1
|
Beelen NA, Valckx VTC, Bos GMJ, Wieten L. Interfering with KIR and NKG2A immune checkpoint axes to unleash NK cell immunotherapy. Best Pract Res Clin Haematol 2024; 37:101568. [PMID: 39396258 DOI: 10.1016/j.beha.2024.101568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 10/15/2024]
Abstract
Due to their intrinsic ability to eliminate malignant cells, natural killer (NK) cells emerge as a promising immunotherapy for cancer. While clinical studies have affirmed the safety of NK cell infusions and combination therapies have demonstrated encouraging outcomes in hematological malignancies, the efficacy of NK cell immunotherapeutic interventions remains heterogeneous across patient cohorts. Moreover, the implementation of NK cell immunotherapy in solid tumors presents notable challenges. Interfering with key NK cell inhibitory signaling pathways by targeting inhibitory killer cell immunoglobulin-like receptors (KIRs) and CD94/NK group 2 member A (NKG2A), holds promise for unleashing the full potential of NK cell-based immunotherapy. In this review, we provide an overview of the current approaches for interfering with inhibitory KIR and NKG2A signaling, exploring a selection of the multitude of combination strategies available. We discuss the significance of maintaining the delicate balance between achieving optimal suppression of NK cell inhibition and ensuring effective activation of anti-tumor effector function, while preserving the favorable safety profiles. The consideration of strategies to modulate inhibitory signaling pathways associated with KIR and NKG2A presents promising avenues for enhancing the efficacy of NK cell immunotherapy.
Collapse
Affiliation(s)
- Nicky A Beelen
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, the Netherlands; GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands; Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Vera T C Valckx
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, the Netherlands; GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands; Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, the Netherlands; GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Lotte Wieten
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands; Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Li X, Zhu Y, Yi J, Deng Y, Lei B, Ren H. Adoptive cell immunotherapy for breast cancer: harnessing the power of immune cells. J Leukoc Biol 2024; 115:866-881. [PMID: 37949484 DOI: 10.1093/jleuko/qiad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Breast cancer is the most prevalent malignant neoplasm worldwide, necessitating the development of novel therapeutic strategies owing to the limitations posed by conventional treatment modalities. Immunotherapy is an innovative approach that has demonstrated significant efficacy in modulating a patient's innate immune system to combat tumor cells. In the era of precision medicine, adoptive immunotherapy for breast cancer has garnered widespread attention as an emerging treatment strategy, primarily encompassing cellular therapies such as tumor-infiltrating lymphocyte therapy, chimeric antigen receptor T/natural killer/M cell therapy, T cell receptor gene-engineered T cell therapy, lymphokine-activated killer cell therapy, cytokine-induced killer cell therapy, natural killer cell therapy, and γδ T cell therapy, among others. This treatment paradigm is based on the principles of immune memory and antigen specificity, involving the collection, processing, and expansion of the patient's immune cells, followed by their reintroduction into the patient's body to activate the immune system and prevent tumor recurrence and metastasis. Currently, multiple clinical trials are assessing the feasibility, effectiveness, and safety of adoptive immunotherapy in breast cancer. However, this therapeutic approach faces challenges associated with tumor heterogeneity, immune evasion, and treatment safety. This review comprehensively summarizes the latest advancements in adoptive immunotherapy for breast cancer and discusses future research directions and prospects, offering valuable guidance and insights into breast cancer immunotherapy.
Collapse
Affiliation(s)
- Xue Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Yunan Zhu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Jinfeng Yi
- Department of Pathology, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Yuhan Deng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - He Ren
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| |
Collapse
|
3
|
Canossi A, Aureli A, Del Beato T, Novelli G, Buonomo O, Rossi P, Venditti A, Papola F, Sconocchia G. Impact of HLA Class I Antigen, Killer Inhibitory Receptor, and FCGR3A Genotypes on Breast Cancer Susceptibility and Tumor Stage. Curr Mol Med 2024; 24:920-930. [PMID: 37461339 DOI: 10.2174/1566524023666230717162458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2024]
Abstract
BACKGROUND The identification in breast cancer (BC) of novel genetic biomarkers regulating natural killer (NK) cell function, including the HLA, KIR, and CD16A (FCGR3A), may be still a challenge. OBJECTIVE We aimed to evaluate whether the combined effect of these polymorphisms has an impact on BC susceptibility and progression. METHODS 47 BC Italian patients and healthy individuals (39 females and 66 males/ females) were genotyped by Sanger sequencing (HLA-C exon 2-4 and FCGR3A- 158V/F, 48L/R/H) and PCR-SSP typing (KIR genes). RESULTS HLA-C gene allele analysis showed the group C1, with HLA-C*07:02:01 allele, to be significantly associated with tumor progression (16.7% vs. 4.0%, p=0.04, OR=4.867), and instead, group C2, with HLA-C*05:01:01, was protective against disease susceptibility (0.0% vs. 7.2%, p=0.019, OR=0.087). In addition, we highlighted a significant reduction of the KIR2DS4ins in BC patients (pcorr.=0.022) and an increased combined presence of KIR2DL1 and KIR2DS1 genes in advanced BC patients compared to earlier stages (66.7% vs. 19.2%, p=0.002). The concurrent lack of KIR2DL2 and KIR2DS4 genes in the presence of HLA-C2 alleles was significantly associated with increased susceptibility to BC (p=0.012, OR=5.020) or with lymph node involvement (p=0.008, OR=6.375). Lastly, we identified different combinations of the FCGR3A-48/158 variants and KIR genes in BC patients compared to controls. CONCLUSION Our findings suggest that in the development of BC probably exists a disorder of the NK innate immunity influenced by KIR/HLA-C gene content and FCGR3A-158 polymorphisms and that the combined analysis of these biomarkers might help predict genetic risk scores for tailored screening of BC patients in therapy.
Collapse
Affiliation(s)
- Angelica Canossi
- Biomedicine, C.N.R. Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Anna Aureli
- Biomedicine, C.N.R. Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Tiziana Del Beato
- Biomedicine, C.N.R. Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Giorgio Novelli
- Maxillofacial surgery, University of Rome Tor Vergata, Rome, Italy
| | - Oreste Buonomo
- Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Piero Rossi
- Breast Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Franco Papola
- Organs Tranplantation and Immunology Institute, Ospedale San Salvatore L'Aquila, Coppito, Italy
| | - Giuseppe Sconocchia
- Biomedicine, C.N.R. Institute of Translational Pharmacology (IFT), Rome, Italy
| |
Collapse
|
4
|
Lee J, Keam B, Park HR, Park JE, Kim S, Kim M, Kim TM, Kim DW, Heo DS. Monalizumab efficacy correlates with HLA-E surface expression and NK cell activity in head and neck squamous carcinoma cell lines. J Cancer Res Clin Oncol 2023; 149:5705-5715. [PMID: 36547689 DOI: 10.1007/s00432-022-04532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE NKG2A, an inhibitory receptor expressed on NK cells and T cells, leads to immune evasion by binding to HLA-E expressed on cancer cells. Here, we investigated the relationship between HLA-E surface expression on head and neck squamous cell carcinoma (HNSCC) cell lines and the efficacy of monalizumab, an NKG2A inhibitor, in promoting NK cell activity. METHODS Six HNSCC cell lines were used as target cells. After exposure to IFN- γ, HLA-E surface expression on HNSCC cell lines was measured by flow cytometry. Peripheral blood mononuclear cells (PBMCs) from healthy donors and isolated NK cells were used as effector cells. NK cells were stimulated by treatment with IL-2 and IL-15 for 5 days, and NK cell-induced cytotoxicity was analyzed by CD107a degranulation and 51Cr release assays. RESULTS We confirmed that HLA-E expression was increased by IFN-γ secreted by NK cells and that HLA-E expression was different for each cell line upon exposure to IFN-γ. Cell lines with high HLA-E expression showed stronger inhibition of NK cell cytotoxicity, and efficacy of monalizumab was high. Combination with cetuximab increased the efficacy of monalizumab. In addition, stimulation of isolated NK cells with IL-2 and IL-15 increased the efficacy of monalizumab, even in the HLA-E low groups. CONCLUSION Monalizumab efficacy was correlated with HLA-E surface expression and was enhanced when NK cell activity was increased by cetuximab or cytokines. These results suggest that monalizumab may be potent against HLA-E-positive tumors and that monalizumab efficacy could be improved by promoting NK cell activity.
Collapse
Affiliation(s)
- Jeongjae Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Ha-Ram Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji-Eun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Miso Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
5
|
Beelen NA, Aberle MR, Bruno V, Olde Damink SWM, Bos GMJ, Rensen SS, Wieten L. Antibody-dependent cellular cytotoxicity-inducing antibodies enhance the natural killer cell anti-cancer response against patient-derived pancreatic cancer organoids. Front Immunol 2023; 14:1133796. [PMID: 37520563 PMCID: PMC10375290 DOI: 10.3389/fimmu.2023.1133796] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/13/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Pancreatic cancer is associated with poor prognosis, and limited treatment options are available for the majority of patients. Natural killer (NK) cells in combination with antibodies inducing antibody-dependent cell-mediated cytotoxicity (ADCC) could be a highly effective new therapeutic option in pancreatic cancer. Accurate predictive preclinical models are needed to develop successful NK cell immunotherapy. Tumor organoids, in vitro 3D organ-like structures that retain important pathophysiological characteristics of the in vivo tumor, may provide such a model. In the current study, we assessed the cytotoxic potential of adoptive NK cells against human pancreatic cancer organoids. We hypothesized that NK cell anti-tumor responses could be enhanced by including ADCC-triggering antibodies. Methods We performed cytotoxicity assays with healthy donor-derived IL-2-activated NK cells and pancreatic cancer organoids from four patients. A 3D cytotoxicity assay using live-cell-imaging was developed and enabled real-time assessment of the response. Results We show that NK cells migrate to and target pancreatic cancer organoids, resulting in an increased organoid death, compared to the no NK cell controls (reaching an average fold change from baseline of 2.1±0.8 vs 1.4±0.6). After 24-hours of co-culture, organoid 2D growth increased. Organoids from 2 out of 4 patients were sensitive to NK cells, while organoids from the other two patients were relatively resistant, indicating patient-specific heterogeneity among organoid cultures. The ADCC-inducing antibodies avelumab (anti-PD-L1) and trastuzumab (anti-HER2) increased NK cell-induced organoid cell death (reaching an average fold change from baseline of 3.5±1.0 and 4.5±1.8, respectively). Moreover, combination therapy with avelumab or trastuzumab resulted in complete disintegration of organoids. Finally, inclusion of ADCC-inducing antibodies was able to overcome resistance in NK-organoid combinations with low or no kill. Discussion These results support the use of organoids as a relevant and personalized model to study the anti-tumor response of NK cells in vitro and the potential of ADCC-inducing antibodies to enhance NK cell effector function.
Collapse
Affiliation(s)
- Nicky A. Beelen
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Merel R. Aberle
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Virginia Bruno
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Steven W. M. Olde Damink
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
- Department of General, Visceral- and Transplantation Surgery, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Gerard M. J. Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Sander S. Rensen
- Department of Surgery and School of Nutrition and Translational Research in Metabolism (NUTRIM), School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Lotte Wieten
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, Netherlands
| |
Collapse
|
6
|
Jalil AT, Abdulhadi MA, Al-Marzook FA, Hizam MM, Abdulameer SJ, Al-Azzawi AKJ, Zabibah RS, Fadhil AA. NK cells direct the perspective approaches to cancer immunotherapy. Med Oncol 2023; 40:206. [PMID: 37318610 DOI: 10.1007/s12032-023-02066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/30/2023] [Indexed: 06/16/2023]
Abstract
Natural killer (NK) cells are innate immune cells with cytotoxic potentials to kill cancerous cells in several mechanisms, which could be implied for cancer therapy. While potent, their antitumor activities specially for solid tumors impaired by inadequate tumor infiltration, suppressive tumor microenvironment, cancer-associated stroma cells, and tumor-supportive immune cells. Therefore, manipulating or reprogramming these barriers by prospective strategies might improve current immunotherapies in the clinic or introduce novel NK-based immunotherapies. NK-based immunotherapy could be developed in monotherapy or in combination with other therapeutic regimens such as oncolytic virus therapy and immune checkpoint blockade, as presented in this review.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon, Iraq.
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Farah A Al-Marzook
- College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala, 56100, Iraq
| | | | - Sada Jasim Abdulameer
- Biology Department, College of Education for Pure Science, Wasit University, Kut, Wasit, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali A Fadhil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
7
|
Beelen NA, Ehlers FAI, Bos GMJ, Wieten L. Inhibitory receptors for HLA class I as immune checkpoints for natural killer cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Cancer Immunol Immunother 2023; 72:797-804. [PMID: 36261539 PMCID: PMC10025219 DOI: 10.1007/s00262-022-03299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells mediate potent anti-tumor responses, which makes them attractive targets for immunotherapy. The anti-tumor response of endogenous- or allogeneic NK cells can be enhanced through clinically available monoclonal antibodies that mediate antibody-dependent cellular cytotoxicity (ADCC). NK cell activation is regulated by interaction of inhibitory receptors with classical- and non-classical human leukocyte antigens (HLA) class I molecules. Inhibitory receptors of the killer immunoglobulin-like receptor (KIR) family interact with HLA-A, -B or -C epitopes, while NKG2A interacts with the non-classical HLA-E molecule. Both types of inhibitory interactions may influence the strength of the ADCC response. In the present review, we provide an overview of the effect of inhibitory KIRs and NKG2A on NK cell-mediated ADCC, which highlights the rationale for combination strategies with ADCC triggering antibodies and interference with the NK cell relevant inhibitory immune checkpoints, such as KIR and NKG2A.
Collapse
Affiliation(s)
- Nicky A. Beelen
- Department of Transplantation Immunology, Maastricht University Medical Center+, P. Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Femke A. I. Ehlers
- Department of Transplantation Immunology, Maastricht University Medical Center+, P. Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Gerard M. J. Bos
- GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center+, P. Debeyelaan 25, PO Box 5800, 6202 AZ Maastricht, The Netherlands
- GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
PDPN positive CAFs contribute to HER2 positive breast cancer resistance to trastuzumab by inhibiting antibody-dependent NK cell-mediated cytotoxicity. Drug Resist Updat 2023; 68:100947. [PMID: 36812747 DOI: 10.1016/j.drup.2023.100947] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Trastuzumab is a humanized monoclonal antibody, and has been clinical employed to treat human epidermal growth factor receptor 2 (HER2) positive breast cancer. However, drug resistance to trastuzumab remains a challenge due to the generally uncharacterized interactive immune responses within the tumor tissue. In this study, by means of single-cell sequencing, we identified a novel podoplanin-positive (PDPN+) cancer-associated fibroblasts (CAFs) subset, which was enriched in trastuzumab resistant tumor tissues. Furthermore, we found that PDPN+ CAFs promote resistance to trastuzumab in HER2+ breast cancer by secreting immunosuppressive factors indoleamine 2,3-dioxygenase 1 (IDO1) as well as tryptophan 2,3-dioxygenase 2 (TDO2), thereby suppressing antibody-dependent cell-mediated cytotoxicity (ADCC), which was mediated by functional NK cells. A dual inhibitor IDO/TDO-IN-3 simultaneously targeting IDO1 and TDO2 showed a promising effect on reversing PDPN+ CAFs-induced suppression of NK cells mediated ADCC. Collectively, a novel subset of PDPN+ CAFs was identified in this study, which induced trastuzumab resistance in breast cancer of HER2+ status via inhibiting ADCC immune response mediated by NK cells, hinting that PDPN+ CAFs could be a novel target of treatment to increase the sensitivity of HER2+ breast cancer to trastuzumab.
Collapse
|
9
|
Beelen NA, Ehlers FAI, Kooreman LFS, Bos GMJ, Wieten L. An in vitro model to monitor natural killer cell effector functions against breast cancer cells derived from human tumor tissue. Methods Cell Biol 2023; 173:133-153. [PMID: 36653080 DOI: 10.1016/bs.mcb.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adoptive natural killer (NK) cell-based immunotherapy poses a promising treatment approach in cancer. Despite minimal toxicities associated with NK cell infusion, the potential of NK cell therapy is inhibited by the immunosuppressive tumor microenvironment (TME). Multiple approaches to improve anti-cancer NK cell effector functions are being investigated. While much of this preclinical research is currently performed with commercially available tumor cell lines, this approach lacks the influence of the TME and heterogeneity of the primary tumor in patients. Here, we describe a comprehensive protocol for NK cell cytotoxicity- and degranulation assays against tumor cells derived from primary breast cancer tissue. Treatments to boost NK cell anti-tumor effector functions can be implemented in this model. Moreover, by using culture supernatants in follow up assays or by including additional cell types in the co-culture system, other NK cell effector mechanisms that further orchestrate innate and adaptive immunity could be studied.
Collapse
Affiliation(s)
- Nicky A Beelen
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, Maastricht, The Netherlands; GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands; Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Femke A I Ehlers
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, Maastricht, The Netherlands; GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands; Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Loes F S Kooreman
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands; Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center, Maastricht, The Netherlands; GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Lotte Wieten
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands; Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
10
|
Ehlers FAI, Mahaweni NM, van de Waterweg Berends A, Saya T, Bos GMJ, Wieten L. Exploring the potential of combining IL-2-activated NK cells with an anti-PDL1 monoclonal antibody to target multiple myeloma-associated macrophages. Cancer Immunol Immunother 2023; 72:1789-1801. [PMID: 36656341 DOI: 10.1007/s00262-022-03365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023]
Abstract
Multiple myeloma (MM) is an incurable disease, characterized by malignant plasma cells in the bone marrow. MM growth is largely dependent on the tumor microenvironment (TME), consisting of complex cellular networks that shape a tumor-permissive environment. Within the TME, tumor-associated cells (TAC) comprise heterogeneous cell populations that collectively support immunosuppression. Reshaping the TME toward an immunostimulatory environment may enhance effectiveness of immunotherapies. Here, we investigated interactions between donor-derived natural killer (NK) cells and TAC, like tumor-associated macrophages (TAM) and M1 macrophages, and assessed whether anti-tumor effector functions of NK cells could be enhanced by an ADCC-triggering antibody targeting macrophages. Monocytes were polarized in vitro toward either M1 or TAM before co-culture with high-dose IL-2-activated NK cells. NK cell responses were assessed by measuring degranulation (CD107a) and IFN-γ production. We found that NK cells degranulated and produced IFN-γ upon interaction with both macrophage types. NK cell responses against PD-L1+ M1 macrophages could be further enhanced by Avelumab, an anti-PD-L1- and ADCC-inducing antibody. Additionally, NK cell responses were influenced by HLA class I, shown by stronger degranulation in NK cell subsets for which the corresponding HLA ligand was absent on the macrophage target cells (KIR-ligand mismatch) compared to degranulation in the presence of the HLA ligand (KIR-ligand match). Our results suggest that NK cells could, next to killing tumor cells, get activated upon interaction with TAC, like M1 macrophages and TAMs, and that NK cells combined with PD-L1 blocking antibodies with ADCC potential could, through IFN-γ secretion, promote a more immune-favorable TME.
Collapse
Affiliation(s)
- Femke A I Ehlers
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Niken M Mahaweni
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Annet van de Waterweg Berends
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Thara Saya
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Gerard M J Bos
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Center+, Maastricht, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Tissue Typing Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands. .,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Li F, Liu S. Focusing on NK cells and ADCC: A promising immunotherapy approach in targeted therapy for HER2-positive breast cancer. Front Immunol 2022; 13:1083462. [PMID: 36601109 PMCID: PMC9806173 DOI: 10.3389/fimmu.2022.1083462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer has a high metastatic potential. Monoclonal antibodies (mAbs) that target HER2, such as trastuzumab and pertuzumab, are the cornerstone of adjuvant therapy for HER2-positive breast cancer. A growing body of preclinical and clinical evidence points to the importance of innate immunity mediated by antibody-dependent cellular cytotoxicity (ADCC) in the clinical effect of mAbs on the resulting anti-tumor response. In this review, we provide an overview of the role of natural killer (NK) cells and ADCC in targeted therapy of HER2-positive breast cancer, including the biological functions of NK cells and the role of NK cells and ADCC in anti-HER2 targeted drugs. We then discuss regulatory mechanisms and recent strategies to leverage our knowledge of NK cells and ADCC as an immunotherapy approach for HER2-positive breast cancer.
Collapse
|
12
|
Zhao Y, Bai Y, Shen M, Li Y. Therapeutic strategies for gastric cancer targeting immune cells: Future directions. Front Immunol 2022; 13:992762. [PMID: 36225938 PMCID: PMC9549957 DOI: 10.3389/fimmu.2022.992762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gastric cancer (GC) is a malignancy with a high incidence and mortality, and the emergence of immunotherapy has brought survival benefits to GC patients. Compared with traditional therapy, immunotherapy has the advantages of durable response, long-term survival benefits, and lower toxicity. Therefore, targeted immune cells are the most promising therapeutic strategy in the field of oncology. In this review, we introduce the role and significance of each immune cell in the tumor microenvironment of GC and summarize the current landscape of immunotherapy in GC, which includes immune checkpoint inhibitors, adoptive cell therapy (ACT), dendritic cell (DC) vaccines, reduction of M2 tumor-associated macrophages (M2 TAMs), N2 tumor-associated neutrophils (N2 TANs), myeloid-derived suppressor cells (MDSCs), effector regulatory T cells (eTregs), and regulatory B cells (Bregs) in the tumor microenvironment and reprogram TAMs and TANs into tumor killer cells. The most widely used immunotherapy strategies are the immune checkpoint inhibitor programmed cell death 1/programmed death-ligand 1 (PD-1/PD-L1) antibody, cytotoxic T lymphocyte–associated protein 4 (CTLA-4) antibody, and chimeric antigen receptor T (CAR-T) in ACT, and these therapeutic strategies have significant anti-tumor efficacy in solid tumors and hematological tumors. Targeting other immune cells provides a new direction for the immunotherapy of GC despite the relatively weak clinical data, which have been confirmed to restore or enhance anti-tumor immune function in preclinical studies and some treatment strategies have entered the clinical trial stage, and it is expected that more and more effective immune cell–based therapeutic methods will be developed and applied.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuansong Bai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meili Shen
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| | - Yapeng Li
- The National and Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, China
- *Correspondence: Yapeng Li, ; Meili Shen,
| |
Collapse
|
13
|
Rossi A, Belmonte B, Carnevale S, Liotti A, De Rosa V, Jaillon S, Piconese S, Tripodo C. Stromal and Immune Cell Dynamics in Tumor Associated Tertiary Lymphoid Structures and Anti-Tumor Immune Responses. Front Cell Dev Biol 2022; 10:933113. [PMID: 35874810 PMCID: PMC9304551 DOI: 10.3389/fcell.2022.933113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) the role of stromal cell composition and architecture in the recruitment of specific immune subpopulations and the formation of immune cell aggregates; 2) the contribution of the myeloid compartment (macrophages and neutrophils) to the development of antibody responses and the TLS formation; 3) the immunological and metabolic mechanisms dictating recruitment, expansion and plasticity of Tregs into T follicular regulatory cells, which are potentially sensitive to immunotherapeutic strategies directed to costimulatory receptors or checkpoint molecules.
Collapse
Affiliation(s)
- Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche, Naples, Italy
| | - Sebastien Jaillon
- RCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: Silvia Piconese,
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
- Histopathology Unit, FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| |
Collapse
|
14
|
Papak I, Chruściel E, Dziubek K, Kurkowiak M, Urban-Wójciuk Z, Marjański T, Rzyman W, Marek-Trzonkowska N. What Inhibits Natural Killers’ Performance in Tumour. Int J Mol Sci 2022; 23:ijms23137030. [PMID: 35806034 PMCID: PMC9266640 DOI: 10.3390/ijms23137030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 12/21/2022] Open
Abstract
Natural killer cells are innate lymphocytes with the ability to lyse tumour cells depending on the balance of their activating and inhibiting receptors. Growing numbers of clinical trials show promising results of NK cell-based immunotherapies. Unlike T cells, NK cells can lyse tumour cells independent of antigen presentation, based simply on their activation and inhibition receptors. Various strategies to improve NK cell-based therapies are being developed, all with one goal: to shift the balance to activation. In this review, we discuss the current understanding of ways NK cells can lyse tumour cells and all the inhibitory signals stopping their cytotoxic potential.
Collapse
Affiliation(s)
- Ines Papak
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Elżbieta Chruściel
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Katarzyna Dziubek
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Zuzanna Urban-Wójciuk
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
| | - Tomasz Marjański
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (T.M.); (W.R.)
| | - Witold Rzyman
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (T.M.); (W.R.)
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Ul. Kładki 24, 80-822 Gdansk, Poland; (I.P.); (E.C.); (K.D.); (M.K.); (Z.U.-W.)
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence:
| |
Collapse
|
15
|
Muraro E, De Zorzi M, Miolo G, Lombardi D, Scalone S, Spazzapan S, Massarut S, Perin T, Dolcetti R, Steffan A, De Re V. KIR-HLA Functional Repertoire Influences Trastuzumab Efficiency in Patients With HER2-Positive Breast Cancer. Front Immunol 2022; 12:791958. [PMID: 35095867 PMCID: PMC8790064 DOI: 10.3389/fimmu.2021.791958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
Trastuzumab induced a high rate of pathological Complete Response (pCR) in patients affected by locally advanced HER2-positive Breast Cancer (HER2-BC), by exploiting immune-mediated mechanisms as Antibody-Dependent Cell Cytotoxicity (ADCC) involving Natural Killer (NK) cells. Host's immune genetics could influence the response to therapy, through the expression of variants that characterize NK receptors involved in ADCC effectiveness. Killer cell immunoglobin-like receptors (KIRs) modulate NK cell activity through their binding to class-I Human Leukocyte Antigens (HLA). The impact of the KIR/HLA repertoire in HER2-BC is under study. We characterized KIR genotypes of 36 patients with locally advanced HER2-BC treated with neoadjuvant chemotherapy including trastuzumab. We monitored pCR achievement before surgery and Disease-Free Survival (DFS) and Overall Survival (OS) after adjuvant therapy. HLA, and Fc gamma receptor IIIa (FcγR3A) and IIa (FcγR2A) were genotyped through targeted PCR and Sanger sequencing in 35/36 patients. The KIR-HLA combinations were then described as functional haplotypes and divided in two main categories as inhibitory tel A and stimulatory tel B. Trastuzumab-dependent ADCC activity was monitored with an in vitro assay using a HER2-BC model and patients' NK cells.We observed a higher frequency of KIR activators in patients who achieved a pCR compared to partial responders. During the study of functional haplotypes, individuals carrying a tel B haplotype showed greater ADCC efficiency than tel A cases. In subjects with the tel A haplotype the presence of the favorite V allele in FcγR3A receptor improved their low ADCC levels. Regardless of the haplotypes detected, the presence of KIR3DL2/HLA-A03 or A11 was always associated with the FcγR3A V allele, and therefore correlated with greater ADCC efficiency. However, this particular KIR receptor appeared to harm DFS and OS. Indeed, patients with tel B haplotype without KIR3DL2/HLA-A03 or A11 showed a better outcome. Our data, although preliminary, suggested a potential predictive role for KIR haplotype tel B, in identifying patients who achieve a pCR after neoadjuvant treatment with trastuzumab, and supported a negative prognostic impact of KIR3DL2/HLA-A03 or A11 in the adjuvant setting.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Mariangela De Zorzi
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Davide Lombardi
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Simona Scalone
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Simon Spazzapan
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Samuele Massarut
- Breast Surgery Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Tiziana Perin
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO Aviano), IRCCS, National Cancer Institute, Aviano, Italy
| | - Riccardo Dolcetti
- Centre for Cancer Immunotherapy, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, VIC, Australia.,Department of Microbiology and Immunology, The University of Melbourne, VIC, Australia.,Faculty of Medicine, The University of Queensland Diamantina Institute, Brisbane, QLD, Australia
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| | - Valli De Re
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Aviano, Italy
| |
Collapse
|