1
|
Muniz IDAF, Araujo M, Bouassaly J, Farshadi F, Atique M, Esfahani K, Bonan PRF, Hier M, Mascarella M, Mlynarek A, Alaoui-Jamali M, da Silva SD. Therapeutic Advances and Challenges for the Management of HPV-Associated Oropharyngeal Cancer. Int J Mol Sci 2024; 25:4009. [PMID: 38612819 PMCID: PMC11012756 DOI: 10.3390/ijms25074009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The use of conventional chemotherapy in conjunction with targeted and immunotherapy drugs has emerged as an option to limit the severity of side effects in patients diagnosed with head and neck cancer (HNC), particularly oropharyngeal cancer (OPC). OPC prevalence has increased exponentially in the past 30 years due to the prevalence of human papillomavirus (HPV) infection. This study reports a comprehensive review of clinical trials registered in public databases and reported in the literature (PubMed/Medline, Scopus, and ISI web of science databases). Of the 55 clinical trials identified, the majority (83.3%) were conducted after 2015, of which 77.7% were performed in the United States alone. Eight drugs have been approved by the FDA for HNC, including both generic and commercial forms: bleomycin sulfate, cetuximab (Erbitux), docetaxel (Taxotere), hydroxyurea (Hydrea), pembrolizumab (Keytruda), loqtorzi (Toripalimab-tpzi), methotrexate sodium (Trexall), and nivolumab (Opdivo). The most common drugs to treat HPV-associated OPC under these clinical trials and implemented as well for HPV-negative HNC include cisplatin, nivolumab, cetuximab, paclitaxel, pembrolizumab, 5-fluorouracil, and docetaxel. Few studies have highlighted the necessity for new drugs specifically tailored to patients with HPV-associated OPC, where molecular mechanisms and clinical prognosis are distinct from HPV-negative tumors. In this context, we identified most mutated genes found in HPV-associated OPC that can represent potential targets for drug development. These include TP53, PIK3CA, PTEN, NOTCH1, RB1, FAT1, FBXW7, HRAS, KRAS, and CDKN2A.
Collapse
Affiliation(s)
- Isis de Araújo Ferreira Muniz
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Graduate Program in Dentistry, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Megan Araujo
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| | - Jenna Bouassaly
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| | - Fatemeh Farshadi
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| | - Mai Atique
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Khashayar Esfahani
- Department of Oncology, McGill University, Montreal, QC HC3 1E2, Canada;
| | - Paulo Rogerio Ferreti Bonan
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Graduate Program in Dentistry, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil
| | - Michael Hier
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Marco Mascarella
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Alex Mlynarek
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Moulay Alaoui-Jamali
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
| | - Sabrina Daniela da Silva
- Department of Otolaryngology and Head and Neck Surgery, McGill University, Montreal, QC HC3 1E2, Canada; (I.d.A.F.M.); (F.F.); (M.A.); (P.R.F.B.); (M.H.); (M.M.); (A.M.); (M.A.-J.)
- Division of Experimental Medicine and Oncology, Department of Medicine and Health Sciences, McGill University, Montreal, QC HC3 1E2, Canada; (M.A.); (J.B.)
| |
Collapse
|
2
|
Ibrahim M, Illa-Bochaca I, Fa’ak F, Monson KR, Ferguson R, Lyu C, Vega-Saenz de Miera E, Johannet P, Chou M, Mastroianni J, Darvishian F, Kirchhoff T, Zhong J, Krogsgaard M, Osman I. Kinase Insert Domain Receptor Q472H Pathogenic Germline Variant Impacts Melanoma Tumor Growth and Patient Treatment Outcomes. Cancers (Basel) 2023; 16:18. [PMID: 38201446 PMCID: PMC10778134 DOI: 10.3390/cancers16010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND We previously reported a higher incidence of a pathogenic germline variant in the kinase insert domain receptor (KDR) in melanoma patients compared to the general population. Here, we dissect the impact of this genotype on melanoma tumor growth kinetics, tumor phenotype, and response to treatment with immune checkpoint inhibitors (ICIs) or targeted therapy. METHODS The KDR genotype was determined and the associations between the KDR Q472H variant (KDR-Var), angiogenesis, tumor immunophenotype, and response to MAPK inhibition or ICI treatment were examined. Melanoma B16 cell lines were transfected with KDR-Var or KDR wild type (KDR-WT), and the differences in tumor kinetics were evaluated. We also examined the impact of KDR-Var on the response of melanoma cells to a combination of VEGFR inhibition with MAPKi. RESULTS We identified the KDR-Var genotype in 81/489 (37%) patients, and it was associated with a more angiogenic (p = 0.003) and immune-suppressive tumor phenotype. KDR-Var was also associated with decreased PFS to MAPKi (p = 0.022) and a trend with worse PFS to anti-PD1 therapy (p = 0.06). KDR-Var B16 murine models had increased average tumor volume (p = 0.0027) and decreased CD45 tumor-infiltrating lymphocytes (p = 0.0282). The anti-VEGFR treatment Lenvatinib reduced the tumor size of KDR-Var murine tumors (p = 0.0159), and KDR-Var cells showed synergistic cytotoxicity to the combination of dabrafenib and lenvatinib. CONCLUSIONS Our data demonstrate a role of germline KDR-Var in modulating melanoma behavior, including response to treatment. Our data also suggest that anti-angiogenic therapy might be beneficial in patients harboring this genotype, which needs to be tested in clinical trials.
Collapse
Affiliation(s)
- Milad Ibrahim
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Irineu Illa-Bochaca
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Faisal Fa’ak
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Kelsey R. Monson
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
| | - Robert Ferguson
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
| | - Chen Lyu
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
| | - Eleazar Vega-Saenz de Miera
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Paul Johannet
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Margaret Chou
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
| | - Justin Mastroianni
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA (M.K.)
| | - Farbod Darvishian
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA (M.K.)
| | - Tomas Kirchhoff
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, 522 First Ave, New York, NY 10016, USA
| | - Judy Zhong
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (K.R.M.); (R.F.); (C.L.); (T.K.); (J.Z.)
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, 522 First Ave, New York, NY 10016, USA
| | - Michelle Krogsgaard
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA (M.K.)
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, 522 First Ave, New York, NY 10016, USA
| | - Iman Osman
- Ronald O Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, USA; (M.I.); (I.I.-B.); (E.V.-S.d.M.)
- Interdisciplinary Melanoma Cooperative Group, NYU Langone Health, 522 First Ave, New York, NY 10016, USA
| |
Collapse
|
3
|
Timis T, Bergthorsson JT, Greiff V, Cenariu M, Cenariu D. Pathology and Molecular Biology of Melanoma. Curr Issues Mol Biol 2023; 45:5575-5597. [PMID: 37504268 PMCID: PMC10377842 DOI: 10.3390/cimb45070352] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Almost every death in young patients with an advanced skin tumor is caused by melanoma. Today, with the help of modern treatments, these patients survive longer or can even achieve a cure. Advanced stage melanoma is frequently related with poor prognosis and physicians still find this disease difficult to manage due to the absence of a lasting response to initial treatment regimens and the lack of randomized clinical trials in post immunotherapy/targeted molecular therapy settings. New therapeutic targets are emerging from preclinical data on the genetic profile of melanocytes and from the identification of molecular factors involved in the pathogenesis of malignant transformation. In the current paper, we present the diagnostic challenges, molecular biology and genetics of malignant melanoma, as well as the current therapeutic options for patients with this diagnosis.
Collapse
Affiliation(s)
- Tanase Timis
- Department of Oncology, Bistrita Emergency Hospital, 420094 Bistrita, Romania;
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Jon Thor Bergthorsson
- Department of Pharmacology and Toxicology, Medical Faculty, University of Iceland, Hofsvallagotu 53, 107 Reykjavík, Iceland;
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo University Hospital, 0372 Oslo, Norway;
| | - Mihai Cenariu
- Department of Animal Reproduction, University of Agricultural Sciences and Veterinary Medicine, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania;
| | - Diana Cenariu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Guo YC, Fu ZY, Ding ZJ. Immune infiltration associated C1q acts as a novel prognostic biomarker of cutaneous melanoma. Medicine (Baltimore) 2023; 102:e33088. [PMID: 36897727 PMCID: PMC9997796 DOI: 10.1097/md.0000000000033088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
C1q (complement C1q A chain, complement C1q B chain, and complement C1q C chain) is a recognized component of the classical complement pathway that influences the prognosis of various cancers. However, the effects of C1q on cutaneous melanoma (SKCM) outcomes and immune infiltration remain unknown. Gene expression profiling interactive analysis 2 and the human protein atlas were used to evaluate differential expression of C1q mRNA and protein. The relationship between C1q expression and clinicopathological features was also examined. The genetic alterations of C1q and their impact on survival were analyzed using the cbioportal database. The Kaplan-Meier approach was used to assess the significance of C1q in individuals with SKCM. The cluster profiler R package and the cancer single-cell state atlas database were used to investigate the function and mechanism of C1q in SKCM. The relationship between C1q and immune cell infiltration was estimated using single-sample gene set enrichment analysis. C1q expression was increased, and predicted a favorable prognosis. High C1q expression correlated with clinicopathological T stage, pathological stage, overall survival, and disease specific survival events. Moreover, C1q genetic alterations range from 2.7% to 4%, with no impact on prognosis. According to the enrichment analysis, C1q and immune-related pathways were closely connected. The link between complement C1q B chain and the functional state of inflammation was determined using the cancer single-cell state atlas database. In particular, C1q expression was significantly associated with infiltration of most immune cells and checkpoints PDCD1, CD274, and HAVCR2. The results of this study suggest that C1q is associated with prognosis and immune cell infiltration, supporting its value as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Yi-Cheng Guo
- Dermatology Hospital of Jiangxi Province, Nanchang, China
- Jiangxi Province Clinical Research Center for Skin Diseases, Nanchang, China
- Candidate Branch of National Clinical Research Center for Skin Diseases, Nanchang, Jiangxi, China
| | - Zhi-Yuan Fu
- Dermatology Hospital of Jiangxi Province, Nanchang, China
| | - Zhi-Jun Ding
- Jiangxi Province Clinical Research Center for Skin Diseases, Nanchang, China
| |
Collapse
|
5
|
Vanni I, Pastorino L, Tanda ET, Andreotti V, Dalmasso B, Solari N, Mascherini M, Cabiddu F, Guadagno A, Coco S, Allavena E, Bruno W, Pietra G, Croce M, Gangemi R, Piana M, Zoppoli G, Ferrando L, Spagnolo F, Queirolo P, Ghiorzo P. Whole-Exome Sequencing and cfDNA Analysis Uncover Genetic Determinants of Melanoma Therapy Response in a Real-World Setting. Int J Mol Sci 2023; 24:ijms24054302. [PMID: 36901733 PMCID: PMC10002464 DOI: 10.3390/ijms24054302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Although several studies have explored the molecular landscape of metastatic melanoma, the genetic determinants of therapy resistance are still largely unknown. Here, we aimed to determine the contribution of whole-exome sequencing and circulating free DNA (cfDNA) analysis in predicting response to therapy in a consecutive real-world cohort of 36 patients, undergoing fresh tissue biopsy and followed during treatment. Although the underpowered sample size limited statistical analysis, samples from non-responders had higher copy number variations and mutations in melanoma driver genes compared to responders in the BRAF V600+ subset. In the BRAF V600- subset, Tumor Mutational Burden (TMB) was twice that in responders vs. non-responders. Genomic layout revealed commonly known and novel potential intrinsic/acquired resistance driver gene variants. Among these, RAC1, FBXW7, GNAQ mutations, and BRAF/PTEN amplification/deletion were present in 42% and 67% of patients, respectively. Both Loss of Heterozygosity (LOH) load and tumor ploidy were inversely associated with TMB. In immunotherapy-treated patients, samples from responders showed higher TMB and lower LOH and were more frequently diploid compared to non-responders. Secondary germline testing and cfDNA analysis proved their efficacy in finding germline predisposing variants carriers (8.3%) and following dynamic changes during treatment as a surrogate of tissue biopsy, respectively.
Collapse
Affiliation(s)
- Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| | - Enrica Teresa Tanda
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Bruna Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Nicola Solari
- Surgical Oncology, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matteo Mascherini
- Surgical Clinic Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Cabiddu
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Antonio Guadagno
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Eleonora Allavena
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| | - Gabriella Pietra
- IRCCS Ospedale Policlinico San Martino, U.O. Immunologia, 16132 Genoa, Italy
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy
| | - Michela Croce
- Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Rosaria Gangemi
- Bioterapie, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Michele Piana
- Dipartimento di Matematica (MIDA), University of Genoa, 16132 Genoa, Italy
- Life Science Computational Laboratory (LISCOMP), IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Clinica di Medicina Interna a Indirizzo Oncologico, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Lorenzo Ferrando
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Clinica di Medicina Interna a Indirizzo Oncologico, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Francesco Spagnolo
- Medical Oncology 2, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate (DISC), University of Genoa, 16132 Genoa, Italy
| | - Paola Queirolo
- Melanoma, Sarcoma & Rare Tumors Division, European Institute of Oncology (IEO), 20141 Milan, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Correspondence: ; Tel.: +39-010-5557255
| |
Collapse
|