1
|
Xia L, Lu J, Qin Y, Huang R, Kong F, Deng Y. Analysis of chromatin accessibility in peripheral blood mononuclear cells from patients with early-stage breast cancer. Front Pharmacol 2024; 15:1465586. [PMID: 39376611 PMCID: PMC11456436 DOI: 10.3389/fphar.2024.1465586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
Objective: This study was aimed at exploring a specific open region of chromatin in the peripheral blood mononuclear cells (PBMCs) of patients with breast cancer and evaluating its feasibility as a biomarker for diagnosing and predicting breast cancer prognosis. Methods: We obtained PBMCs from breast cancer patients and healthy people for the assay for transposase-accessible chromatin (ATAC) sequencing (n = 3) and obtained the GSE27562 chip sequencing data for secondary analyses. Through bioinformatics analysis, we mined the pattern changes for chromatin accessibility in the PBMCs of breast cancer patients. Results: A total of 1,906 differentially accessible regions (DARs) and 1,632 differentially expressed genes (DEGs) were identified via ATAC sequencing. The upregulated DEGs in the disease group were mainly distributed in the cells, organelles, and cell-intima-related structures and were mainly responsible for biological functions such as cell nitrogen complex metabolism, macromolecular metabolism, and cell communication, in addition to functions such as nucleic acid binding, enzyme binding, hydrolase reaction, and transferase activity. Combined with microarray data analysis, the following set of nine DEGs showed intersection between the ATAC and microarray data: JUN, MSL2, CDC42, TRIB1, SERTAD3, RAB14, RHOB, RAB40B, and PRKDC. HOMER predicted and identified five transcription factors that could potentially bind to these peak sites, namely NFY, Sp 2, GFY, NRF, and ELK 1. Conclusion: Chromatin accessibility analysis of the PBMCs from patients with early-stage breast cancer underscores its potential as a significant avenue for biomarker discovery in breast cancer diagnostics and treatment. By screening the transcription factors and DEGs related to breast cancer, this study provides a comprehensive theoretical foundation that is expected to guide future clinical applications and therapeutic developments.
Collapse
Affiliation(s)
- Longjie Xia
- Department of Cosmetology and Plastic Surgery Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
- Department of General Surgery, Guangzhou First People’s Hospital, Guangzhou, China
| | - Jiamin Lu
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yixuan Qin
- Department of Cosmetology and Plastic Surgery Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Runchun Huang
- Department of Cosmetology and Plastic Surgery Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Fanbiao Kong
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yu Deng
- Department of Plastic Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Lei S, Sun J, Xie Y, Xiao X, He X, Lin S, Zhang H, Huang Z, Wang H, Wu X, Peng H, Liu J. Diverse functions of Tribbles homolog 3 in cancers and its potential as a therapeutic target. Carcinogenesis 2024; 45:527-542. [PMID: 38902892 DOI: 10.1093/carcin/bgae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
Currently, cancer is the second leading cause of death worldwide, and potential targeted drugs and molecular pathways for cancer development and progression have been a hot research topic worldwide. In recent years, the importance of the kinase superfamily in diseases has been well demonstrated by studies on various molecular mechanisms of kinases and the successful application of their inhibitors in diseases. Pseudokinases are members of the kinase superfamily, which have been increasingly documented to play a crucial role in cancers year after year. As a member of pseudokinases, tribbles homolog 3 (TRIB3) also exerts diverse functions in different cancers through different interacting proteins and molecular pathways, especially in tumor immunity, stemness, drug resistance, metabolism, and autophagy. In addition, peptide drugs targeting TRIB3 have high specificity in preclinical studies, which shows great promise for TRIB3 application in diseases including cancers. In this review, we dissect diverse functions played by TRIB3 in different cancers, describing the underlying mechanisms in detail. Notably, inhibitors and agonists currently available for TRIB3 are discussed, indicating the potential for TRIB3 as a therapeutic target.
Collapse
Affiliation(s)
- Shiying Lei
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiajun Sun
- The Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yifang Xie
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xiaofeng He
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Huifang Zhang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Zineng Huang
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Haiqin Wang
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| | - Xusheng Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Jing Liu
- Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410006, China
| |
Collapse
|
3
|
Hernandez-Resendiz I, Burkhardt R. Novel functions of Tribbles-homolog 1 in liver, adipocytes and atherosclerosis. Curr Opin Lipidol 2024; 35:51-57. [PMID: 38236937 DOI: 10.1097/mol.0000000000000917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
PURPOSE OF REVIEW Human genetics studies have sparked great interest in the pseudokinase Tribbles homolog 1, as variant at the TRIB1 gene locus were robustly linked to several cardiometabolic traits, including plasma lipids and coronary artery disease. In this review, we summarize recent findings from mouse models that investigated the function of hepatic and adipocyte Trib1 in lipid metabolism and its role in atherosclerosis. RECENT FINDINGS Studies in atherosclerosis prone low-density lipoprotein (LDL)-receptor knockout mice suggested that systemic Trib1 -deficiency promotes atherosclerotic lesion formation through the modulation of plasma lipids and inflammation. Further, investigations in mice with hepatocyte specific deletion of Trib1 identified a novel role in the catabolism of apoB-containing lipoproteins via regulation of the LDL-receptor. Moreover, recent studies on Trib1 in adipocytes uncovered critical functions in adipose tissue biology, including the regulation of plasma lipid and adiponectin levels and the response to β3-adrenergic receptor activation. SUMMARY Functional studies in mice have expanded our understanding of how Trib1 contributes to various aspects of cardiometabolic diseases. They support the notion that Trib1 exerts tissue-specific effects, which can result in opposing effects on cardiometabolic traits. Additional studies are required to fully elucidate the molecular mechanisms underlying the cellular and systemic effects of Trib1 .
Collapse
Affiliation(s)
- Ileana Hernandez-Resendiz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, University of Regensburg, Germany
| | | |
Collapse
|
4
|
Velasco G, Link W. Pseudokinases, Tribbles Proteins and Cancer. Cancers (Basel) 2023; 15:3547. [PMID: 37509210 PMCID: PMC10376989 DOI: 10.3390/cancers15143547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The human kinome comprises 518 protein kinases, of which approximately 10% lack one or more of the conserved amino acids necessary for catalytic activity [...].
Collapse
Affiliation(s)
- Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
5
|
Sun X, Wang S, Miao X, Zeng S, Guo Y, Zhou A, Chen Y, Chen Y, Lv F, Fan Z, Wang Y, Xu Y, Li Z. TRIB1 regulates liver regeneration by antagonizing the NRF2-mediated antioxidant response. Cell Death Dis 2023; 14:372. [PMID: 37355685 PMCID: PMC10290656 DOI: 10.1038/s41419-023-05896-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Robust regenerative response post liver injuries facilitates the architectural and functional recovery of the liver. Intrahepatic redox homeostasis plays a key role in liver regeneration. In the present study, we investigated the contributory role of Tribbles homolog 1 (Trib1), a pseudokinase, in liver regeneration and the underlying mechanism. We report that Trib1 expression was transiently down-regulated in animal and cell models of liver regeneration. Further analysis revealed that hepatocyte growth factor (HGF) repressed Trib1 transcription by evicting liver X receptor (LXRα) from the Trib1 promoter. Knockdown of Trib1 enhanced whereas over-expression of Trib1 suppressed liver regeneration after partial hepatectomy in mice. Of interest, regulation of liver regenerative response by Trib1 coincided with alterations of intracellular ROS levels, GSH levels, and antioxidant genes. Transcriptional assays suggested that Trib1 influenced cellular redox status by attenuating nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Mechanistically, Trib1 interacted with the C-terminus of Nrf2 thus masking a potential nuclear localization signal (NLS) and blocking nuclear accumulation of Nrf2. Finally, correlation between Trib1 expression, Nrf2 nuclear localization, and cell proliferation was identified in liver specimens taken from patients with acute liver failure. In conclusion, our data unveil a novel pathway that depicts Trib1 as a critical link between intracellular redox homeostasis and cell proliferation in liver regeneration.
Collapse
Affiliation(s)
- Xinyue Sun
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Shuai Wang
- Department of General Surgery, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Xiulian Miao
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Sheng Zeng
- Stem Cell Center, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Yan Guo
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Anqi Zhou
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Ying Chen
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yifei Chen
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Fangqiao Lv
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhiwen Fan
- Department of Pathology, Nanjing Drum Tower Hospital Affiliated with Nanjing University School of Medicine, Nanjing, China
| | - Yutong Wang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| | - Zilong Li
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China.
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
6
|
Jamieson SA, Pudjihartono M, Horne CR, Viloria JS, Dunlop JL, McMillan HD, Day RC, Keeshan K, Murphy JM, Mace PD. Nanobodies identify an activated state of the TRIB2 pseudokinase. Structure 2022; 30:1518-1529.e5. [PMID: 36108635 DOI: 10.1016/j.str.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/02/2022] [Accepted: 08/19/2022] [Indexed: 12/23/2022]
Abstract
Tribbles proteins (TRIB1-3) are pseudokinases that recruit substrates to the COP1 ubiquitin ligase. TRIB2 was the first Tribbles ortholog to be implicated as a myeloid leukemia oncogene, because it recruits the C/EBPα transcription factor for ubiquitination by COP1. Here we report identification of nanobodies that bind the TRIB2 pseudokinase domain with low nanomolar affinity. A crystal structure of the TRIB2-Nb4.103 complex identified the nanobody to bind the N-terminal lobe of TRIB2, enabling specific recognition of TRIB2 in an activated conformation that is similar to the C/EBPα-bound state of TRIB1. Characterization in solution revealed that Nb4.103 can stabilize a TRIB2 pseudokinase domain dimer in a face-to-face manner. Conversely, a distinct nanobody (Nb4.101) binds through a similar epitope but does not readily promote dimerization. In combination, this study identifies features of TRIB2 that could be exploited for the development of inhibitors and nanobody tools for future investigation of TRIB2 function.
Collapse
Affiliation(s)
- Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Michael Pudjihartono
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Christopher R Horne
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Jessica L Dunlop
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Hamish D McMillan
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Robert C Day
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
7
|
Lal R, Ritchie J, Richmond L, Keeshan K. Detecting endogenous TRIB2 protein expression by flow cytometry and Western blotting. Methods Enzymol 2022; 667:59-77. [PMID: 35525555 DOI: 10.1016/bs.mie.2022.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein kinases catalyze the transfer of a phosphate group thereby activating proteins and initiating signaling cascades. Their cousins, the pseudokinases, are enzymatically nonactive counterparts of protein kinases that can be considered zombie enzymes. Interestingly, pseudokinases, which constitute about 10% of the human kinome, have been implicated in many cancers, despite their sequences predicting a lack of catalytic activity. Owing to recent research, it has been demonstrated that dysregulation of many pseudokinases triggers changes in cell signaling, proliferation, and drug resistance. This review is aimed at describing methods that can be used for detection of Tribbles family of pseudokinases, specifically TRIB2. We describe intracellular staining by flow cytometry and Western blotting techniques for the detection of endogenous TRIB2 protein.
Collapse
Affiliation(s)
- Ridhima Lal
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, SC, United Kingdom
| | - Jake Ritchie
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, SC, United Kingdom
| | - Laura Richmond
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, SC, United Kingdom
| | - Karen Keeshan
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, SC, United Kingdom.
| |
Collapse
|