternal and Child Health, IRCCS Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (F.K.); (G.D.L.); (F.R.); (G.R.); (B.U.)
| | | | - Giovanni Di Lorenzo
- Institute for Maternal and Child Health, IRCCS Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (F.K.); (G.D.L.); (F.R.); (G.R.); (B.U.)
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (F.K.); (G.D.L.); (F.R.); (G.R.); (B.U.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (F.K.); (G.D.L.); (F.R.); (G.R.); (B.U.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Blendi Ura
- Institute for Maternal and Child Health, IRCCS Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy; (V.C.); (M.A.); (F.K.); (G.D.L.); (F.R.); (G.R.); (B.U.)
| |
Collapse
|
9
|
Chen H, Hu Y, Zhuang Z, Wang D, Ye Z, Jing J, Cheng X. Advancements and Obstacles of PARP Inhibitors in Gastric Cancer. Cancers (Basel) 2023; 15:5114. [PMID: 37958290 PMCID: PMC10647262 DOI: 10.3390/cancers15215114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Gastric cancer (GC) is a common and aggressive cancer of the digestive system, exhibiting high aggressiveness and significant heterogeneity. Despite advancements in improving survival rates over the past few decades, GC continues to carry a worrisome prognosis and notable mortality. As a result, there is an urgent need for novel therapeutic approaches to address GC. Recent targeted sequencing studies have revealed frequent mutations in DNA damage repair (DDR) pathway genes in many GC patients. These mutations lead to an increased reliance on poly (adenosine diphosphate-ribose) polymerase (PARP) for DNA repair, making PARP inhibitors (PARPi) a promising treatment option for GC. This article presents a comprehensive overview of the rationale and development of PARPi, highlighting its progress and challenges in both preclinical and clinical research for treating GC.
Collapse
Affiliation(s)
- Hongjie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Yangchan Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Zirui Zhuang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences (UCAS), Hangzhou 310024, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dingyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; (H.C.); (Y.H.); (D.W.)
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Zu Ye
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China;
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| |
Collapse
|
10
|
Agarwal N, Zhang T, Efstathiou E, Sayegh N, Engelsberg A, Saad F, Fizazi K. The biology behind combining poly [ADP ribose] polymerase and androgen receptor inhibition for metastatic castration-resistant prostate cancer. Eur J Cancer 2023; 192:113249. [PMID: 37672815 DOI: 10.1016/j.ejca.2023.113249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 09/08/2023]
Abstract
For about a decade, poly [ADP ribose] polymerases (PARP) inhibitors have been used almost exclusively to treat tumours that are deficient in one of the BRCA genes. In advanced prostate cancer, which is largely driven by the activity of the androgen receptor (AR), accumulating preclinical evidence has suggested an interplay between the AR and PARP, which could be therapeutically exploited independently of defects in the tumour's DNA homologous recombination repair (HRR) machinery. This includes the regulation of HRR genes by the AR, a mutual influence between the activities of PARP and the AR, and the co-localisation of BRCA2 to the retinoblastoma gene in the human genome. Based on these findings, randomised clinical trials have been initiated to study the addition of a PARP inhibitor to AR pathway inhibitor therapy. Three of four randomised studies demonstrated a significantly increased anti-tumour activity in men with metastatic prostate cancer, irrespective of HRR gene alterations. In this review, we summarise the available preclinical evidence that provides the rationale for the combination of inhibitors for PARP and the AR and discuss how it might contribute to the efficacy observed in the clinic.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| | - Tian Zhang
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Nicolas Sayegh
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Fred Saad
- Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montreal, Québec, Canada
| | - Karim Fizazi
- Institut Gustave Roussy, University of Paris Sud, Villejuif, France
| |
Collapse
|
11
|
Geerinckx B, Teuwen LA, Foo T, Vandamme T, Smith A, Peeters M, Price T. Novel therapeutic strategies in pancreatic cancer: moving beyond cytotoxic chemotherapy. Expert Rev Anticancer Ther 2023; 23:1237-1249. [PMID: 37842857 DOI: 10.1080/14737140.2023.2270161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Prognosis of patients with metastatic pancreatic ductal adenocarcinoma (mPDAC) remains disappointing with a 5-year overall survival of only 3-5%. Compared to other cancers, the evolution in standard therapeutic options has been stagnant and polychemotherapy regimens (with well-known toxicity profile and resistance pattern) remain standard of care. Only for patients (5%-7%) with a breast cancer gene (BRCA) pathogenic germline variant, prognosis has improved by the use of olaparib (poly-ADP ribose polymerase (PARP) inhibitor). AREAS COVERED This review covers emerging treatment strategies in the management of mPDAC. One of the main topics is the rigid and immunological cold tumor microenvironment (TME) of PDAC and the search for agents that impact this TME and/or engage the immune system. In addition, the use of next-generation sequencing (NGS) has elicited for some patients new targeted therapies directed at alterations in the RTK/RAS/MAPK pathway and the deoxyribonucleic acid (DNA) damage repair pathway. Other evolving treatment strategies are also discussed. EXPERT OPINION The search for new, often combination, treatment strategies for mPDAC should be encouraged and implemented in early treatment lines given the significant decline of performance status of patients in later lines. NGS analysis should be used where available, although cost-effectiveness could be debatable.
Collapse
Affiliation(s)
- Barbara Geerinckx
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville, Australia
- Department of Oncology and Multidisciplinary Oncological Center of Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Laure-Anne Teuwen
- Department of Oncology and Multidisciplinary Oncological Center of Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Tiffany Foo
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville, Australia
| | - Timon Vandamme
- Department of Oncology and Multidisciplinary Oncological Center of Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Annabel Smith
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville, Australia
| | - Marc Peeters
- Department of Oncology and Multidisciplinary Oncological Center of Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Timothy Price
- Department of Medical Oncology, The Queen Elizabeth Hospital, Woodville, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
12
|
Rana M, Thakur A, Kaur C, Pan CH, Lee SB, Liou JP, Nepali K. Prudent tactics to sail the boat of PARP inhibitors as therapeutics for diverse malignancies. Expert Opin Drug Discov 2023; 18:1169-1193. [PMID: 37525475 DOI: 10.1080/17460441.2023.2241818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION PARP inhibitors block the DNA-repairing mechanism of PARP and represent a promising class of anti-cancer therapy. The last decade has witnessed FDA approvals of several PARP inhibitors, with some undergoing advanced-stage clinical investigation. Medicinal chemists have invested much effort to expand the structure pool of PARP inhibitors. Issues associated with the use of PARP inhibitors that make their standing disconcerting in the pharmaceutical sector have been addressed via the design of new structural assemblages. AREA COVERED In this review, the authors present a detailed account of the medicinal chemistry campaigns conducted in the recent past for the construction of PARP1/PARP2 inhibitors, PARP1 biased inhibitors, and PARP targeting bifunctional inhibitors as well as PARP targeting degraders (PROTACs). Limitations associated with FDA-approved PARP inhibitors and strategies to outwit the limitations are also discussed. EXPERT OPINION The PARP inhibitory field has been rejuvenated with numerous tractable entries in the last decade. With numerous magic bullets in hand coupled with unfolded tactics to outwit the notoriety of cancer cells developing resistance toward PARP inhibitors, the dominance of PARP inhibitors as a sagacious option of targeted therapy is highly likely to be witnessed soon.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
| | - Sung-Bau Lee
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical, University, Taipei, Taiwan
| |
Collapse
|
13
|
Hong T, Dong D, Li J, Wang L. PARP9 knockdown confers protection against chemoresistance and immune escape of breast cancer cells by blocking the PI3K/AKT pathway. Arch Med Sci 2023; 20:1228-1248. [PMID: 39439687 PMCID: PMC11493048 DOI: 10.5114/aoms/161444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/18/2023] [Indexed: 10/25/2024] Open
Abstract
Introduction This study probes the mechanism of the PARP9/PI3K/AKT/PD-L1 axis in the chemoresistance and immune escape of breast cancer cells. Material and methods The expression of related genes was detected in MCF-7/FUL cells. After MCF-7/FUL cells were treated with sh-PARP9 and/or the PI3K/AKT pathway activator, drug resistance, proliferation, migration, invasion, and apoptosis were measured. Afterward, MCF-7/FUL cells were co-cultured with CD8+ T cells to examine the positive rate and density of MCF-7/FUL cells, the percentage and apoptosis of CD8+ T cells, and the expression of immune-related factors in cell supernatants. Nude mice were subcutaneously injected with sh-PARP9-transfected MCF-7/FUL cells for in vivo validation. Results PARP9 was highly expressed in MCF-7/FUL cells. Sh-PARP9 transfection suppressed cell migration, proliferation, and invasion while accelerating apoptosis in MCF-7/FUL cells, accompanied by downregulated PD-L1, p-PI3K, and p-AKT expression, and reduced IC50 and FUL resistance. After co-culture of MCF-7/FUL cells with CD8+ T cells, the percentage of CD8+ T cells, the expression of immune-related factors in supernatants, and the positive rate of MCF-7/FUL cells increased, while the apoptosis of CD8+ T cells and the density of adherent MCF-7/FUL cells were diminished. These trends were negated by further activating the PI3K/AKT pathway. PARP9 knockdown suppressed xenograft growth, decreased p-PI3K, p-AKT, PD-L1, and cyclin D1 expression, and augmented p-Cdc2 and cleaved caspase 3 levels in nude mice. Conclusions PARP9 knockdown blocked the PI3K/AKT pathway to downregulate PD-L1, thus depressing chemoresistance and immune escape in breast cancer.
Collapse
Affiliation(s)
- Tao Hong
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dingxiang Dong
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Li
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Wang
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Takeda A, Kobayashi M, Hasegawa K, Fujimaki T. Regression of Acoustic Tumor After Chemotherapy for Ovarian Cancer in a Patient With a Breast Cancer Susceptibility Gene 1 (BRCA1) Germline Mutation. Cureus 2023; 15:e35917. [PMID: 36911580 PMCID: PMC9995742 DOI: 10.7759/cureus.35917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
We report the case of an adult woman who developed ovarian cancer during a follow-up for vestibular schwannoma. Volume reduction of the schwannoma was observed after chemotherapy for ovarian cancer. After ovarian cancer had been diagnosed, the patient was found to have a germline mutation of breast cancer susceptibility gene 1 (BRCA1). This is the first reported case of vestibular schwannoma in a patient with a germline mutation of BRCA1 and the first documented example of chemotherapy including olaparib to have shown efficacy for schwannoma.
Collapse
Affiliation(s)
- Anna Takeda
- Neurosurgery, Saitama Medical University Hospital, Saitama, JPN
| | | | - Kosei Hasegawa
- Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, JPN
| | | |
Collapse
|
15
|
Zhang S, Liu Q, Wei Y, Xiong Y, Gu Y, Huang Y, Tang F, Ouyang Y. Anterior gradient-2 regulates cell communication by coordinating cytokine-chemokine signaling and immune infiltration in breast cancer. Cancer Sci 2023. [PMID: 36853166 DOI: 10.1111/cas.15775] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
Anterior gradient-2 (AGR2) is crucial to breast cancer progression. However, its role in the tumor immune microenvironment remains unclear. RNA sequencing expression profiles and associated clinical information were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, respectively. The AGR2 expression patterns were verified using clinical samples of breast cancer. Based on single-cell transcriptomic data, AGR2 expression patterns were identified and cell communication analysis was carried out. Furthermore, the roles of AGR2 in breast tumor progression were explored by a series of functional experiments. We found that DNA methylation was an important mechanism for regulating the expression patterns of AGR2. Patients with AGR2 low expression displayed an immune "hot" and immunosuppressive phenotype characterized by high abundance of tumor immune cell infiltration and increased enrichment scores for transforming growth factor-β (TGF-β) and epithelial-mesenchymal transition pathways, whereas patients with AGR2 high expression showed an opposite immunologic feature with a lack of immune cell infiltration, suggestive of an immune "cold" and desert phenotype. Moreover, single-cell analysis further revealed that AGR2 in malignant cells alters cell-cell interactions by coordinating cytokine-chemokine signaling and immune infiltration. Notably, two immunotherapy cohorts revealed that AGR2-coexpressed genes could serve as prognostic indicators of patient survival. In conclusion, AGR2 could promote breast cancer progression by affecting the tumor immune microenvironment. Patients with AGR2 low expression could be suitable for combination treatment with immune checkpoint inhibitor agents and TGF-β blockers. Therefore, this study provides a theoretical foundation for developing a strategy for personalized immunotherapy to patients with breast cancer.
Collapse
Affiliation(s)
- Shichao Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Qin Liu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yimei Wei
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yu Xiong
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Gu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Ya Huang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| | - Fuzhou Tang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Yan Ouyang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, China
| |
Collapse
|
16
|
Khatun S, Pebam M, Putta CL, Rengan AK. Camptothecin loaded casein nanosystem for tuning the therapeutic efficacy against highly metastatic triple-negative breast cancer cells. Biomater Sci 2023; 11:2518-2530. [PMID: 36779378 DOI: 10.1039/d2bm01814d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The heterogenic of TNBC and the side effects of chemo drugs lead to the failure of therapy. Protein-based nanoplatforms have emerged as an important domain in protein-engineered biomedicine for delivering anticancer therapeutics. Protein-based nanosystems are biocompatible and biodegradable, with a long half-life and high purity. TNBC is sensitive to DNA-damaging chemo drugs. In this study, we used 10-hydroxy camptothecin, which causes DNA damage in cancer cells. However, the inappropriate solubility and toxic side effects limit its application in cancer therapy. We encapsulated 10-Hydroxycamptothecin in biocompatible casein by synthesizing nanoparticles from it. The synthesized CS and CCS NPs showed excellent biocompatibility in fibroblast cell lines L929, NIH-3T3, and zebrafish embryos. Enhanced uptake of CCS NPs in zebrafish embryos and 4T1 cells, cancer cell toxicity of nearly 80-85%, sub-cellular mitochondrial localization, alterations of mitochondrial membrane potential, lysosomal localization, and reactive oxygen species generation that causes cancer cell apoptosis have been observed. Growth inhibition of 4T1 cell colonies and antimetastatic activity were also noted. Further upregulation of γ-H2AX which causes DNA damage, downregulation of the PARP protein related to DNA repair, and increased level of the CHOP protein marker for endoplasmic reticulum stress-mediated cell death were observed. The 3-D model of 4T1 cells exhibited deep tumor penetration with significant therapeutic efficacy for CCS NPs. These results imply that casein-based nanoformulation could open a new scope for safe and affordable cancer therapy in TNBC.
Collapse
Affiliation(s)
- Sajmina Khatun
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Monika Pebam
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Chandra Lekha Putta
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
| |
Collapse
|
17
|
The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies. Pathogens 2023; 12:pathogens12020240. [PMID: 36839512 PMCID: PMC9967889 DOI: 10.3390/pathogens12020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The chemical modification of cellular macromolecules by the transfer of ADP-ribose unit(s), known as ADP-ribosylation, is an ancient homeostatic and stress response control system. Highly conserved across the evolution, ADP-ribosyltransferases and ADP-ribosylhydrolases control ADP-ribosylation signalling and cellular responses. In addition to proteins, both prokaryotic and eukaryotic transferases can covalently link ADP-ribosylation to different conformations of nucleic acids, thus highlighting the evolutionary conservation of archaic stress response mechanisms. Here, we report several structural and functional aspects of DNA ADP-ribosylation modification controlled by the prototype DarT and DarG pair, which show ADP-ribosyltransferase and hydrolase activity, respectively. DarT/DarG is a toxin-antitoxin system conserved in many bacterial pathogens, for example in Mycobacterium tuberculosis, which regulates two clinically important processes for human health, namely, growth control and the anti-phage response. The chemical modulation of the DarT/DarG system by selective inhibitors may thus represent an exciting strategy to tackle resistance to current antimicrobial therapies.
Collapse
|
18
|
Hossan A, Aljohani M, Alrefaei AF, Althumayri K, Bayazeed A, Saad FA, Abumelha HM, El-Metwaly NM. Synthesis of functionalized aminopyrazole and pyrazolopyrimidine derivatives: Molecular modeling and docking as anticancer agents. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
19
|
Gao J, Pickett HA. Targeting telomeres: advances in telomere maintenance mechanism-specific cancer therapies. Nat Rev Cancer 2022; 22:515-532. [PMID: 35790854 DOI: 10.1038/s41568-022-00490-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/31/2022]
Abstract
Cancer cells establish replicative immortality by activating a telomere-maintenance mechanism (TMM), be it telomerase or the alternative lengthening of telomeres (ALT) pathway. Targeting telomere maintenance represents an intriguing opportunity to treat the vast majority of all cancer types. Whilst telomerase inhibitors have historically been heralded as promising anticancer agents, the reality has been more challenging, and there are currently no therapeutic options for cancer types that use ALT despite their aggressive nature and poor prognosis. In this Review, we discuss the mechanistic differences between telomere maintenance by telomerase and ALT, the current methods used to detect each mechanism, the utility of these tests for clinical diagnosis, and recent developments in the therapeutic strategies being employed to target both telomerase and ALT. We present notable developments in repurposing established therapeutic agents and new avenues that are emerging to target cancer types according to which TMM they employ. These opportunities extend beyond inhibition of telomere maintenance, by finding and exploiting inherent weaknesses in the telomeres themselves to trigger rapid cellular effects that lead to cell death.
Collapse
Affiliation(s)
- Jixuan Gao
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
20
|
Xiong J, Barayan R, Louie AV, Lok BH. Novel therapeutic combinations with PARP inhibitors for small cell lung cancer: A bench-to-bedside review. Semin Cancer Biol 2022; 86:521-542. [PMID: 35917883 DOI: 10.1016/j.semcancer.2022.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/02/2022] [Accepted: 07/29/2022] [Indexed: 10/31/2022]
Abstract
Small cell lung cancer (SCLC) is treated as a monolithic disease despite the evident intra- and intertumoral heterogeneity. Non-specific DNA-damaging agents have remained the first-line treatment for decades. Recently, emerging transcriptomic and genomic profiling of SCLC tumors identified distinct SCLC subtypes and vulnerabilities towards targeted therapeutics, including inhibitors of the nuclear enzyme poly (ADP-ribose) polymerase (PARPi). SCLC cell lines and tumors exhibited an elevated level of PARP1 protein and mRNA compared to healthy lung tissues and other subtypes of lung tumors. Notable responses to PARPi were also observed in preclinical SCLC models. Clinically, PARPi monotherapy exerted variable benefits for SCLC patients. To date, research is being vigorously conducted to examine predictive biomarkers of PARPi response and various PARPi combination strategies to maximize the clinical utility of PARPi. This narrative review summarizes existing preclinical evidence supporting PARPi monotherapy, combination therapy, and respective translation to the clinic. Specifically, we covered the combination of PARPi with DNA-damaging chemotherapy (cisplatin, etoposide, temozolomide), thoracic radiotherapy, immunotherapy (immune checkpoint inhibitors), and many other novel therapeutic agents that target DNA damage response, tumor microenvironment, epigenetic modulation, angiogenesis, the ubiquitin-proteasome system, or autophagy. Putative biomarkers, such as SLFN11 expression, MGMT methylation, E2F1 expression, and platinum sensitivity, which may be predictive of response to distinct therapeutic combinations, were also discussed. The future of SCLC treatment is undergoing rapid change with a focus on tailored and personalized treatment strategies. Further development of cancer therapy with PARPi will immensely benefit at least a subset of biomarker-defined SCLC patients.
Collapse
Affiliation(s)
- Jiaqi Xiong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ranya Barayan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Odette Cancer Centre - Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Benjamin H Lok
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Abstract
We recently identified the adenosine-5′-diphosphate (ADP)–ribosyltransferase-1 (ART1) as a novel immune checkpoint expressed by cancer cells. ART1 utilizes free nicotinamide adenine dinucleotide (NAD+) in the tumor microenvironment (TME) to mono-ADP-ribosylate (MARylate) the P2X7 receptor (P2X7R) on CD8 T cells, resulting in NAD-induced cell death (NICD) and tumor immune resistance. This process is blocked by therapeutic antibody targeting of ART1.
Collapse
Affiliation(s)
- Erik Wennerberg
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Sumit Mukherjee
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ricardo M. Sainz
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Brendon M. Stiles
- Department of Cardiothoracic and Vascular Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
22
|
Muoio D, Laspata N, Fouquerel E. Functions of ADP-ribose transferases in the maintenance of telomere integrity. Cell Mol Life Sci 2022; 79:215. [PMID: 35348914 PMCID: PMC8964661 DOI: 10.1007/s00018-022-04235-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
Abstract
The ADP-ribose transferase (ART) family comprises 17 enzymes that catalyze mono- or poly-ADP-ribosylation, a post-translational modification of proteins. Present in all subcellular compartments, ARTs are implicated in a growing number of biological processes including DNA repair, replication, transcription regulation, intra- and extra-cellular signaling, viral infection and cell death. Five members of the family, PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 are mainly described for their crucial functions in the maintenance of genome stability. It is well established that the most describedrole of PARP1, 2 and 3 is the repair of DNA lesions while tankyrases 1 and 2 are crucial for maintaining the integrity of telomeres. Telomeres, nucleoprotein complexes located at the ends of eukaryotic chromosomes, utilize their unique structure and associated set of proteins to orchestrate the mechanisms necessary for their own protection and replication. While the functions of tankyrases 1 and 2 at telomeres are well known, several studies have also brought PARP1, 2 and 3 to the forefront of telomere protection. The singular quality of the telomeric environment has highlighted protein interactions and molecular pathways distinct from those described throughout the genome. The aim of this review is to provide an overview of the current knowledge on the multiple roles of PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 in the maintenance and preservation of telomere integrity.
Collapse
Affiliation(s)
- Daniela Muoio
- UPMC Cancer Institute and Department of Pharmacology and Chemical Biology at the University of Pittsburgh, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Natalie Laspata
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th street, Philadelphia, PA, 19107, USA
| | - Elise Fouquerel
- UPMC Cancer Institute and Department of Pharmacology and Chemical Biology at the University of Pittsburgh, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
23
|
Manco G, Lacerra G, Porzio E, Catara G. ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives. Biomolecules 2022; 12:biom12030443. [PMID: 35327636 PMCID: PMC8946771 DOI: 10.3390/biom12030443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cellular functions are regulated through the gene expression program by the transcription of new messenger RNAs (mRNAs), alternative RNA splicing, and protein synthesis. To this end, the post-translational modifications (PTMs) of proteins add another layer of complexity, creating a continuously fine-tuned regulatory network. ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules, regulating a multitude of key functional processes as diverse as DNA damage repair (DDR), transcriptional regulation, intracellular transport, immune and stress responses, and cell survival. Additionally, due to the emerging role of ADP-ribosylation in pathological processes, ADP-ribosyltransferases (ARTs), the enzymes involved in ADPr, are attracting growing interest as new drug targets. In this review, an overview of human ARTs and their related biological functions is provided, mainly focusing on the regulation of ADP-ribosyltransferase Diphtheria toxin-like enzymes (ARTD)-dependent RNA functions. Finally, in order to unravel novel gene functional relationships, we propose the analysis of an inventory of human gene clusters, including ARTDs, which share conserved sequences at 3′ untranslated regions (UTRs).
Collapse
Affiliation(s)
- Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| | - Giuseppina Lacerra
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| |
Collapse
|
24
|
Toward More Comprehensive Homologous Recombination Deficiency Assays in Ovarian Cancer, Part 1: Technical Considerations. Cancers (Basel) 2022; 14:cancers14051132. [PMID: 35267439 PMCID: PMC8909526 DOI: 10.3390/cancers14051132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC) is the most frequent and lethal form of ovarian cancer and is associated with homologous recombination deficiency (HRD) in 50% of cases. This specific alteration is associated with sensitivity to PARP inhibitors (PARPis). Despite vast prognostic improvements due to PARPis, current molecular assays assessing HRD status suffer from several limitations, and there is an urgent need for a more accurate evaluation. In these companion reviews (Part 1: Technical considerations; Part 2: Medical perspectives), we develop an integrative review to provide physicians and researchers involved in HGSOC management with a holistic perspective, from translational research to clinical applications. Abstract High-grade serous ovarian cancer (HGSOC), the most frequent and lethal form of ovarian cancer, exhibits homologous recombination deficiency (HRD) in 50% of cases. In addition to mutations in BRCA1 and BRCA2, which are the best known thus far, defects can also be caused by diverse alterations to homologous recombination-related genes or epigenetic patterns. HRD leads to genomic instability (genomic scars) and is associated with PARP inhibitor (PARPi) sensitivity. HRD is currently assessed through BRCA1/2 analysis, which produces a genomic instability score (GIS). However, despite substantial clinical achievements, FDA-approved companion diagnostics (CDx) based on GISs have important limitations. Indeed, despite the use of GIS in clinical practice, the relevance of such assays remains controversial. Although international guidelines include companion diagnostics as part of HGSOC frontline management, they also underscore the need for more powerful and alternative approaches for assessing patient eligibility to PARP inhibitors. In these companion reviews, we review and present evidence to date regarding HRD definitions, achievements and limitations in HGSOC. Part 1 is dedicated to technical considerations and proposed perspectives that could lead to a more comprehensive and dynamic assessment of HR, while Part 2 provides a more integrated approach for clinicians.
Collapse
|
25
|
Sim HW, Galanis E, Khasraw M. PARP Inhibitors in Glioma: A Review of Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14041003. [PMID: 35205750 PMCID: PMC8869934 DOI: 10.3390/cancers14041003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023] Open
Abstract
Gliomas are the most common malignant primary brain tumor in adults. Despite advances in multimodality therapy, incorporating surgery, radiotherapy, systemic therapy, tumor treating fields and supportive care, patient outcomes remain poor, especially in glioblastoma where median survival has remained static at around 15 months, for decades. Low-grade gliomas typically harbor isocitrate dehydrogenase (IDH) mutations, grow more slowly and confer a better prognosis than glioblastoma. However, nearly all gliomas eventually recur and progress in a way similar to glioblastoma. One of the novel therapies being developed in this area are poly(ADP-ribose) polymerase (PARP) inhibitors. PARP inhibitors belong to a class of drugs that target DNA damage repair pathways. This leads to synthetic lethality of cancer cells with coexisting homologous recombination deficiency. PARP inhibitors may also potentiate the cytotoxic effects of radiotherapy and chemotherapy, and prime the tumor microenvironment for immunotherapy. In this review, we examine the rationale and clinical evidence for PARP inhibitors in glioma and suggest therapeutic opportunities.
Collapse
Affiliation(s)
- Hao-Wen Sim
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW 2050, Australia;
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW 2050, Australia
| | | | - Mustafa Khasraw
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, NSW 2050, Australia;
- Duke University School of Medicine, Duke University, Durham, NC 27710, USA
- Correspondence: ; Tel.: +1-919-684-6173
| |
Collapse
|
26
|
Chung WC, Song MJ. Virus–Host Interplay Between Poly (ADP-Ribose) Polymerase 1 and Oncogenic Gammaherpesviruses. Front Microbiol 2022; 12:811671. [PMID: 35095818 PMCID: PMC8795711 DOI: 10.3389/fmicb.2021.811671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
The gammaherpesviruses, include the Epstein–Barr virus, Kaposi’s sarcoma-associated herpesvirus, and murine gammaherpesvirus 68. They establish latent infection in the B lymphocytes and are associated with various lymphoproliferative diseases and tumors. The poly (ADP-ribose) polymerase-1 (PARP1), also called ADP-ribosyltransferase diphtheria-toxin-like 1 (ARTD1) is a nuclear enzyme that catalyzes the transfer of the ADP-ribose moiety to its target proteins and participates in important cellular activities, such as the DNA-damage response, cell death, transcription, chromatin remodeling, and inflammation. In gammaherpesvirus infection, PARP1 acts as a key regulator of the virus life cycle: lytic replication and latency. These viruses also develop various strategies to regulate PARP1, facilitating their replication. This review summarizes the roles of PARP1 in the viral life cycle as well as the viral modulation of host PARP1 activity and discusses the implications. Understanding the interactions between the PARP1 and oncogenic gammaherpesviruses may lead to the identification of effective therapeutic targets for the associated diseases.
Collapse
|
27
|
Poltronieri P, Miwa M, Masutani M. ADP-Ribosylation as Post-Translational Modification of Proteins: Use of Inhibitors in Cancer Control. Int J Mol Sci 2021; 22:10829. [PMID: 34639169 PMCID: PMC8509805 DOI: 10.3390/ijms221910829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Among the post-translational modifications of proteins, ADP-ribosylation has been studied for over fifty years, and a large set of functions, including DNA repair, transcription, and cell signaling, have been assigned to this post-translational modification (PTM). This review presents an update on the function of a large set of enzyme writers, the readers that are recruited by the modified targets, and the erasers that reverse the modification to the original amino acid residue, removing the covalent bonds formed. In particular, the review provides details on the involvement of the enzymes performing monoADP-ribosylation/polyADP-ribosylation (MAR/PAR) cycling in cancers. Of note, there is potential for the application of the inhibitors developed for cancer also in the therapy of non-oncological diseases such as the protection against oxidative stress, the suppression of inflammatory responses, and the treatment of neurodegenerative diseases. This field of studies is not concluded, since novel enzymes are being discovered at a rapid pace.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, CNR-ISPA, Via Monteroni, 73100 Lecce, Italy
| | - Masanao Miwa
- Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan;
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, CBMM, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| |
Collapse
|
28
|
Donà MG, Di Bonito P, Chiantore MV, Amici C, Accardi L. Targeting Human Papillomavirus-Associated Cancer by Oncoprotein-Specific Recombinant Antibodies. Int J Mol Sci 2021; 22:ijms22179143. [PMID: 34502053 PMCID: PMC8431386 DOI: 10.3390/ijms22179143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
In recent decades, recombinant antibodies against specific antigens have shown great promise for the therapy of infectious diseases and cancer. Human papillomaviruses (HPVs) are involved in the development of around 5% of all human cancers and HPV16 is the high-risk genotype with the highest prevalence worldwide, playing a dominant role in all HPV-associated cancers. Here, we describe the main biological activities of the HPV16 E6, E7, and E5 oncoproteins, which are involved in the subversion of important regulatory pathways directly associated with all known hallmarks of cancer. We then review the state of art of the recombinant antibodies targeted to HPV oncoproteins developed so far in different formats, and outline their mechanisms of action. We describe the advantages of a possible antibody-based therapy against the HPV-associated lesions and discuss the critical issue of delivery to tumour cells, which must be addressed in order to achieve the desired translation of the antibodies from the laboratory to the clinic.
Collapse
Affiliation(s)
| | - Paola Di Bonito
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.D.B.); (M.V.C.)
| | - Maria Vincenza Chiantore
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.D.B.); (M.V.C.)
| | - Carla Amici
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Luisa Accardi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (P.D.B.); (M.V.C.)
- Correspondence:
| |
Collapse
|
29
|
Kiss A, Csikos C, Regdon Z, Polgár Z, Virág L, Hegedűs C. NMNAT1 Is a Survival Factor in Actinomycin D-Induced Osteosarcoma Cell Death. Int J Mol Sci 2021; 22:8869. [PMID: 34445574 PMCID: PMC8396190 DOI: 10.3390/ijms22168869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/25/2023] Open
Abstract
Osteosarcoma is a frequent and extremely aggressive type of pediatric cancer. New therapeutic approaches are needed to improve the overall survival of osteosarcoma patients. Our previous results suggest that NMNAT1, a key enzyme in nuclear NAD+ synthesis, facilitates the survival of cisplatin-treated osteosarcoma cells. A high-throughput cytotoxicity screening was performed to identify novel pathways or compounds linked to the cancer-promoting role of NMNAT1. Nine compounds caused higher toxicity in the NMNAT1 KO U2OS cells compared to their wild type counterparts, and actinomycin D (ActD) was the most potent. ActD-treatment of NMNAT1 KO cells increased caspase activity and secondary necrosis. The reduced NAD+ content in NMNAT1 KO cells was further decreased by ActD, which partially inhibited NAD+-dependent enzymes, including the DNA nick sensor enzyme PARP1 and the NAD+-dependent deacetylase SIRT1. Impaired PARP1 activity increased DNA damage in ActD-treated NMNAT1 knockout cells, while SIRT1 impairment increased acetylation of the p53 protein, causing the upregulation of pro-apoptotic proteins (NOXA, BAX). Proliferation was decreased through both PARP- and SIRT-dependent pathways. On the one hand, PARP inhibitors sensitized wild type but not NMNAT1 KO cells to ActD-induced anti-clonogenic effects; on the other hand, over-acetylated p53 induced the expression of the anti-proliferative p21 protein leading to cell cycle arrest. Based on our results, NMNAT1 acts as a survival factor in ActD-treated osteosarcoma cells. By inhibiting both PARP1- and SIRT1-dependent cellular pathways, NMNAT1 inhibition can be a promising new tool in osteosarcoma chemotherapy.
Collapse
Affiliation(s)
- Alexandra Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Csaba Csikos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| | - Zsolt Regdon
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| | - Zsuzsanna Polgár
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
- MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.K.); (C.C.); (Z.R.); (Z.P.)
| |
Collapse
|
30
|
Demény MA, Virág L. The PARP Enzyme Family and the Hallmarks of Cancer Part 2: Hallmarks Related to Cancer Host Interactions. Cancers (Basel) 2021; 13:2057. [PMID: 33923319 PMCID: PMC8123211 DOI: 10.3390/cancers13092057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARPs) modify target proteins with a single ADP-ribose unit or with a poly (ADP-ribose) (PAR) polymer. PARP inhibitors (PARPis) recently became clinically available for the treatment of BRCA1/2 deficient tumors via the synthetic lethality paradigm. This personalized treatment primarily targets DNA damage-responsive PARPs (PARP1-3). However, the biological roles of PARP family member enzymes are broad; therefore, the effects of PARPis should be viewed in a much wider context, which includes complex effects on all known hallmarks of cancer. In the companion paper (part 1) to this review, we presented the fundamental roles of PARPs in intrinsic cancer cell hallmarks, such as uncontrolled proliferation, evasion of growth suppressors, cell death resistance, genome instability, replicative immortality, and reprogrammed metabolism. In the second part of this review, we present evidence linking PARPs to cancer-associated inflammation, anti-cancer immune response, invasion, and metastasis. A comprehensive overview of the roles of PARPs can facilitate the identification of novel cancer treatment opportunities and barriers limiting the efficacy of PARPi compounds.
Collapse
Affiliation(s)
- Máté A. Demény
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Hungary
| |
Collapse
|