1
|
Liu Y, Ji H, Wu LH, Wang XX, Yang Y, Zhang Q, Zhang HM. Stratifying hepatocellular carcinoma based on immunophenotypes for immunotherapy response and prognosis. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200890. [PMID: 39498358 PMCID: PMC11532917 DOI: 10.1016/j.omton.2024.200890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024]
Abstract
Immunotherapy has transformed the management of hepatocellular carcinoma (HCC), but effectiveness varies among patients. This study aimed to identify biomarkers and HCC subtypes responsive to immunotherapy. Patients were classified into Immunity-High (Immunity-H) and Immunity-Low (Immunity-L) subtypes using ssGSEA scores. Prognostic genes were identified through Cox regression, and immune cell infiltration was quantified with TIMER 2.0. Brother of CDO (BOC) expression, analyzed via immunohistochemistry, correlated with immunotherapy responses. Flow cytometry assessed immune cell infiltration relative to BOC levels, while CCK-8 and transwell assays evaluated BOC overexpression's effects on cell proliferation and invasiveness. Clinically, immunity-H patients had better survival outcomes. Three hub genes-BOC, V-Set and Transmembrane Domain Containing 1 (VSTM1), and PRDM12-were identified as significantly associated with prognosis. Among these, BOC and VSTM1 demonstrated positive correlations with immune cell infiltration. Elevated expression of BOC was found to be predictive of favorable responses to immunotherapy and was associated with enhanced infiltration of T cells, dendritic cells, and B cells in the tumor microenvironment. Conversely, BOC overexpression in liver cancer cell lines led to decreased cell proliferation and invasiveness. This study underscores the prognostic significance of HCC subtypes defined by immunogenomic profiles and identifies BOC as a potential biomarker for immunotherapy selection and outcome prediction.
Collapse
Affiliation(s)
- Yunpeng Liu
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Hongchen Ji
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Li-Hong Wu
- Department of Gastroenterology, Xijing 986 Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xiang-Xu Wang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yue Yang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Qiong Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Hong-Mei Zhang
- Department of Clinical Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
2
|
Li C, Zhang M, Du Y, Liu S, Li D, Zhang S, Ji F, Zhang J, Jiao J. Compromised cell competition exhausts neural stem cells pool. Cell Prolif 2024; 57:e13710. [PMID: 39010274 PMCID: PMC11628731 DOI: 10.1111/cpr.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/05/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Blood vessels play a crucial role in maintaining the stem cell niche in both tumours and developing organs. Cell competition is critical for tumour progression. We hypothesise that blood vessels may act as a regulator of this process. As a pioneer, the secretions of blood vessels regulate the intensity of cell competition, which is essential for tumour invasion and developmental organ extension. Brd4 expresses highly in endothelial cells within various tumours and is positively correlated with numerous invasive genes, making it an ideal focal point for further research on the relationship between blood vessels and cell competition. Our results indicated that the absence of endothelial Brd4 led to a reduction in neural stem cell mortality and compromised cell competition. Endothelial Brd4 regulated cell competition was dependent on Testican2. Testican2 was capable of depositing Sparc and acted as a suppressor of Sparc. Compromised cell competition resulted in the depletion of neural stem cells and accelerated brain ageing. Testican2 could rescue the run-off of neural stem cells and accelerate the turnover rate of neurons. AD patients show compromised cell competition. Through the cloning of a point mutant of Brd4 identified in a subset of AD patients, it was demonstrated that the mutant lacked the ability to promote cell competition. This study suggests a novel approach for treating age-related diseases by enhancing the intensity of cell competition.
Collapse
Affiliation(s)
- Chenxiao Li
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical UniversityZhanjiangChina
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Mengtian Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Yushan Du
- College of Basic Medicine, Qingdao UniversityQingdaoChina
| | - Shuang Liu
- Jiaozuo Hospital of Traditional Chinese MedicineHenanChina
| | - Da Li
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Shukui Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
| | - Fen Ji
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical UniversityZhanjiangChina
| | - Jianwei Jiao
- Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of ScienceBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Wei ZY, Wang LP, Gao D, Zhu L, Wu JF, Shi J, Li YN, Tang XD, Feng YM, Pan XB, Jin YY, Liu YS, Chen JH. Bulk and single-cell RNA-seq analyses reveal canonical RNA editing associated with microglia homeostasis and its role in sepsis-associated encephalopathy. Neuroscience 2024; 560:167-180. [PMID: 39293730 DOI: 10.1016/j.neuroscience.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Previous studies have demonstrated the roles of both microglia homeostasis and RNA editing in sepsis-associated encephalopathy (SAE), yet their relationship remains to be elucidated. In this study, we analyzed bulk and single-cell RNA-seq (scRNA) datasets containing 107 brain tissue and microglia samples from mice with microglial depletion and repopulation to explore canonical RNA editing associated with microglia homeostasis and evaluate its role in SAE. Analysis of mouse brain RNA-Seq revealed hallmarks of microglial repopulation, including peak expressions of Apobec1 and Apobec3 at Day 5 of repopulation and dramatically altered B2m RNA editing. Significant time-dependent changes in brain RNA editing during microglial depletion and repopulation were primarily observed in synapse-related genes, such as Tbc1d24 and Slc1a2. ScRNA-Seq revealed heterogeneous RNA editing among microglia subpopulations and their distinct changes associated with microglia homeostasis. Moreover, repopulated microglia from lipopolysaccharide (LPS)-induced sepsis mice exhibited intensified up-regulation of Apobec1 and Apobec3, with distinct RNA editing responses to LPS, mainly involved in immune-related pathways. The hippocampus from sepsis mice induced by peritoneal contamination and infection showed upregulated Apobec1 and Apobec3 expression, and altered RNA editing in immune-related genes, such as B2m and Mier1, and nervous-related lncRNA Meg3 and Snhg11, both of which were repressed by microglial depletion. Furthermore, the expression of complement-related genes, such as C4b and Cd47, was substantially correlated with RNA editing activity in microglia homeostasis and SAE. Our study demonstrates canonical RNA editing associated with microglia homeostasis and provides new insights into its potential role in SAE.
Collapse
Affiliation(s)
- Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214022, China
| | - Li-Ping Wang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Di Gao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lin Zhu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jun-Fan Wu
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jia Shi
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu-Ning Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Dan Tang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Meng Feng
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xu-Bin Pan
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu 214023, China.
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214022, China.
| |
Collapse
|
4
|
Wang S, Wang Y, Hao L, Chen B, Zhang J, Li X, Cao J, Liu B. BOC targets SMO to regulate the Hedgehog pathway and promote proliferation, migration, and invasion of glioma cells. Brain Res Bull 2024; 216:111037. [PMID: 39084569 DOI: 10.1016/j.brainresbull.2024.111037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
The purpose of this study was to investigate the effects of BOC on glioblastoma cells and its underlying mechanisms. In vitro, BOC-knockdown was performed in glioma cell lines. CCK-8 and Transwell were used to assess the impact of BOC on the viability, invasion, and migration of gliobma cells. RNA-seq technology was employed to analyze the differential gene expression between BOC-knockdown glioma cells and the control group, and qRT-PCR was used to validate the expression of downstream differential genes. SMO-overexpression was performed to investigate the effects of SMO on glioma cells. A BOC-knockdown mouse subcutaneous tumor model was to verify the effects of BOC on mouse tumors. Tissue microarray technology was used to detect the expression of BOC and SMO in samples of normal human brain tissue and glioma tissue. In vitro, BOC-knockdown inhibited the viability, invasion, and migration of glioma cells, as well as downregulated the expression of downstream differential genes SMO, EGFR, HRAS, and MRAS. Conversely, SMO-overexpression upregulated the viability, invasion, and migration abilities of BOC-knockdown cells. In vivo, BOC-knockdown suppressed tumor growth in mice and downregulated the expression of downstream differential genes SMO, EGFR, HRAS, and MRAS. Tissue microarray results showed that both BOC and SMO were highly expressed in glioma tissues. BOC is aberrantly overexpressed in glioma patients and promotes glioma development. Mechanistically, BOC activates the Hedgehog (Hh) and RAS signaling pathways by upregulating the expression of SMO, EGFR, HRAS, and MRAS, thereby facilitating the Proliferation, invasion and migration of glioma cells.
Collapse
Affiliation(s)
- Shichao Wang
- Department of Medical Laboratory, Huhhot First Hospital, Hohhot, Inner Mongolia 010020, China
| | - Yanhai Wang
- Department of Medical Laboratory, Huhhot First Hospital, Hohhot, Inner Mongolia 010020, China
| | - Lingfang Hao
- Department of Medical Laboratory, Huhhot First Hospital, Hohhot, Inner Mongolia 010020, China
| | - Bo Chen
- Department of Medical Laboratory, Huhhot First Hospital, Hohhot, Inner Mongolia 010020, China
| | - Jiawei Zhang
- Department of Medical Laboratory, Huhhot First Hospital, Hohhot, Inner Mongolia 010020, China
| | - Xia Li
- Department of Medical Laboratory, Huhhot First Hospital, Hohhot, Inner Mongolia 010020, China
| | - Junwei Cao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Bin Liu
- Department of Neurology, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia 010017, China.
| |
Collapse
|
5
|
Kang JY, Cho H, Gil M, Lee H, Park S, Kim KE. The novel prognostic marker SPOCK2 regulates tumour progression in melanoma. Exp Dermatol 2024; 33:e15092. [PMID: 38888196 DOI: 10.1111/exd.15092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 06/20/2024]
Abstract
Secreted protein acidic and cysteine rich/osteonectin, cwcv and kazal-like domain proteoglycan 2 (SPOCK2) is a protein that regulates cell differentiation and growth. Recent studies have reported that SPOCK2 plays important roles in the progression of various human cancers; however, the role of SPOCK2 in melanoma remains unknown. Therefore, this study investigated the roles of SPOCK2 and the related mechanisms in melanoma progression. To evaluate the clinical significance of SPOCK2 expression in patients with melanoma, we analysed the association between SPOCK2 expression and its prognostic value for patients with melanoma using systematic multiomic analysis. Subsequently, to investigate the roles of Spock2 in melanoma progression in vitro and in vivo, we knocked down Spock2 in the B16F10 melanoma cell line. High SPOCK2 levels were positively associated with good prognosis and long survival rate of patients with melanoma. Spock2 knockdown promoted melanoma cell proliferation by inducing the cell cycle and inhibiting apoptosis. Moreover, Spock2 downregulation significantly increased cell migration and invasion by upregulating MMP2 and MT1-MMP. The increased cell proliferation and migration were inhibited by MAPK inhibitor, and ERK phosphorylation was considerably enhanced in Spock2 knockdown cells. Therefore, Spock2 could function as a tumour suppressor gene to regulate melanoma progression by regulating the MAPK/ERK signalling pathway. Additionally, Spock2 knockdown cell injection induced considerable tumour growth and lung metastasis in C57BL6 mice compared to that in the control group. Our findings suggest that SPOCK2 plays crucial roles in malignant progression of melanoma and functions as a novel therapeutic target of melanoma.
Collapse
Affiliation(s)
- Ji Young Kang
- Department of Health Industry, Sookmyung Women's University, Seoul, Korea
| | - Hyeijin Cho
- Department of Health Industry, Sookmyung Women's University, Seoul, Korea
| | - Minchan Gil
- Department of Health Industry, Sookmyung Women's University, Seoul, Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea
| | - Kyung Eun Kim
- Department of Health Industry, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
6
|
Li Z, Zheng C, Liu H, Lv J, Wang Y, Zhang K, Kong S, Chen F, Kong Y, Yang X, Cheng Y, Yang Z, Zhang C, Tian Y. A novel oxidative stress-related gene signature as an indicator of prognosis and immunotherapy responses in HNSCC. Aging (Albany NY) 2023; 15:14957-14984. [PMID: 38157249 PMCID: PMC10781479 DOI: 10.18632/aging.205323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE To identify molecular subtypes of oxidative stress-related genes in head and neck squamous cell carcinoma (HNSCC) and to construct a scoring model of oxidative stress-related genes. METHODS R language based scRNA-seq and bulk RNA-seq analyses were used to identify molecular isoforms of oxidative stress-related genes in HNSCC. An oxidative stress-related gene scoring (OSRS) model was constructed, which were verified through online data and immunohistochemical staining of clinical samples. RESULTS Using TCGA-HNSCC datasets, nine predictive genes for overall patient survival, rarely reported in previous similar studies, were screened. AREG and CES1 were identified as prognostic risk factors. CSTA, FDCSP, JCHAIN, IFFO2, PGLYRP4, SPOCK2 and SPINK6 were identified as prognostic factors. Collectively, all genes formed a prognostic risk signature model for oxidative stress in HNSCC, which were validated in GSE41613, GSE103322 and PRJEB23709 datasets. Immunohistochemical staining of SPINK6 in nasopharyngeal cancer samples validated the gene panel. Subsequent analysis indicated that subgroups of the oxidative stress prognostic signature played important roles during cellular communication, the immune microenvironment, the differential activation of transcription factors, oxidative stress and immunotherapeutic responses. CONCLUSIONS The risk model might predict HNSCC prognosis and immunotherapeutic responses.
Collapse
Affiliation(s)
- Zhuoqi Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
| | - Chunning Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Hongtao Liu
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, Shandong 250014, P.R. China
| | - Jiling Lv
- Department of Respiratory and Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan, Shandong 250299, P.R. China
| | - Yuanyuan Wang
- Department of Oncology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250299, P.R. China
| | - Kai Zhang
- Generalsurgery Department, Wenshang County People’s Hospital, Wenshang, Shandong 272500, P.R. China
| | - Shuai Kong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Feng Chen
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Yongmei Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
| | - Xiaowei Yang
- Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Yuxia Cheng
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, Shandong 250014, P.R. China
| | - Zhensong Yang
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Chi Zhang
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
- Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 250299, P.R. China
| |
Collapse
|
7
|
Zhao S, Liu H, Fan M. SPOCK2 Promotes the Malignant Behavior of Ovarian Cancer via Regulation of the Wnt/ β-Catenin Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9223954. [PMID: 36193300 PMCID: PMC9525767 DOI: 10.1155/2022/9223954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Background Ovarian cancer (OC) is a common clinical gynecological disease, which seriously threatens women's health and life. We investigated the roles of SPOCK2 in OC and its associated molecular mechanism in the current study. Methods The expressions and prognostic value of SPOCK2 in OC were identified using the clinical data and data from the GEPIA database. Then, SPOCK2 silence was implemented to search functions of SPOCK2 in OC cells. CCK-8 was used to examine cell proliferation. Cell apoptosis was detected by flow cytometry. The OC cell invasion and migration were evaluated by transwell assays. Results Overexpressed SPOCK2 was identified in OC, which was correlated with poor prognosis and a shorter survival rate. SPOCK2 downregulation significantly suppressed OC cell proliferation, migration, and invasion, and cell apoptosis was markedly promoted by SPOCK2 silence. Meanwhile, SPOCK2 knockdown could effectively suppress Wnt/β-catenin. Conclusion SPOCK2 exerted crucial functions in OC progression and could serve as a promising candidate for OC targeted therapy.
Collapse
Affiliation(s)
- Shanshan Zhao
- Obstetrical Department, Taian City Central Hospital, Taian, China
| | - Haiyan Liu
- Ultrasonic Diagnosis and Treatment Center, Taian City Central Hospital, Taian, China
| | - Mingying Fan
- Gynecology Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|