1
|
Cheng D, Wang J, Wang Y, Xue Y, Yang Q, Yang Q, Zhao H, Huang J, Peng X. Chemokines: Function and therapeutic potential in bone metastasis of lung cancer. Cytokine 2023; 172:156403. [PMID: 37871366 DOI: 10.1016/j.cyto.2023.156403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Lung cancer is a rapidly progressing disease with a poor prognosis. Bone metastasis is commonly found in 40.6% of advanced-stage patients. The mortality rate of lung cancer patients with bone metastasis can be significantly decreased by implementing novel diagnostic techniques, improved staging and classification systems, precise surgical interventions, and advanced treatment modalities. However, it is important to note that there is currently a lack of radical procedures available for these patients due to the development of drug resistance. Consequently, palliative care approaches are commonly employed in clinical practice. Therefore, new understandings of the process of bone metastasis of lung cancer are critical for developing better treatment strategies to improve patient's clinical cure rate and quality of life. Chemokines are cell-secreted small signaling proteins in cancer occurrence, proliferation, invasion, and metastasis. In this study, we review the development of bone metastasis in lung cancer and discuss the mechanisms of specific chemokine families (CC, CXC, CX3C, and XC) in regulating the biological activities of tumors and promoting bone metastasis. We also highlight some preclinical studies and clinical trials on chemokines for lung cancer and bone metastasis.
Collapse
Affiliation(s)
- Dezhou Cheng
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Jiancheng Wang
- Department of Radiology, The Second People's Hospital of Jingzhou, China
| | - Yiling Wang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yanfang Xue
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qing Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Qun Yang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Huichuan Zhao
- Department of Pathology of the First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinbai Huang
- Department of Medical Imaging, Health Science Center, Yangtze University, Jingzhou, Hubei, China; Department of Medical Imaging, the First Affiliated Hospital of Yangtze University, and School of Medicine of Yangtze University, Jingzhou, Hubei, China.
| | - Xiaochun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
2
|
Mei J, Cai Y, Chen L, Wu Y, Liu J, Qian Z, Jiang Y, Zhang P, Xia T, Pan X, Zhang Y. The heterogeneity of tumour immune microenvironment revealing the CRABP2/CD69 signature discriminates distinct clinical outcomes in breast cancer. Br J Cancer 2023; 129:1645-1657. [PMID: 37715025 PMCID: PMC10646008 DOI: 10.1038/s41416-023-02432-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND It has been acknowledged that the tumour immune microenvironment (TIME) plays a critical role in determining therapeutic responses and clinical outcomes in breast cancer (BrCa). Thus, the identification of the TIME features is essential for guiding therapy and prognostic assessment for BrCa. METHODS The heterogeneous cellular composition of the TIME in BrCa by single-cell RNA sequencing (scRNA-seq). Two subtype-special genes upregulated in the tumour-rich subtype and the immune-infiltrating subtype were extracted, respectively. The CRABP2/CD69 signature was established based on CRABP2 and CD69 expression, and its predictive values for the clinical outcome and the neoadjuvant chemotherapy (NAT) responses were validated in multiple cohorts. Moreover, the oncogenic role of CRABP2 was explored in BrCa cells. RESULTS Based on the heterogeneous cellular composition of the TIME in BrCa, the BrCa samples could be divided into the tumour-rich subtype and the immune-infiltrating subtype, which exhibited distinct prognosis and chemotherapeutic responses. Next, we extracted CRABP2 as the biomarker for the tumour-rich subtype and CD69 as the biomarker for the immune-infiltrating subtype. Based on the CRABP2/CD69 signature, BrCa samples were re-divided into three subtypes, and the CRABP2highCD69low subtype exhibited the worst prognosis and the lowest chemotherapeutic response, while the CRABP2lowCD69high subtype showed the opposite results. Furthermore, CARBP2 functioned as a novel oncogene in BrCa, which promoted tumour cell proliferation, migration, and invasion, and CRABP2 inhibition triggered the activation of cytotoxic T lymphocytes (CTLs). CONCLUSION The CRABP2/CD69 signature is significantly associated with the TIME features and could effectively predict the clinical outcome. Also, CRABP2 is determined to be a novel oncogene, which could be a therapeutic target in BrCa.
Collapse
Affiliation(s)
- Jie Mei
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China
- The First Clinical Medical College, Nanjing Medical University, 211166, Nanjing, China
| | - Yun Cai
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China
| | - Youqing Wu
- School of Artificial Intelligence and Computer Science, Jiangnan University, 214122, Wuxi, China
| | - Jiayu Liu
- Department of Oncology, The Women's Hospital of Jiangnan University, 214023, Wuxi, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China
| | - Ying Jiang
- Department of Oncology, The Women's Hospital of Jiangnan University, 214023, Wuxi, China
| | - Ping Zhang
- Department of Breast Surgery, The Women's Hospital of Jiangnan University, 214023, Wuxi, China
| | - Tiansong Xia
- Jiangsu Breast Disease Center, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
| | - Xiang Pan
- School of Artificial Intelligence and Computer Science, Jiangnan University, 214122, Wuxi, China.
| | - Yan Zhang
- Wuxi Maternal and Child Health Hospital, Wuxi Medical Center of Nanjing Medical University, 214023, Wuxi, China.
- Department of Oncology, The Women's Hospital of Jiangnan University, 214023, Wuxi, China.
| |
Collapse
|
3
|
Zhou C, Gao Y, Ding P, Wu T, Ji G. The role of CXCL family members in different diseases. Cell Death Discov 2023; 9:212. [PMID: 37393391 DOI: 10.1038/s41420-023-01524-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Chemokines are a large family mediating a lot of biological behaviors including chemotaxis, tumor growth, angiogenesis and so on. As one member of this family, CXC subfamily possesses the same ability. CXC chemokines can recruit and migrate different categories of immune cells, regulate tumor's pathological behaviors like proliferation, invasion and metastasis, activate angiogenesis, etc. Due to these characteristics, CXCL subfamily is extensively and closely associated with tumors and inflammatory diseases. As studies are becoming more and more intensive, CXCLs' concrete roles are better described, and CXCLs' therapeutic applications including biomarkers and targets are also deeply explained. In this review, the role of CXCL family members in various diseases is summarized.
Collapse
Affiliation(s)
- Chenjia Zhou
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China.
| |
Collapse
|
4
|
Kaneko K, Acharya CR, Nagata H, Yang X, Hartman ZC, Hobeika A, Hughes PF, Haystead TAJ, Morse MA, Lyerly HK, Osada T. Combination of a novel heat shock protein 90-targeted photodynamic therapy with PD-1/PD-L1 blockade induces potent systemic antitumor efficacy and abscopal effect against breast cancers. J Immunother Cancer 2022; 10:e004793. [PMID: 36171008 PMCID: PMC9528636 DOI: 10.1136/jitc-2022-004793] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND We previously demonstrated potent antitumor activity against human breast cancer xenografts using photodynamic therapy (PDT) targeting a novel tumor-specific photosensitizer (HS201), which binds heat shock protein 90 (HS201-PDT). However, induction of systemic antitumor immunity by HS201-PDT alone or by the combination strategy with immune checkpoint blockade has yet to be determined. METHODS Using unilateral and bilateral implantation models of syngeneic breast tumors (E0771, MM3MG-HER2, and JC-HER3) in mice, we assessed whether HS201-PDT could induce local and systemic antitumor immunity. In an attempt to achieve a stronger abscopal effect for distant tumors, the combination strategy with anti-PD-L1 antibody was tested. Tumor-infiltrating leukocytes were analyzed by single cell RNA-sequencing and receptor-ligand interactome analysis to characterize in more detailed the mechanisms of action of the treatment and key signaling pathways involved. RESULTS HS201-PDT demonstrated greater tumor control and survival in immune competent mice than in immunocompromised mice, suggesting the role of induced antitumor immunity; however, survival was modest and an abscopal effect on distant implanted tumor was weak. A combination of HS201-PDT with anti-PD-L1 antibody demonstrated the greatest antigen-specific immune response, tumor growth suppression, prolonged mouse survival time and abscopal effect. The most significant increase of intratumoral, activated CD8+T cells and decrease of exhausted CD8+T cells occurred following combination treatment compared with HS201-PDT monotherapy. Receptor-ligand interactome analysis showed marked enhancement of several pathways, such as CXCL, GALECTIN, GITRL, PECAM1 and NOTCH, associated with CD8+T cell activation in the combination group. Notably, the expression of the CXCR3 gene signature was the highest in the combination group, possibly explaining the enhanced tumor infiltration by T cells. CONCLUSIONS The increased antitumor activity and upregulated CXCR3 gene signature induced by the combination of anti-PD-L1 antibody with HS201-PDT warrants the clinical testing of HS201-PDT combined with PD-1/PD-L1 blockade in patients with breast cancer, and the use of the CXCR3 gene signature as a biomarker.
Collapse
Affiliation(s)
- Kensuke Kaneko
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Chaitanya R Acharya
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Hiroshi Nagata
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Xiao Yang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Amy Hobeika
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Philip F Hughes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Michael A Morse
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Herbert Kim Lyerly
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Takuya Osada
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Chen Y, Wang Z, Li Q, Tian M, Zhu Y, Yu L, Wang J, Sun S. CXCL16/ERK1/2 pathway regulates human podocytes growth, migration, apoptosis and epithelial mesenchymal transition. Mol Med Rep 2022; 25:212. [PMID: 35514316 PMCID: PMC9133949 DOI: 10.3892/mmr.2022.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Primary nephrotic syndrome (PNS) is the commonest glomerular disease affecting children. Previous studies have confirmed that CXC motif chemokine ligand 16 (CXCL16) is involved in the pathogenesis of PNS. However, the exact mechanisms underlying the pathogenesis of PNS remain to be elucidated. Thus, the present study aimed to elucidate the role of CXCL16 in PNS. It was found that the expression of CXCL16 and extracellular signal‑regulated kinases 1 and 2 (ERK1/2) were significantly increased in clinical PNS renal tissues using reverse transcription‑quantitative PCR, western blot analysis and immunohistochemistry. Lentivirus overexpression or short hairpin RNA vector was used to induce the overexpression or knockdown of CXCL16 in podocytes, respectively. Overexpression of CXCL16 in podocytes could decrease the cell proliferation and increase the migration and apoptosis, whereas CXCL16 knockdown increased cell proliferation and decreased cell migration and apoptosis. Results of the present study further demonstrated that ERK2 protein expression was regulated by CXCL16. The knockdown of ERK2 expression reversed the effects of CXCL16 on the proliferation, apoptosis, migration and epithelial mesenchymal transition (EMT) of podocytes. Collectively, the findings of the present study highlighted that the CXCL16/ERK1/2 pathway regulates the growth, migration, apoptosis and EMT of human podocytes.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhiyi Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qian Li
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Minle Tian
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Yanji Zhu
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Lichun Yu
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jing Wang
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shuzhen Sun
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
6
|
Grasso C, Pierie C, Mebius RE, van Baarsen LGM. Lymph node stromal cells: subsets and functions in health and disease. Trends Immunol 2021; 42:920-936. [PMID: 34521601 DOI: 10.1016/j.it.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/04/2023]
Abstract
Lymph nodes (LNs) aid the interaction between lymphocytes and antigen-presenting cells, resulting in adequate and prolonged adaptive immune responses. LN stromal cells (LNSCs) are crucially involved in steering adaptive immune responses at different levels. Most knowledge on LNSCs has been obtained from mouse studies, and few studies indicate similarities with their human counterparts. Recent advances in single-cell technologies have revealed significant LNSC heterogeneity among different subsets with potential selective functions in immunity. This review provides an overview of current knowledge of LNSCs based on human and murine studies describing the role of these cells in health and disease.
Collapse
Affiliation(s)
- C Grasso
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands
| | - C Pierie
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands
| | - R E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands.
| | - L G M van Baarsen
- Department of Rheumatology and Clinical Immunology, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center (ARC), Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|