1
|
Egger ME, Alexander E, Van Meter T, Kong M, Maung AA, Valdes R, Hall MB, Linder MW. Corresponding ctDNA and tumor burden dynamics in metastatic melanoma patients on systemic treatment. Transl Oncol 2024; 42:101883. [PMID: 38306914 PMCID: PMC10850110 DOI: 10.1016/j.tranon.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/15/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
Radiographic imaging is the current standard for monitoring progression of tumor-burden and therapeutic resistance in patients with metastatic melanoma. Plasma circulating tumor DNA (ctDNA) has shown promise as a survelience tool, but longitudinal data on the dynamics between plasma ctDNA concentrations and radiographic imaging is lacking. We evaluated the relationship between longitudinal radiographic measures of tumor burden and ctDNA concentrations in plasma on 30 patients with metastatic melanoma on systemic treatment. In 9 patients with no radiographic evidence of disease over a total of 15 time points, ctDNA concentrations were undetectable. In 21 patients with radiographic tumor burden, ctDNA was detected in 81 % of 58 time points. Plasma ctDNA concentrations demonstrated a modest positive correlation with total tumor burden (TTB) measurements (R2= 0.49, p < 0.001), with the greatest degree of correlation observed under conditions of progressive disease (PD) (R2 = 0.91, p = 0.032). Plasma ctDNA concentrations were significantly greater at times of RECIST v1.1 progression (PD; 22.1 % ± 5.7 %) when compared to samples collected during stable disease (SD; 4.99 % ± 3.0 %) (p = 0.012); this difference was independent of total tumor burden (p = 0.997). Changes in plasma ctDNA showed a strong correlation with changes in TTB (R2= 0.88, p<0.001). These data suggest that measurements of plasma ctDNA during therapy are a better surrogate for responding versus non-responding disease compared to absolute tumor burden.
Collapse
Affiliation(s)
- Michael E Egger
- Department of Surgery, Division of Surgical Oncology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Evan Alexander
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Tracy Van Meter
- Department of Radiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Maiying Kong
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, Louisville, KY, USA; Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Aye Aye Maung
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, Louisville, KY, USA; Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Roland Valdes
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Melissa Barousse Hall
- UofL Health Brown Cancer Center, Louisville, KY, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark W Linder
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA; UofL Health Brown Cancer Center, Louisville, KY, USA.
| |
Collapse
|
2
|
Catoni C, Poggiana C, Facchinetti A, Pigozzo J, Piccin L, Chiarion-Sileni V, Rosato A, Minervini G, Scaini MC. Investigating the Retained Inhibitory Effect of Cobimetinib against p.P124L Mutated MEK1: A Combined Liquid Biopsy and in Silico Approach. Cancers (Basel) 2022; 14:cancers14174153. [PMID: 36077693 PMCID: PMC9454486 DOI: 10.3390/cancers14174153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The systemic treatment of metastatic melanoma has radically changed, due to an improvement in the understanding of its genetic landscape and the advent of targeted therapy. However, the response to BRAF/MEK inhibitors is transitory, and big efforts were made to identify the mechanisms underlying the resistance. We exploited a combined approach, encompassing liquid biopsy analysis and molecular dynamics simulation, for tracking tumor evolution, and in parallel defining the best treatment option. The samples at different time points were collected from a BRAF-mutant melanoma patient who developed an early resistance to dabrafenib/trametinib. The analysis of the circulating tumor DNA (ctDNA) identified the MEK1 p.P124L mutation that confers resistance to trametinib. With an in silico modeling, we identified cobimetinib as an alternative MEK inhibitor, and consequently suggested a therapy switch to vemurafenib/cobimetinib. The patient response was followed by ctDNA tracking and circulating melanoma cell (CMC) count. The cobimetinib administration led to an important reduction in the BRAF p.V600E and MEK1 p.P124L allele fractions and in the CMC number, features suggestive of a putative response. In summary, this study emphasizes the usefulness of a liquid biopsy-based approach combined with in silico simulation, to track real-time tumor evolution while assessing the best treatment option.
Collapse
Affiliation(s)
- Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Jacopo Pigozzo
- Melanoma Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Luisa Piccin
- Melanoma Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Vanna Chiarion-Sileni
- Melanoma Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padova, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
- Correspondence: (A.R.); (M.C.S.)
| | - Giovanni Minervini
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology, IOV-IRCCS, 35128 Padua, Italy
- Correspondence: (A.R.); (M.C.S.)
| |
Collapse
|
3
|
Diefenbach RJ, Lee JH, Stewart A, Menzies AM, Carlino MS, Saw RPM, Stretch JR, Long GV, Scolyer RA, Rizos H. Anchored Multiplex PCR Custom Melanoma Next Generation Sequencing Panel for Analysis of Circulating Tumor DNA. Front Oncol 2022; 12:820510. [PMID: 35494035 PMCID: PMC9039342 DOI: 10.3389/fonc.2022.820510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Detection of melanoma mutations using circulating tumor DNA (ctDNA) is a potential alternative to using genomic DNA from invasive tissue biopsies. To date, mutations in the GC-rich TERT promoter region, which is commonly mutated in melanoma, have been technically difficult to detect in ctDNA using next-generation sequencing (NGS) panels. In this study, we developed a custom melanoma NGS panel for detection of ctDNA, which encompasses the top 15 gene mutations in melanoma including the TERT promoter. We analyzed 21 stage III and IV melanoma patient samples who were treatment-naïve or on therapy. The overall detection rate of the custom panel, based on BRAF/NRAS/TERT promoter mutations, was 14/21 (67%) patient samples which included a TERT C250T mutation in one BRAF and NRAS mutation negative sample. A BRAF or NRAS mutation was detected in the ctDNA of 13/21 (62%) patients while TERT promoter mutations were detected in 10/21 (48%) patients. Co-occurrence of TERT promoter mutations with BRAF or NRAS mutations was found in 9/10 (90%) patients. The custom ctDNA panel showed a concordance of 16/21 (76%) with tissue based-detection and included 12 BRAF/NRAS mutation positive and 4 BRAF/NRAS mutation negative patients. The ctDNA mutation detection rate for stage IV was 12/16 (75%) and for stage III was 1/5 (20%). Based on BRAF, NRAS and TERT promoter mutations, the custom melanoma panel displayed a limit of detection of ~0.2% mutant allele frequency and showed significant correlation with droplet digital PCR. For one patient, a novel MAP2K1 H119Y mutation was detected in an NRAS/BRAF/TERT promoter mutation negative background. To increase the detection rate to >90% for stage IV melanoma patients, we plan to expand our custom panel to 50 genes. This study represents one of the first to successfully detect TERT promoter mutations in ctDNA from cutaneous melanoma patients using a targeted NGS panel.
Collapse
Affiliation(s)
- Russell J Diefenbach
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Jenny H Lee
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Ashleigh Stewart
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre, Westmead and Blacktown Hospitals, Sydney, NSW, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jonathan R Stretch
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Department of Medical Oncology, Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Helen Rizos
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Ao H, Xin Z, Jian Z. Liquid biopsy to identify biomarkers for immunotherapy in hepatocellular carcinoma. Biomark Res 2021; 9:91. [PMID: 34930486 PMCID: PMC8686238 DOI: 10.1186/s40364-021-00348-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The past years have witnessed the vigorous development of immunotherapy, mainly immune checkpoint inhibitors (ICIs) targeting the programmed cell death-1 (PD-1) protein and its ligand, PD-L1, and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4). Indeed, ICIs have largely revolutionized the management and improved the prognosis of patients with intermediate and advanced hepatocellular carcinoma (HCC). However, biomarker-based stratification of HCC patients for optimal response to ICI treatment is still of unmet need and again, there exists the necessity to dynamically monitor treatment effect in real-time manner. The role of conventional biomarkers in immunotherapy surveillance is largely limited by spatial and temporal tumor heterogeneity whereas liquid biopsy seems to be promising to circumvent tumor heterogeneity to identify candidate patients who may response to immunotherapy, to dynamically monitor treatment effect and to unveil resistance mechanism. Herein, we provide a thorough review about the potential utility of liquid biopsy in immunotherapy for HCC and discuss its future perspectives.
Collapse
Affiliation(s)
- Huang Ao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhang Xin
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhou Jian
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education; Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Institute of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 200032, China.
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|