1
|
Carpenè S, Silvestri B, Bertinazzi M, Armato E, Amadori M, Spinato R, de Terlizzi F, Azzarello G. Electrochemotherapy as adjuvant treatment in a sinonasal mucosal melanoma in elderly patient: a case report. Eur Arch Otorhinolaryngol 2024; 281:3853-3858. [PMID: 38634895 DOI: 10.1007/s00405-024-08606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Sinonasal Mucosal Melanoma (SNMM) is a rare but aggressive disease. Surgery with free margins, when feasible, is the treatment of choice. In the last three decades, electrochemotherapy (ECT) has emerged as a local ablative procedure, performed with the Cliniporator, for cutaneous and mucosal tumours of different histology. We present a case report of an ECT treatment performed by means of a new endoscopic electrode, on an elderly patient affected by primary SNMM. METHODS An 88-year-old man with a diagnosis of SNMM (cT4aN0M0)-Stage IV, of the left nasal fossa presented at our institution. Symptoms were epistaxis and complete left nasal obstruction. He refused sinonasal extended surgery and radiotherapy. He underwent a tumor debulking followed by ECT exclusively for symptom control, with palliative intent. RESULTS The patient underwent SNMM debulking under general anaesthesia, followed by ECT on tumour margins. After the procedure, he had been free from symptoms for 5 months, with a good quality of life. Local recurrence was controlled with a new local debulking and ECT procedure on margins. The patient remained symptom free for the next 4 months. Seventeen months after diagnosis, the patient is mild symptomatic for sinonasal disease. Therefore, he developed a systemic disease progression. CONCLUSIONS In our experience, ECT can be used as an adjuvant tool for symptom and local control in SNMM when extended surgery is out of curative intent or unfeasible. As expected, ECT does not appear to have any effect on systemic disease progression.
Collapse
Affiliation(s)
- Silvia Carpenè
- Otolaryngology Unit, Azienda Unità Sanitaria Locale Socio Sanitaria (AULSS) 3 Serenissima - Ospedale di Mirano, Venice, Italy
| | - Barbara Silvestri
- Oncology and Haematology Unit, Azienda Unità Sanitaria Locale Socio Sanitaria (AULSS) 3 Serenissima - Ospedale di Mirano, Venice, Italy.
| | - Martina Bertinazzi
- Otolaryngology Unit, Azienda Unità Sanitaria Locale Socio Sanitaria (AULSS) 3 Serenissima - Ospedale di Mirano, Venice, Italy
| | - Enrico Armato
- Otolaryngology Unit, Azienda Unità Sanitaria Locale Socio Sanitaria (AULSS) 3 Serenissima - Ospedale di Mirano, Venice, Italy
| | - Maurizio Amadori
- Otolaryngology Unit, Azienda Unità Sanitaria Locale Socio Sanitaria (AULSS) 3 Serenissima - Ospedale di Mirano, Venice, Italy
| | - Roberto Spinato
- Otolaryngology Unit, Azienda Unità Sanitaria Locale Socio Sanitaria (AULSS) 3 Serenissima - Ospedale di Mestre, Venice, Italy
| | | | - Giuseppe Azzarello
- Oncology and Haematology Unit, Azienda Unità Sanitaria Locale Socio Sanitaria (AULSS) 3 Serenissima - Ospedale di Mirano, Venice, Italy
| |
Collapse
|
2
|
Campana LG, Daud A, Lancellotti F, Arroyo JP, Davalos RV, Di Prata C, Gehl J. Pulsed Electric Fields in Oncology: A Snapshot of Current Clinical Practices and Research Directions from the 4th World Congress of Electroporation. Cancers (Basel) 2023; 15:3340. [PMID: 37444450 PMCID: PMC10340685 DOI: 10.3390/cancers15133340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The 4th World Congress of Electroporation (Copenhagen, 9-13 October 2022) provided a unique opportunity to convene leading experts in pulsed electric fields (PEF). PEF-based therapies harness electric fields to produce therapeutically useful effects on cancers and represent a valuable option for a variety of patients. As such, irreversible electroporation (IRE), gene electrotransfer (GET), electrochemotherapy (ECT), calcium electroporation (Ca-EP), and tumour-treating fields (TTF) are on the rise. Still, their full therapeutic potential remains underappreciated, and the field faces fragmentation, as shown by parallel maturation and differences in the stages of development and regulatory approval worldwide. This narrative review provides a glimpse of PEF-based techniques, including key mechanisms, clinical indications, and advances in therapy; finally, it offers insights into current research directions. By highlighting a common ground, the authors aim to break silos, strengthen cross-functional collaboration, and pave the way to novel possibilities for intervention. Intriguingly, beyond their peculiar mechanism of action, PEF-based therapies share technical interconnections and multifaceted biological effects (e.g., vascular, immunological) worth exploiting in combinatorial strategies.
Collapse
Affiliation(s)
- Luca G. Campana
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd., Manchester M13 9WL, UK;
| | - Adil Daud
- Department of Medicine, University of California, 550 16 Street, San Francisco, CA 94158, USA;
| | - Francesco Lancellotti
- Department of Surgery, Manchester University NHS Foundation Trust, Oxford Rd., Manchester M13 9WL, UK;
| | - Julio P. Arroyo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (J.P.A.); (R.V.D.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (J.P.A.); (R.V.D.)
- Institute for Critical Technology and Applied Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Claudia Di Prata
- Department of Surgery, San Martino Hospital, 32100 Belluno, Italy;
| | - Julie Gehl
- Department of Clinical Oncology and Palliative Care, Zealand University Hospital, 4000 Roskilde, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| |
Collapse
|
3
|
Granata V, Fusco R, Setola SV, Cozzi D, Rega D, Petrillo A. Diffusion and Perfusion Imaging in Rectal Cancer Restaging. Semin Ultrasound CT MR 2023; 44:117-125. [PMID: 37245878 DOI: 10.1053/j.sult.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The assessment of tumor response, after neoadjuvant radiochemotherapy (n-CRT), permits the stratification of patients for the proper therapeutical management. Although histopathology analysis of the surgical speciemen is considered the gold standard for assessing tumor response, magnetic resonance imaging (MRI), with its significant developments in technical imaging, have allowed an increase in accuracy for the evaluation of response. MRI provides a radiological tumor regression grade (mrTRG) that is correlated with the pathologic tumor regression grade (pTRG). Functional MRI parameters have additional impending in early prediction of the efficacy of therapy. Some of functional methodologies are already part of clinical practice: diffusion-weighted MRI (DW-MRI) and perfusion imaging (dynamic contrast enhanced MRI [DCE-MRI]).
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | | | - Sergio Venazio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Diletta Cozzi
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy; Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
| | - Daniela Rega
- Division of Gastrointestinal Surgical Oncology, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale", Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| |
Collapse
|
4
|
Structured Reporting in Radiological Settings: Pitfalls and Perspectives. J Pers Med 2022; 12:jpm12081344. [PMID: 36013293 PMCID: PMC9409900 DOI: 10.3390/jpm12081344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 12/01/2022] Open
Abstract
Objective: The aim of this manuscript is to give an overview of structured reporting in radiological settings. Materials and Method: This article is a narrative review on structured reporting in radiological settings. Particularly, limitations and future perspectives are analyzed. RESULTS: The radiological report is a communication tool for the referring physician and the patients. It was conceived as a free text report (FTR) to allow radiologists to have their own individuality in the description of the radiological findings. However, this form could suffer from content, style, and presentation discrepancies, with a probability of transferring incorrect radiological data. Quality, datafication/quantification, and accessibility represent the three main goals in moving from FTRs to structured reports (SRs). In fact, the quality is related to standardization, which aims to improve communication and clarification. Moreover, a “structured” checklist, which allows all the fundamental items for a particular radiological study to be reported and permits the connection of the radiological data with clinical features, allowing a personalized medicine. With regard to accessibility, since radiological reports can be considered a source of research data, SR allows data mining to obtain new biomarkers and to help the development of new application domains, especially in the field of radiomics. Conclusions: Structured reporting could eliminate radiologist individuality, allowing a standardized approach.
Collapse
|
5
|
Granata V, Fusco R, Belli A, Danti G, Bicci E, Cutolo C, Petrillo A, Izzo F. Diffusion weighted imaging and diffusion kurtosis imaging in abdominal oncological setting: why and when. Infect Agent Cancer 2022; 17:25. [PMID: 35681237 PMCID: PMC9185934 DOI: 10.1186/s13027-022-00441-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
This article provides an overview of diffusion kurtosis (DKI) imaging in abdominal oncology. DKI allows for more data on tissue structures than the conventional diffusion model (DWI). However, DKI requires high quality images at b-values greater than 1000 s/mm2 and high signal-to-noise ratio (SNR) that traditionally MRI systems are not able to acquire and therefore there are generally amplified anatomical distortions on the images due to less homogeneity of the field. Advances in both hardware and software on modern MRI scanners have currently enabled ultra-high b-value imaging and offered the ability to apply DKI to multiple extracranial sites. Previous studies have evaluated the ability of DKI to characterize and discriminate tumor grade compared to conventional DWI. Additionally, in several studies the DKI sequences used were based on planar echo (EPI) acquisition, which is susceptible to motion, metal and air artefacts and prone to low SNRs and distortions, leading to low quality images for some small lesions, which may affect the accuracy of the results. Another problem is the optimal b-value of DKI, which remains to be explored and not yet standardized, as well as the manual selection of the ROI, which could affect the accuracy of some parameters.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", I-80131, Naples, Italy.
| | | | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", I-80131, Naples, Italy
| | - Ginevra Danti
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology, SIRM Foundation, Milan, Italy
| | - Eleonora Bicci
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", I-80131, Naples, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", I-80131, Naples, Italy
| |
Collapse
|
6
|
Electrochemotherapy of Primary Colon Rectum Cancer and Local Recurrence: Case Report and Prospective Analysis. J Clin Med 2022; 11:jcm11102745. [PMID: 35628872 PMCID: PMC9143872 DOI: 10.3390/jcm11102745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022] Open
Abstract
Purpose: Surgery, radiotherapy, and oncological treatment (chemotherapy and antineoplastic antibodies) are standard treatments of rectal cancer. ECT has shown its effectiveness and suitability in deep solid tumors conducted in both preclinical and clinical studies. We show here an update and preliminary results with locally advanced rectum cancer (LARC) treated with ECT. Methods: Two patients with major clinical response to restaging after neoadjuvant treatment for LARC were subjected to ECT 12 weeks after completing chemo-radiation therapy. One patient was subjected to ECT on a colorectal local recurrence formed after neoadjuvant treatment for LARC and surgery. Computed Tomography and Magnetic Resonance Imaging were used to assess ECT response. Results: The results showed stable disease in two of the three patients treated, while one patient achieved a complete response. The local control of disease is maintained in the patient follow-up. For each patient, a reduction in pain was observed and for the patient with local recurrence, a reduction in bleeding present before ECT was also achieved. Conclusion: Preliminary results showed that ECT is a safe and effective treatment in patients with a major clinical response or local recurrence after neoadjuvant therapy for LARC and allows a reduction in pain and bleeding with a consequent improvement to quality of life.
Collapse
|
7
|
CT-Based Radiomics Analysis to Predict Histopathological Outcomes Following Liver Resection in Colorectal Liver Metastases. Cancers (Basel) 2022; 14:cancers14071648. [PMID: 35406419 PMCID: PMC8996874 DOI: 10.3390/cancers14071648] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The objective of the study was to assess the radiomic features obtained by computed tomography (CT) examination as prognostic biomarkers in patients with colorectal liver metastases, in order to predict histopathological outcomes following liver resection. We obtained good performance considering the single significant textural metric in the identification of the front of tumor growth (expansive versus infiltrative) and tumor budding (high grade versus low grade or absent), in the recognition of mucinous type, and in the detection of recurrences. Abstract Purpose: We aimed to assess the efficacy of radiomic features extracted by computed tomography (CT) in predicting histopathological outcomes following liver resection in colorectal liver metastases patients, evaluating recurrence, mutational status, histopathological characteristics (mucinous), and surgical resection margin. Methods: This retrospectively approved study included a training set and an external validation set. The internal training set included 49 patients with a median age of 60 years and 119 liver colorectal metastases. The validation cohort consisted of 28 patients with single liver colorectal metastasis and a median age of 61 years. Radiomic features were extracted using PyRadiomics on CT portal phase. Nonparametric Kruskal–Wallis tests, intraclass correlation, receiver operating characteristic (ROC) analyses, linear regression modeling, and pattern recognition methods (support vector machine (SVM), k-nearest neighbors (KNN), artificial neural network (NNET), and decision tree (DT)) were considered. Results: The median value of intraclass correlation coefficients for the features was 0.92 (range 0.87–0.96). The best performance in discriminating expansive versus infiltrative front of tumor growth was wavelet_HHL_glcm_Imc2, with an accuracy of 79%, a sensitivity of 84%, and a specificity of 67%. The best performance in discriminating expansive versus tumor budding was wavelet_LLL_firstorder_Mean, with an accuracy of 86%, a sensitivity of 91%, and a specificity of 65%. The best performance in differentiating the mucinous type of tumor was original_firstorder_RobustMeanAbsoluteDeviation, with an accuracy of 88%, a sensitivity of 42%, and a specificity of 100%. The best performance in identifying tumor recurrence was the wavelet_HLH_glcm_Idmn, with an accuracy of 85%, a sensitivity of 81%, and a specificity of 88%. The best linear regression model was obtained with the identification of recurrence considering the linear combination of the 16 significant textural metrics (accuracy of 97%, sensitivity of 94%, and specificity of 98%). The best performance for each outcome was reached using KNN as a classifier with an accuracy greater than 86% in the training and validation sets for each classification problem; the best results were obtained with the identification of tumor front growth considering the seven significant textural features (accuracy of 97%, sensitivity of 90%, and specificity of 100%). Conclusions: This study confirmed the capacity of radiomics data to identify several prognostic features that may affect the treatment choice in patients with liver metastases, in order to obtain a more personalized approach.
Collapse
|
8
|
Granata V, Faggioni L, Grassi R, Fusco R, Reginelli A, Rega D, Maggialetti N, Buccicardi D, Frittoli B, Rengo M, Bortolotto C, Prost R, Lacasella GV, Montella M, Ciaghi E, Bellifemine F, De Muzio F, Grazzini G, De Filippo M, Cappabianca S, Laghi A, Grassi R, Brunese L, Neri E, Miele V, Coppola F. Structured reporting of computed tomography in the staging of colon cancer: a Delphi consensus proposal. LA RADIOLOGIA MEDICA 2022; 127:21-29. [PMID: 34741722 PMCID: PMC8795004 DOI: 10.1007/s11547-021-01418-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Structured reporting (SR) in radiology is becoming increasingly necessary and has been recognized recently by major scientific societies. This study aims to build structured CT-based reports in colon cancer during the staging phase in order to improve communication between the radiologist, members of multidisciplinary teams and patients. MATERIALS AND METHODS A panel of expert radiologists, members of the Italian Society of Medical and Interventional Radiology, was established. A modified Delphi process was used to develop the SR and to assess a level of agreement for all report sections. Cronbach's alpha (Cα) correlation coefficient was used to assess internal consistency for each section and to measure quality analysis according to the average inter-item correlation. RESULTS The final SR version was built by including n = 18 items in the "Patient Clinical Data" section, n = 7 items in the "Clinical Evaluation" section, n = 9 items in the "Imaging Protocol" section and n = 29 items in the "Report" section. Overall, 63 items were included in the final version of the SR. Both in the first and second round, all sections received a higher than good rating: a mean value of 4.6 and range 3.6-4.9 in the first round; a mean value of 5.0 and range 4.9-5 in the second round. In the first round, Cronbach's alpha (Cα) correlation coefficient was a questionable 0.61. In the first round, the overall mean score of the experts and the sum of scores for the structured report were 4.6 (range 1-5) and 1111 (mean value 74.07, STD 4.85), respectively. In the second round, Cronbach's alpha (Cα) correlation coefficient was an acceptable 0.70. In the second round, the overall mean score of the experts and the sum of score for structured report were 4.9 (range 4-5) and 1108 (mean value 79.14, STD 1.83), respectively. The overall mean score obtained by the experts in the second round was higher than the overall mean score of the first round, with a lower standard deviation value to underline greater agreement among the experts for the structured report reached in this round. CONCLUSIONS A wide implementation of SR is of critical importance in order to offer referring physicians and patients optimum quality of service and to provide researchers with the best quality data in the context of big data exploitation of available clinical data. Implementation is a complex procedure, requiring mature technology to successfully address the multiple challenges of user-friendliness, organization and interoperability.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, “Istituto Nazionale Tumori IRCCS Fondazione Pascale – IRCCS di Napoli”, Naples, Italy
| | - Lorenzo Faggioni
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122 Milan, Italy
- Division of Radiology, “Università Degli Studi Della Campania Luigi Vanvitelli”, Naples, Italy
| | | | - Alfonso Reginelli
- Division of Radiology, “Università Degli Studi Della Campania Luigi Vanvitelli”, Naples, Italy
| | - Daniela Rega
- Division of Colorectal Surgery, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS Di Napoli, 80131 Naples, Italy
| | - Nicola Maggialetti
- Section of Radiodiagnostic, DSMBNOS, “Aldo Moro” University, Bari, Italy
| | | | - Barbara Frittoli
- Department of Radiology, Spedali Civili Hospital of Brescia, University of Brescia, Brescia, Italy
| | - Marco Rengo
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome - I.C.O.T. Hospital, Via Franco Faggiana, 1668, 04100 Latina, Italy
| | - Chandra Bortolotto
- Department of Radiology, I.R.C.C.S. Policlinico San Matteo Foundation, Pavia, Italy
| | - Roberto Prost
- Radiology Unit, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Giorgia Viola Lacasella
- Division of Radiology, “Università Degli Studi Della Campania Luigi Vanvitelli”, Naples, Italy
| | - Marco Montella
- Division of Radiology, “Università Degli Studi Della Campania Luigi Vanvitelli”, Naples, Italy
| | | | | | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy
| | - Giulia Grazzini
- Division of Radiology, “Azienda Ospedaliera Universitaria Careggi”, Florence, Italy
| | - Massimo De Filippo
- Department of Medicine and Surgery, Unit of Radiologic Science, University of Parma, Maggiore Hospital, Parma, Italy
| | - Salvatore Cappabianca
- Division of Radiology, “Università Degli Studi Della Campania Luigi Vanvitelli”, Naples, Italy
| | - Andrea Laghi
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122 Milan, Italy
- Division of Radiology, “Università Degli Studi Della Campania Luigi Vanvitelli”, Naples, Italy
| | - Luca Brunese
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy
| | - Emanuele Neri
- Department of Translational Research, University of Pisa, Pisa, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122 Milan, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122 Milan, Italy
- Division of Radiology, “Azienda Ospedaliera Universitaria Careggi”, Florence, Italy
| | - Francesca Coppola
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| |
Collapse
|