1
|
Diamantopoulos MA, Adamopoulos PG, Scorilas A. Small non-coding RNAs as diagnostic, prognostic and predictive biomarkers of gynecological cancers: an update. Expert Rev Mol Diagn 2024:1-17. [PMID: 39390687 DOI: 10.1080/14737159.2024.2408740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs) comprise a heterogeneous cluster of RNA molecules. Emerging evidence suggests their involvement in various aspects of tumorigenesis, particularly in gynecological malignancies. Notably, ncRNAs have been implicated as mediators within tumor signaling pathways, exerting their influence through interactions with RNA or proteins. These findings further highlight the hypothesis that ncRNAs constitute therapeutic targets and point out their clinical potential as stratification biomarkers. AREAS COVERED The review outlines the use of small ncRNAs, including miRNAs, tRNA-derived small RNAs, PIWI-interacting RNAs and circular RNAs, for diagnostic, prognostic, and predictive purposes in gynecological cancers. It aims to increase our knowledge of their functions in tumor biology and their translation into clinical practice. EXPERT OPINION By leveraging interdisciplinary collaborations, scientists can decipher the riddle of small ncRNA biomarkers as diagnostic, prognostic and predictive biomarkers of gynecological tumors. Integrating small ncRNA-based assays into clinical practice will allow clinicians to provide cure plans for each patient, reducing the likelihood of adverse responses. Nevertheless, addressing challenges such as standardizing experimental methodologies and refining diagnostic assays is imperative for advancing small ncRNA research in gynecological cancer.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Boscaro C, Ramaschi GE, Trevisi L, Cignarella A, Bolego C. MiR-206 inhibits estrogen signaling and ovarian cancer cell migration without affecting GPER. Life Sci 2023; 333:122135. [PMID: 37778413 DOI: 10.1016/j.lfs.2023.122135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
AIMS Estrogen-regulated pathways are involved in the etiology and progression of epithelial ovarian cancer (EOC), but the relative contribution of estrogen receptor isoforms is unclear. Only a subset of patients responds to antiestrogens including tamoxifen. Based on our previous evidence that miR-206 behaves as an oncosuppressor in EOC, we hypothesized that miR-206 would interfere with G protein-coupled estrogen receptor (GPER)-mediated signaling and cell motility. MAIN METHODS PFKFB3 and FAK proteins from OC cells challenged with selective estrogen receptor agonist and antagonist were measured by Western blotting. Cell proliferation and motility were analyzed by MTT and Boyden chamber, respectively. Estrogen-dependent cells were transfected with miR-206 mimic or control using Lipofectamine. KEY FINDINGS The migration of SKOV3 and OVCAR5 cells significantly increased following treatment with 17β-estradiol (E2) and the selective GPER agonist G1. However, tamoxifen failed to inhibit E2 effect and even promoted SKOV3 cell migration. Estrogen receptor ligands did not affect SKOV3 proliferation. The GPER antagonist G15 significantly prevented E2-mediated upregulation of PFKFB3 expression, while G1 concentration-dependently upregulated PFKFB3 levels. Consistent with the functional link between PFKFB3 and FAK activation, E2 and G1 increased FAK phosphorylation at Tyr397. Transfection with miR-206 abolished estrogen-induced EOC migration and down-regulated PFKFB3 protein levels. Notably, miR-206 transfection reduced ERα protein abundance, whereas GPER amount was unchanged. SIGNIFICANCE By blocking estrogen signaling and G1-induced EOC cell invasiveness with no direct interference with GPER levels, miR-206 mimics have the potential to act as pathway-selective antagonists and deserve further testing as RNA therapeutics in estrogen-dependent EOC.
Collapse
Affiliation(s)
| | | | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy.
| |
Collapse
|
3
|
Li F, Liang Z, Jia Y, Zhang P, Ling K, Wang Y, Liang Z. microRNA-324-3p suppresses the aggressive ovarian cancer by targeting WNK2/RAS pathway. Bioengineered 2022; 13:12030-12044. [PMID: 35549643 PMCID: PMC9276006 DOI: 10.1080/21655979.2022.2056314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among gynecological cancers, which progresses owing to dysregulated microRNAs (miRNAs) expression. Our study attempts to reveal the mechanism by which decreased miR-324-3p expression suppresses OC proliferation. Quantitative real-time PCR, western blotting, in situ hybridization, and immunohistochemistry were performed to estimate miR-324-3p and WNK2 expression levels in OC cells and tissues. Cell Counting Kit-8, colony formation, EdU, and transwell assays were performed to analyze the influence of miR-324-3p and WNK2 on the proliferation and invasion ability of OC cells. Subsequently, xenograft models were established to examine the effects of WNK2 on OC cell proliferation in vivo, and databases and luciferase reporter assays were used to test the relationship between miR-324-3p and WNK2 expression. Then, we showed that miR-324-3p expression is decreased in OC cells and tissues, indicating its inhibitory effect on OC cell proliferation. Quantitative real-time PCR and luciferase reporter assays demonstrated that miR-324-3p inhibited WNK2 expression by directly binding to its 3’ untranslated region. WNK2, an upregulated kinase, promotes the proliferation and invasion of OC cells by activating the RAS pathway. Moreover, WNK2 can partly reverse the inhibitory effects of miR-324-3p on OC cell proliferation. Hence, we demonstrate that miR-324-3p suppressed ovarian cancer progression by targeting the WNK2/RAS pathway. Our study provides theoretical evidence for the clinical application potential of miR-324-3p.
Collapse
Affiliation(s)
- Fengjie Li
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Zhen Liang
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongqin Jia
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Panyang Zhang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Kaijian Ling
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Yanzhou Wang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| | - Zhiqing Liang
- Department of Obstetrics and Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, Sichuan , China
| |
Collapse
|
4
|
The Role of microRNAs in Cancer: Functions, Biomarkers and Therapeutics. Cancers (Basel) 2022; 14:cancers14040872. [PMID: 35205620 PMCID: PMC8870119 DOI: 10.3390/cancers14040872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
|
5
|
Boscaro C, Baggio C, Carotti M, Sandonà D, Trevisi L, Cignarella A, Bolego C. Targeting of PFKFB3 with miR-206 but not mir-26b inhibits ovarian cancer cell proliferation and migration involving FAK downregulation. FASEB J 2022; 36:e22140. [PMID: 35107852 DOI: 10.1096/fj.202101222r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022]
Abstract
Few studies explored the role of microRNAs (miRNAs) in the post-transcriptional regulation of glycolytic proteins and downstream effectors in ovarian cancer cells. We recently showed that the functional activation of the cytoskeletal regulator FAK in endothelial cells is fostered by the glycolytic enhancer 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3). We tested the hypothesis that miR-206 and mir-26b, emerging onco-suppressors targeting PFKFB3 in estrogen-dependent tumors, would regulate proliferation and migration of serous epithelial ovarian cancer (EOC) cells via common glycolytic proteins, i.e., GLUT1 and PFKFB3, and downstream FAK. PFKFB3 was overexpressed in SKOV3, and its pharmacological inhibition with 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) significantly reduced cell proliferation and motility. Both miR-206 and miR-26b directly targeted PFKFB3 as evaluated by a luciferase reporter assay. However, endogenous levels of miR-26b were higher than those of miR-206, which was barely detectable in SKOV3 as well as OVCAR5 and CAOV3 cells. Accordingly, only the anti-miR-26b inhibitor concentration-dependently increased PFKFB3 levels. While miR-206 overexpression impaired proliferation and migration by downregulating PFKFB3 levels, the decreased PFKFB3 protein levels related to miR-26 overexpression had no functional consequences in all EOC cell lines. Finally, consistent with the migration outcome, exogenous miR-206 and miR-26b induced opposite effects on the levels of total FAK and of its phosphorylated form at Tyr576/577. 3PO did not prevent miR-26b-induced SKOV3 migration. Overall, these results support the inverse relation between endogenous miRNA levels and their tumor-suppressive effects and suggest that restoring miR-206 expression represents a potential dual anti-PFKFB3/FAK strategy to control ovarian cancer progression.
Collapse
Affiliation(s)
- Carlotta Boscaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Chiara Baggio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Marcello Carotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lucia Trevisi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Chiara Bolego
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Li TT, Mou J, Pan YJ, Huo FC, Du WQ, Liang J, Wang Y, Zhang LS, Pei DS. MicroRNA-138-1-3p sensitizes sorafenib to hepatocellular carcinoma by targeting PAK5 mediated β-catenin/ABCB1 signaling pathway. J Biomed Sci 2021; 28:56. [PMID: 34340705 PMCID: PMC8327419 DOI: 10.1186/s12929-021-00752-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
Background Sorafenib is a kinase inhibitor that is used as a first-line therapy in advanced hepatocellular carcinoma (HCC) patients. However, the existence of sorafenib resistance has limited its therapeutic effect. Through RNA sequencing, we demonstrated that miR-138-1-3p was downregulated in sorafenib resistant HCC cell lines. This study aimed to investigate the role of miR-138-1-3p in sorafenib resistance of HCC. Methods In this study, quantitative real-time PCR (qPCR) and Western Blot were utilized to detect the levels of PAK5 in sorafenib-resistant HCC cells and parental cells. The biological functions of miR-138-1-3p and PAK5 in sorafenib-resistant cells and their parental cells were explored by cell viability assays and flow cytometric analyses. The mechanisms for the involvement of PAK5 were examined via co-immunoprecipitation (co-IP), immunofluorescence, dual luciferase reporter assay and chromatin immunoprecipitation (ChIP). The effects of miR-138-1-3p and PAK5 on HCC sorafenib resistant characteristics were investigated by a xenotransplantation model. Results We detected significant down-regulation of miR-138-1-3p and up-regulation of PAK5 in sorafenib-resistance HCC cell lines. Mechanistic studies revealed that miR-138-1-3p reduced the protein expression of PAK5 by directly targeting the 3′-UTR of PAK5 mRNA. In addition, we verified that PAK5 enhanced the phosphorylation and nuclear translocation of β-catenin that increased the transcriptional activity of a multidrug resistance protein ABCB1. Conclusions PAK5 contributed to the sorafenib resistant characteristics of HCC via β-catenin/ABCB1 signaling pathway. Our findings identified the correlation between miR-138-1-3p and PAK5 and the molecular mechanisms of PAK5-mediated sorafenib resistance in HCC, which provided a potential therapeutic target in advanced HCC patients.
Collapse
Affiliation(s)
- Tong-Tong Li
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.,Department of Pathology and Pathophysiology, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Jie Mou
- Jiangsu Key Laboratory of New Drug and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221006, China
| | - Yao-Jie Pan
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Wen-Qi Du
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jia Liang
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yang Wang
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Lan-Sheng Zhang
- Department of Oncological Radiotherapy, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, People's Republic of China.
| |
Collapse
|