1
|
Bao Z, Yang M, Guo Y, Ge Q, Zhang H. MTFR2 accelerates hepatocellular carcinoma mediated by metabolic reprogramming via the Akt signaling pathway. Cell Signal 2024; 123:111366. [PMID: 39182591 DOI: 10.1016/j.cellsig.2024.111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Metabolic reprogramming has recently been identified as a hallmark of malignancies. The shift from oxidative phosphorylation to glycolysis in hepatocellular carcinoma (HCC) meets the demands of rapid cell growth and provides a microenvironment for tumor progression. This study sought to uncover the function and mechanism of MTFR2 in the metabolic reprogramming of HCC. Elevated MTFR2 expression was associated with poor patient prognosis. Downregulation of MTFR2 blocked malignant behaviors, epithelial-to-mesenchymal transition (EMT), and glycolysis in HCC cells. Nuclear transcription factor Y subunit gamma (NFYC) was also associated with poor patient prognosis, and NFYC bound to the promoter of MTFR2 to activate transcription and promote Akt signaling. The repressive effects of NFYC knockdown on EMT and glycolysis in HCC cells were compromised by MTFR2 overexpression, elicited through the activation of the Akt signaling. Knockdown of NFYC slowed the growth and intrahepatic metastasis in vivo, which was reversed by MTFR2 overexpression. In conclusion, our work shows that activation of MTFR2 by the transcription factor NFYC promotes Akt signaling, thereby potentiating metabolic reprogramming in HCC development. Targeting the NFYC/MTFR2/Akt axis may represent a therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Zhongming Bao
- Department of Hepatobiliary Surgery, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaiyin 223300, Jiangsu, PR China
| | - Ming Yang
- Department of Hepatobiliary Surgery, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaiyin 223300, Jiangsu, PR China
| | - Yunhu Guo
- Department of Hepatobiliary Surgery, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaiyin 223300, Jiangsu, PR China
| | - Qi Ge
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou 239000, Anhui, PR China.
| | - Huaguo Zhang
- Department of Hepatobiliary Surgery, Huai'an Hospital Affiliated to Yangzhou University (The Fifth People's Hospital of Huai'an), Huaiyin 223300, Jiangsu, PR China.
| |
Collapse
|
2
|
Dolfini D, Gnesutta N, Mantovani R. Expression and function of NF-Y subunits in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189082. [PMID: 38309445 DOI: 10.1016/j.bbcan.2024.189082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
NF-Y is a Transcription Factor (TF) targeting the CCAAT box regulatory element. It consists of the NF-YB/NF-YC heterodimer, each containing an Histone Fold Domain (HFD), and the sequence-specific subunit NF-YA. NF-YA expression is associated with cell proliferation and absent in some post-mitotic cells. The review summarizes recent findings impacting on cancer development. The logic of the NF-Y regulome points to pro-growth, oncogenic genes in the cell-cycle, metabolism and transcriptional regulation routes. NF-YA is involved in growth/differentiation decisions upon cell-cycle re-entry after mitosis and it is widely overexpressed in tumors, the HFD subunits in some tumor types or subtypes. Overexpression of NF-Y -mostly NF-YA- is oncogenic and decreases sensitivity to anti-neoplastic drugs. The specific roles of NF-YA and NF-YC isoforms generated by alternative splicing -AS- are discussed, including the prognostic value of their levels, although the specific molecular mechanisms of activity are still to be deciphered.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
3
|
Londero M, Gallo A, Cattaneo C, Ghilardi A, Ronzio M, Del Giacco L, Mantovani R, Dolfini D. NF-YAl drives EMT in Claudin low tumours. Cell Death Dis 2023; 14:65. [PMID: 36707502 PMCID: PMC9883497 DOI: 10.1038/s41419-023-05591-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Abstract
NF-Y is a trimeric transcription factor whose binding site -the CCAAT box- is enriched in cancer-promoting genes. The regulatory subunit, the sequence-specificity conferring NF-YA, comes in two major isoforms, NF-YA long (NF-YAl) and short (NF-YAs). Extensive expression analysis in epithelial cancers determined two features: widespread overexpression and changes in NF-YAl/NF-YAs ratios (NF-YAr) in tumours with EMT features. We performed wet and in silico experiments to explore the role of the isoforms in breast -BRCA- and gastric -STAD- cancers. We generated clones of two Claudinlow BRCA lines SUM159PT and BT549 ablated of exon-3, thus shifting expression from NF-YAl to NF-YAs. Edited clones show normal growth but reduced migratory capacities in vitro and ability to metastatize in vivo. Using TCGA, including upon deconvolution of scRNA-seq data, we formalize the clinical importance of high NF-YAr, associated to EMT genes and cell populations. We derive a novel, prognostic 158 genes signature common to BRCA and STAD Claudinlow tumours. Finally, we identify splicing factors associated to high NF-YAr, validating RBFOX2 as promoting expression of NF-YAl. These data bring three relevant results: (i) the definition and clinical implications of NF-YAr and the 158 genes signature in Claudinlow tumours; (ii) genetic evidence of 28 amino acids in NF-YAl with EMT-promoting capacity; (iii) the definition of selected splicing factors associated to NF-YA isoforms.
Collapse
Affiliation(s)
- Michela Londero
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Camilla Cattaneo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Anna Ghilardi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Mirko Ronzio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Luca Del Giacco
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
4
|
Li Z, You C, Huang J, Zhang M. NFYAv1 is a Tumor-Promoting Transcript Associated with Poor Prognosis of Hepatocellular Carcinoma. Med Sci Monit 2023; 29:e938410. [PMID: 36680333 PMCID: PMC9875548 DOI: 10.12659/msm.938410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Nuclear Transcription Factor Y Subunit Alpha (NFYA), together with NFYB and NFYC, form a sequence-specific heterotrimeric nuclear transcription factor (NFY), but their functional role in hepatocellular carcinoma (HCC) is still unclear. In this study, we explored the association between the NFY subunit genes and the survival of primary hepatocellular carcinoma (HCC) patients in The Cancer Genome Atlas (TCGA). The transcript-specific effect on HCC cell growth was studied. MATERIAL AND METHODS RNA-seq data from the Genotype-Tissue Expression Project (GTEx) and TCGA were analyzed in combination. In vitro cellular and molecular studies were conducted using SK-Hep-1 and Hep3B cells. Pearson's correlation coefficients were calculated to assess correlations. Welch's unpaired t test and one-way ANOVA with post hoc Tukey's multiple comparisons were performed. Kaplan-Meier (K-M) survival curves were assessed by conducting log-rank (Mantel-Cox) test. RESULTS NFYA was the only prognosis-related gene. Among the 2 splicing transcripts of NFYA, the long isoform (NFYAv1, NM_002505.5) but not the short-form (NFYAv2, NM_021705.4) was significantly associated with worse progression-free survival (PFS) (high [n=179] vs low [n=179], HR: 1.657, 95% CI: 1.228-2.235, P<0.001) and disease-specific survival (DSS) (high [n=175] vs low [n=175], HR: 1.986, 95% CI: 1.269-3.108, P<0.001) in HCC patients. GO/KEGG analysis in TCGA confirmed that NFYAv1 and NFYAv2 co-expressed (|Pearson's r|≥0.6) genes in primary HCC patients were enriched in quite different GO/KEGG terms. NFYAv1 knockdown significantly decreased cell viability and increased G0/G1 cell cycle arrest. The shRNA only targeting NFYAv1 had a significantly stronger growth-inhibiting effect than the shRNA targeting both NFYAv1 and NFYAv2. CONCLUSIONS This study showed that NFYAv1 is a tumor-promoting transcript associated with poor prognosis of HCC.
Collapse
Affiliation(s)
- Zigang Li
- Department of Hepatobiliary Surgery, The First People’s Hospital of Yibin, Yibin, Sichuan, PR China
| | - Chengshan You
- Department of Endocrinology, The Second People’s Hospital of Yibin, Yibin, Sichuan, PR China
| | - Jun Huang
- Department of Hepatobiliary Surgery, The First People’s Hospital of Yibin, Yibin, Sichuan, PR China
| | - Ming Zhang
- Department of Hepatobiliary Surgery, The First People’s Hospital of Yibin, Yibin, Sichuan, PR China
| |
Collapse
|
5
|
Construction of Oxidative Stress-Related Genes Risk Model Predicts the Prognosis of Uterine Corpus Endometrial Cancer Patients. Cancers (Basel) 2022; 14:cancers14225572. [PMID: 36428665 PMCID: PMC9688652 DOI: 10.3390/cancers14225572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress contributes significantly to cancer development. Recent studies have demonstrated that oxidative stress could alter the epigenome and, in particular, DNA methylation. This study aimed to explore the potential link between oxidative stress and uterine corpus endometrial carcinoma (UCEC). An analysis of RNA-seq data and relevant clinical information was conducted with data from The Cancer Genome Atlas (TCGA), and oxidative stress genes were obtained from Gene Set Enrichment Analysis (GSEA). Differentially expressed genes (DEGs) in normal and tumor groups of UCEC were analyzed using GO and KEGG enrichment analysis. As a result of survival analysis, Lasso regression analysis of DEGs, a risk score model of oxidative stress-related genes (OSRGs) was constructed. Moreover, this study demonstrated that OSRGs are associated with immune cell infiltration in UCEC, suggesting oxidative stress may play a role in UCEC development by activating immune cells. We discovered 136 oxidative stress-related DEGs in UCEC, from which we screened 25 prognostic genes significantly related to the overall survival of UCEC patients. BCL2A1, CASP6, GPX2, HIC1, IL19, MSX1, RNF183, SFN, TRPM2 and HIST1H3C are associated with a good prognosis while CDKN2A, CHAC1, E2F1, GSDME, HMGA1, ITGA7, MCM4, MYBL2, PPIF, S100A1, S100A9, STK26 and TRIB3 are involved in a poor prognosis in UCEC. A 7-OSRGs-based risk score (H3C1, CDKN2A, STK26, TRPM2, E2F1, CHAC1, MSX1) was generated by Lasso regression. Further, an association was found between H3C1, CDKN2A, STK26, TRPM2, E2F1, CHAC1 and MSX1 expression levels and the immune infiltrating cells, including CD8 T cells, NK cells, and mast cells in UCEC. NFYA and RFX5 were speculated as common transcription factors of CDKN2A, TRPM2, E2F1, CHAC1, and MSX1 in UCEC.
Collapse
|
6
|
Lu T, Li C, Xiang C, Gong Y, Peng W, Hou F, Chen C. Over-expression of NFYB affects stromal cells reprogramming and predicts worse survival in gastric cancer patients. Aging (Albany NY) 2022; 14:7851-7865. [PMID: 36152055 PMCID: PMC9596197 DOI: 10.18632/aging.204294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and the third most fatal. Cancer-associated fibroblasts (CAFs) play an essential role in promoting the occurrence and development of gastric cancer in all stages. NFYB is highly expressed in multiple tumors and promotes tumor invasion, metastasis, and drug resistance, but its role in the occurrence and development of gastric cancer remains unclear. Hence, we used TCGA, TIMER, Kaplan-Meier Plot, and UALCAN databases to analyze the expression of NFYB in pan-cancers and assess its clinical prognostic value. We found that high expression of NFYB may be a promising prognostic biomarker in patients with gastric cancer. High expression of NFYB was associated with high T stage, high histological grade, diffuse gastric cancer, and early-onset GC. Moreover, High expression of NFYB was associated with CAFs infiltration in the GC microenvironment. The prognosis of GC patients with high expression of NFYB and high infiltration of CAFs was worse. Therefore, NFYB may serve as a potential prognostic biomarker in patients with GC.
Collapse
Affiliation(s)
- Tailiang Lu
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Chenglong Li
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Cailing Xiang
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Yongqiang Gong
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Wei Peng
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Futao Hou
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Chaowu Chen
- Department of General Surgery, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
7
|
Wei E, Reisinger A, Li J, French LE, Clanner-Engelshofen B, Reinholz M. Integration of scRNA-Seq and TCGA RNA-Seq to Analyze the Heterogeneity of HPV+ and HPV- Cervical Cancer Immune Cells and Establish Molecular Risk Models. Front Oncol 2022; 12:860900. [PMID: 35719936 PMCID: PMC9198569 DOI: 10.3389/fonc.2022.860900] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Background Numerous studies support that Human papillomavirus (HPV) can cause cervical cancer. However, few studies have surveyed the heterogeneity of HPV infected or uninfected (HPV+ and HPV-) cervical cancer (CESC) patients. Integration of scRNA-seq and TCGA data to analyze the heterogeneity of HPV+ and HPV- cervical cancer patients on a single-cell level could improve understanding of the cellular mechanisms during HPV-induced cervical cancer. Methods CESC scRNA-seq data obtained from the Gene Expression Omnibus (GEO) database and the Seurat, Monocle3 package were used for scRNA-seq data analysis. The ESTIMATE package was used for single-sample gene immune score, CIBERSORT package was used to identify immune scores of cells, and the “WGCNA” package for the weighted correlation network analysis. Univariate Cox and LASSO regression were performed to establish survival and relapse signatures. KEGG and GO analyses were performed for the signature gene. Gene Expression Profiling Interactive Analysis was used for Pan-cancer analysis. Results In the HPV+ CESC group, CD8+ T cells and B cells were down-regulated, whereas T reg cells, CD4+ T cells, and epithelial cells were up-regulated according to scRNA-seq data. Survival analysis of TCGA-CESC revealed that increased expression of naive B cells or CD8+ T cells favors the survival probability of CESC patients. WGCNA, univariate Cox, and LASSO Cox regression established a 9-genes survival signature and a 7-gene relapse model. Pan-cancer analysis identified IKZF3, FOXP3, and JAK3 had a similar distribution and effects in HPV-associated HNSC. Conclusion Analysis of scRNA-seq and bulk RNA-seq of HPV+ and HPV- CESC samples revealed heterogeneity from transcriptional state to immune infiltration. Survival and relapse models were adjusted according to the heterogeneity of HPV+ and HPV- CESC immune cells to assess the prognostic risk accurately. Hub genes represent similar protection in HPV- associated HNSC while showing irrelevant to other potential HPV-related cancers.
Collapse
Affiliation(s)
- Erdong Wei
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany
| | - Amin Reisinger
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany
| | - Jiahua Li
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery , Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Benjamin Clanner-Engelshofen
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany
| | - Markus Reinholz
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität München (LMU) Munich, University Hospital, Munich, Germany
| |
Collapse
|
8
|
Bernardini A, Gallo A, Gnesutta N, Dolfini D, Mantovani R. Phylogeny of NF-YA trans-activation splicing isoforms in vertebrate evolution. Genomics 2022; 114:110390. [PMID: 35589059 DOI: 10.1016/j.ygeno.2022.110390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/04/2022]
Abstract
NF-Y is a trimeric pioneer Transcription Factor (TF) whose target sequence -the CCAAT box- is present in ~25% of mammalian promoters. We reconstruct the phylogenetic history of the regulatory NF-YA subunit in vertebrates. We find that in addition to the remarkable conservation of the subunits-interaction and DNA-binding parts, the Transcriptional Activation Domain (TAD) is also conserved (>90% identity among bony vertebrates). We infer the phylogeny of the alternatively spliced exon-3 and partial splicing events of exon-7 -7N and 7C- revealing independent clade-specific losses of these regions. These isoforms shape the TAD. Absence of exon-3 in basal deuterostomes, cartilaginous fishes and hagfish, but not in lampreys, suggests that the "short" isoform is primordial, with emergence of exon-3 in chordates. Exon 7N was present in the vertebrate common ancestor, while 7C is a molecular innovation of teleost fishes. RNA-seq analysis in several species confirms expression of all these isoforms. We identify 3 blocks of amino acids in the TAD shared across deuterostomes, yet structural predictions and sequence analyses suggest an evolutionary drive for maintenance of an Intrinsically Disordered Region -IDR- within the TAD. Overall, these data help reconstruct the logic for alternative splicing of this essential eukaryotic TF.
Collapse
Affiliation(s)
- Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| | - Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
9
|
Gallo A, Ronzio M, Bezzecchi E, Mantovani R, Dolfini D. NF-Y subunits overexpression in gastric adenocarcinomas (STAD). Sci Rep 2021; 11:23764. [PMID: 34887475 PMCID: PMC8660849 DOI: 10.1038/s41598-021-03027-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
NF-Y is a pioneer transcription factor-TF-formed by the Histone-like NF-YB/NF-YC subunits and the regulatory NF-YA. It binds to the CCAAT box, an element enriched in promoters of genes overexpressed in many types of cancer. NF-YA is present in two major isoforms-NF-YAs and NF-YAl-due to alternative splicing, overexpressed in epithelial tumors. Here we analyzed NF-Y expression in stomach adenocarcinomas (STAD). We completed the partitioning of all TCGA tumor samples (450) according to molecular subtypes proposed by TCGA and ACRG, using the deep learning tool DeepCC. We analyzed differentially expressed genes-DEG-for enriched pathways and TFs binding sites in promoters. CCAAT is the predominant element only in the core group of genes upregulated in all subtypes, with cell-cycle gene signatures. NF-Y subunits are overexpressed, particularly NF-YA. NF-YAs is predominant in CIN, MSI and EBV TCGA subtypes, NF-YAl is higher in GS and in the ACRG EMT subtypes. Moreover, NF-YAlhigh tumors correlate with a discrete Claudinlow cohort. Elevated NF-YB levels are protective in MSS;TP53+ patients, whereas high NF-YAl/NF-YAs ratios correlate with worse prognosis. We conclude that NF-Y isoforms are associated to clinically relevant features of gastric cancer.
Collapse
Affiliation(s)
- Alberto Gallo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Mirko Ronzio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Eugenia Bezzecchi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|