1
|
Fekonja LS, Schenk R, Schröder E, Tomasello R, Tomšič S, Picht T. The digital twin in neuroscience: from theory to tailored therapy. Front Neurosci 2024; 18:1454856. [PMID: 39376542 PMCID: PMC11457707 DOI: 10.3389/fnins.2024.1454856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Digital twins enable simulation, comprehensive analysis and predictions, as virtual representations of physical systems. They are also finding increasing interest and application in the healthcare sector, with a particular focus on digital twins of the brain. We discuss how digital twins in neuroscience enable the modeling of brain functions and pathology as they offer an in-silico approach to studying the brain and illustrating the complex relationships between brain network dynamics and related functions. To showcase the capabilities of digital twinning in neuroscience we demonstrate how the impact of brain tumors on the brain's physical structures and functioning can be modeled in relation to the philosophical concept of plasticity. Against this technically derived backdrop, which assumes that the brain's nonlinear behavior toward improvement and repair can be modeled and predicted based on MRI data, we further explore the philosophical insights of Catherine Malabou. Malabou emphasizes the brain's dual capacity for adaptive and destructive plasticity. We will discuss in how far Malabou's ideas provide a more holistic theoretical framework for understanding how digital twins can model the brain's response to injury and pathology, embracing Malabou's concept of both adaptive and destructive plasticity which provides a framework to address such yet incomputable aspects of neuroscience and the sometimes seemingly unfavorable dynamics of neuroplasticity helping to bridge the gap between theoretical research and clinical practice.
Collapse
Affiliation(s)
- Lucius Samo Fekonja
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Schenk
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emily Schröder
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rosario Tomasello
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
| | - Samo Tomšič
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- University of Fine Arts of Hamburg, Hamburg, Germany
| | - Thomas Picht
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Hamer RP, Praeger AJ. Facilitating complete resection of intrinsic motor cortex glioma with titration of high-frequency cortico-subcortical mapping train count informed by navigated transcranial magnetic stimulation: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 8:CASE24197. [PMID: 38976917 DOI: 10.3171/case24197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/18/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The dilemma of neuro-oncological surgery involving suspected eloquent cortex is to maximize the extent of resection while minimizing neurological morbidity, referred to as the "onco-functional balance." Diffuse lower-grade gliomas are capable of infiltrating or displacing neural function within cortical regions and subcortical white matter tracts, which can render classical anatomic associations of eloquent function misleading. OBSERVATIONS This study employed presurgical navigated transcranial magnetic stimulation (nTMS) to determine the motor eloquence of a diffuse lower-grade glioma at the superior frontal gyrus extending and intrinsic to the primary motor cortex in a 45-year-old female. Positive nTMS findings were confirmed intraoperatively with high-frequency direct cortico-subcortical stimulation (HF-DCS). Modification of the HF-DCS train count from train-of-five to train-of-two permitted resection beyond classic anatomical boundaries and conventional HF-DCS safe stopping criteria. LESSONS Anatomical correlates of function can inaccurately inform the surgical management of diffuse lower-grade glioma, which represents the utmost opportunity for progression-free survival. Integrating an individually tailored nTMS-DCS surgical strategy contributed to complete resection, negating the requirement for adjuvant therapy. Serial nTMS follow-up may assist with the characterization of tumor-induced functional reorganization. https://thejns.org/doi/10.3171/CASE24197.
Collapse
Affiliation(s)
- Ryan P Hamer
- Department of Neurosurgery, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
- Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
- Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia
| | - Adrian J Praeger
- Department of Neurosurgery, Monash Health, Melbourne, Victoria, Australia and
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Fornia L, Leonetti A, Puglisi G, Rossi M, Viganò L, Della Santa B, Simone L, Bello L, Cerri G. The parietal architecture binding cognition to sensorimotor integration: a multimodal causal study. Brain 2024; 147:297-310. [PMID: 37715997 PMCID: PMC10766244 DOI: 10.1093/brain/awad316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 09/18/2023] Open
Abstract
Despite human's praxis abilities are unique among primates, comparative observations suggest that these cognitive motor skills could have emerged from exploitation and adaptation of phylogenetically older building blocks, namely the parieto-frontal networks subserving prehension and manipulation. Within this framework, investigating to which extent praxis and prehension-manipulation overlap and diverge within parieto-frontal circuits could help in understanding how human cognition shapes hand actions. This issue has never been investigated by combining lesion mapping and direct electrophysiological approaches in neurosurgical patients. To this purpose, 79 right-handed left-brain tumour patient candidates for awake neurosurgery were selected based on inclusion criteria. First, a lesion mapping was performed in the early postoperative phase to localize the regions associated with an impairment in praxis (imitation of meaningless and meaningful intransitive gestures) and visuo-guided prehension (reaching-to-grasping) abilities. Then, lesion results were anatomically matched with intraoperatively identified cortical and white matter regions, whose direct electrical stimulation impaired the Hand Manipulation Task. The lesion mapping analysis showed that prehension and praxis impairments occurring in the early postoperative phase were associated with specific parietal sectors. Dorso-mesial parietal resections, including the superior parietal lobe and precuneus, affected prehension performance, while resections involving rostral intraparietal and inferior parietal areas affected praxis abilities (covariate clusters, 5000 permutations, cluster-level family-wise error correction P < 0.05). The dorsal bank of the rostral intraparietal sulcus was associated with both prehension and praxis (overlap of non-covariate clusters). Within praxis results, while resection involving inferior parietal areas affected mainly the imitation of meaningful gestures, resection involving intraparietal areas affected both meaningless and meaningful gesture imitation. In parallel, the intraoperative electrical stimulation of the rostral intraparietal and the adjacent inferior parietal lobe with their surrounding white matter during the hand manipulation task evoked different motor impairments, i.e. the arrest and clumsy patterns, respectively. When integrating lesion mapping and intraoperative stimulation results, it emerges that imitation of praxis gestures first depends on the integrity of parietal areas within the dorso-ventral stream. Among these areas, the rostral intraparietal and the inferior parietal area play distinct roles in praxis and sensorimotor process controlling manipulation. Due to its visuo-motor 'attitude', the rostral intraparietal sulcus, putative human homologue of monkey anterior intraparietal, might enable the visuo-motor conversion of the observed gesture (direct pathway). Moreover, its functional interaction with the adjacent, phylogenetic more recent, inferior parietal areas might contribute to integrate the semantic-conceptual knowledge (indirect pathway) within the sensorimotor workflow, contributing to the cognitive upgrade of hand actions.
Collapse
Affiliation(s)
- Luca Fornia
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Antonella Leonetti
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milano, 20122, Italy
| | - Guglielmo Puglisi
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Marco Rossi
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Luca Viganò
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milano, 20122, Italy
| | - Bianca Della Santa
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| | - Luciano Simone
- Department of Medicine and Surgery, Università Degli Studi di Parma, Parma, 43125, Italy
| | - Lorenzo Bello
- Department of Oncology and Hemato-Oncology, Neurosurgical Oncology Unit, Università degli Studi di Milano, Milano, 20122, Italy
| | - Gabriella Cerri
- Department of Medical Biotechnology and Translational Medicine, MoCA Laboratory, Università degli Studi di Milano, Milano, 20122, Italy
| |
Collapse
|
4
|
Young JS, Morshed RA, Hervey-Jumper SL, Berger MS. The surgical management of diffuse gliomas: Current state of neurosurgical management and future directions. Neuro Oncol 2023; 25:2117-2133. [PMID: 37499054 PMCID: PMC10708937 DOI: 10.1093/neuonc/noad133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/29/2023] Open
Abstract
After recent updates to the World Health Organization pathological criteria for diagnosing and grading diffuse gliomas, all major North American and European neuro-oncology societies recommend a maximal safe resection as the initial management of a diffuse glioma. For neurosurgeons to achieve this goal, the surgical plan for both low- and high-grade gliomas should be to perform a supramaximal resection when feasible based on preoperative imaging and the patient's performance status, utilizing every intraoperative adjunct to minimize postoperative neurological deficits. While the surgical approach and technique can vary, every effort must be taken to identify and preserve functional cortical and subcortical regions. In this summary statement on the current state of the field, we describe the tools and technologies that facilitate the safe removal of diffuse gliomas and highlight intraoperative and postoperative management strategies to minimize complications for these patients. Moreover, we discuss how surgical resections can go beyond cytoreduction by facilitating biological discoveries and improving the local delivery of adjuvant chemo- and radiotherapies.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, USA
| | | | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, USA
| |
Collapse
|
5
|
Ng S, Valdes PA, Moritz-Gasser S, Lemaitre AL, Duffau H, Herbet G. Intraoperative functional remapping unveils evolving patterns of cortical plasticity. Brain 2023; 146:3088-3100. [PMID: 37029961 DOI: 10.1093/brain/awad116] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
The efficiency with which the brain reorganizes following injury not only depends on the extent and the severity of the lesion, but also on its temporal features. It is established that diffuse low-grade gliomas (DLGG), brain tumours with a slow-growth rate, induce a compensatory modulation of the anatomo-functional architecture, making this kind of tumours an ideal lesion model to study the dynamics of neuroplasticity. Direct electrostimulation (DES) mapping is a well-tried procedure used during awake resection surgeries to identify and spare cortical epicentres which are critical for a range of functions. Because DLGG is a chronic disease, it inevitably relapses years after the initial surgery, and thus requires a second surgery to reduce tumour volume again. In this context, contrasting the cortical mappings obtained during two sequential neurosurgeries offers a unique opportunity to both identify and characterize the dynamic (i.e. re-evolving) patterns of cortical re-arrangements. Here, we capitalized on an unprecedented series of 101 DLGG patients who benefited from two DES-guided neurosurgeries usually spaced several years apart, resulting in a large DES dataset of 2082 cortical sites. All sites (either non-functional or associated with language, speech, motor, somatosensory and semantic processing) were recorded in Montreal Neurological Institute (MNI) space. Next, we used a multi-step approach to generate probabilistic neuroplasticity maps that reflected the dynamic rearrangements of cortical mappings from one surgery to another, both at the population and individual level. Voxel-wise neuroplasticity maps revealed regions with a relatively high potential of evolving reorganizations at the population level, including the supplementary motor area (SMA, Pmax = 0.63), the dorsolateral prefrontal cortex (dlPFC, Pmax = 0.61), the anterior ventral premotor cortex (vPMC, Pmax = 0.43) and the middle superior temporal gyrus (STG Pmax = 0.36). Parcel-wise neuroplasticity maps confirmed this potential for the dlPFC (Fisher's exact test, PFDR-corrected = 6.6 × 10-5), the anterior (PFDR-corrected = 0.0039) and the ventral precentral gyrus (PFDR-corrected = 0.0058). A series of clustering analyses revealed a topological migration of clusters, especially within the left dlPFC and STG (language sites); the left vPMC (speech arrest/dysarthria sites) and the right SMA (negative motor response sites). At the individual level, these dynamic changes were confirmed for the dlPFC (bilateral), the left vPMC and the anterior left STG (threshold free cluster enhancement, 5000 permutations, family-wise error-corrected). Taken as a whole, our results provide a critical insight into the dynamic potential of DLGG-induced continuing rearrangements of the cerebral cortex, with considerable implications for re-operations.
Collapse
Affiliation(s)
- Sam Ng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34095 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - Pablo A Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 78701-2982, USA
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34095 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - Anne-Laure Lemaitre
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34095 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34095 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34095 Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
- Praxiling Laboratory, UMR 5267, CNRS, UPVM, F-34199 Montpellier, France
| |
Collapse
|
6
|
Al-Adli NN, Young JS, Sibih YE, Berger MS. Technical Aspects of Motor and Language Mapping in Glioma Patients. Cancers (Basel) 2023; 15:cancers15072173. [PMID: 37046834 PMCID: PMC10093517 DOI: 10.3390/cancers15072173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Gliomas are infiltrative primary brain tumors that often invade functional cortical and subcortical regions, and they mandate individualized brain mapping strategies to avoid postoperative neurological deficits. It is well known that maximal safe resection significantly improves survival, while postoperative deficits minimize the benefits associated with aggressive resections and diminish patients’ quality of life. Although non-invasive imaging tools serve as useful adjuncts, intraoperative stimulation mapping (ISM) is the gold standard for identifying functional cortical and subcortical regions and minimizing morbidity during these challenging resections. Current mapping methods rely on the use of low-frequency and high-frequency stimulation, delivered with monopolar or bipolar probes either directly to the cortical surface or to the subcortical white matter structures. Stimulation effects can be monitored through patient responses during awake mapping procedures and/or with motor-evoked and somatosensory-evoked potentials in patients who are asleep. Depending on the patient’s preoperative status and tumor location and size, neurosurgeons may choose to employ these mapping methods during awake or asleep craniotomies, both of which have their own benefits and challenges. Regardless of which method is used, the goal of intraoperative stimulation is to identify areas of non-functional tissue that can be safely removed to facilitate an approach trajectory to the equator, or center, of the tumor. Recent technological advances have improved ISM’s utility in identifying subcortical structures and minimized the seizure risk associated with cortical stimulation. In this review, we summarize the salient technical aspects of which neurosurgeons should be aware in order to implement intraoperative stimulation mapping effectively and safely during glioma surgery.
Collapse
Affiliation(s)
- Nadeem N. Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
- School of Medicine, Texas Christian University, Fort Worth, TX 76109, USA
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| | - Youssef E. Sibih
- School of Medicine, University of California, San Francisco, CA 94131, USA
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| |
Collapse
|
7
|
Rech F, Duffau H. Beyond Avoiding Hemiplegia after Glioma Surgery: The Need to Map Complex Movement in Awake Patient to Preserve Conation. Cancers (Basel) 2023; 15:cancers15051528. [PMID: 36900318 PMCID: PMC10001205 DOI: 10.3390/cancers15051528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Improving the onco-functional balance has always been a challenge in glioma surgery, especially regarding motor function. Given the importance of conation (i.e., the willingness which leads to action) in patient's quality of life, we propose here to review the evolution of its intraoperative assessment through a reminder of the increasing knowledge of its neural foundations-based upon a meta-networking organization at three levels. Historical preservation of the primary motor cortex and pyramidal pathway (first level), which was mostly dedicated to avoid hemiplegia, has nonetheless shown its limits to prevent the occurrence of long-term deficits regarding complex movement. Then, preservation of the movement control network (second level) has permitted to prevent such more subtle (but possibly disabling) deficits thanks to intraoperative mapping with direct electrostimulations in awake conditions. Finally, integrating movement control in a multitasking evaluation during awake surgery (third level) enabled to preserve movement volition in its highest and finest level according to patients' specific demands (e.g., to play instrument or to perform sports). Understanding these three levels of conation and its underlying cortico-subcortical neural basis is therefore critical to propose an individualized surgical strategy centered on patient's choice: this implies an increasingly use of awake mapping and cognitive monitoring regardless of the involved hemisphere. Moreover, this also pleads for a finer and systematic assessment of conation before, during and after glioma surgery as well as for a stronger integration of fundamental neurosciences into clinical practice.
Collapse
Affiliation(s)
- Fabien Rech
- Department of Neurosurgery, CHRU de Nancy, Université de Lorraine, F-54000 Nancy, France
- Le Centre de Recherche en Automatique de Nancy, Le Centre National de la Recherche Scientifique, Université de Lorraine, F-54000 Nancy, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295 Montpellier, France
- Team ‘Plasticity of Central Nervous System, Stem Cells and Glial Tumours’, INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, F-34295 Montpellier, France
- Correspondence:
| |
Collapse
|
8
|
Viganò L, Callipo V, Lamperti M, Rossi M, Conti Nibali M, Sciortino T, Gay L, Puglisi G, Leonetti A, Cerri G, Bello L. Transcranial versus direct electrical stimulation for intraoperative motor-evoked potential monitoring: Prognostic value comparison in asleep brain tumor surgery. Front Oncol 2022; 12:963669. [PMID: 36249008 PMCID: PMC9557724 DOI: 10.3389/fonc.2022.963669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Safe resection of gliomas involving motor pathways in asleep-anesthesia requires the combination of brain mapping, to identify and spare essential motor sites, and continuous monitoring of motor-evoked potentials (MEPs), to detect possible vascular damage to the corticospinal tract (CST). MEP monitoring, according to intraoperative neurophysiology societies, is generally recommended by transcranial electrodes (TES), and no clear indications of direct cortical stimulation (DCS) or the preferential use of one of the two techniques based on the clinical context is available. The main aim of the study was to identify the best technique(s) based on different clinical conditions, evaluating the efficacy and prognostic value of both methodologies. Methods A retrospective series of patients with tumors involving the motor pathways who underwent surgical resection with the aid of brain mapping and combined MEP monitoring via TES and DCS was evaluated. Irreversible MEP amplitude reduction (>50% compared to baseline) was used as an intraoperative warning and correlated to the postoperative motor outcome. Selectivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were computed for both techniques. Results Four hundred sixty-two patients were retrospectively analyzed, and only 1.9% showed a long-term motor impairment. Both TES and DCS obtained high specificity and NPV for the acute and 1-month motor deficit. Sensitivity was rather low for the acute deficit but excellent considering the 1-month follow-up for both techniques. DCS was extremely reliable in predicting a postoperative motor decline (PPV of 100% and 90% for acute and long-term deficit, respectively). Conversely, TES produced a high number of false-positive results, especially for long-term deficits (65, 87.8% of all warnings) therefore obtaining poor PPV values (18% and 12% for acute and 1-month deficits, respectively). TES false-positive results were significantly associated with parietal tumors and lateral patient positioning. Conclusions Data support the use of mapping and combined monitoring via TES and DCS. The sole TES monitoring is reliable in most procedures but not in parietal tumors or those requiring lateral positioning. Although no indications are available in international guidelines, DCS should be recommended, particularly for cases approached by a lateral position.
Collapse
Affiliation(s)
- Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, IRCCS Galeazzi-Sant'Ambrogio, Milano, Italy
- *Correspondence: Luca Viganò, ; Lorenzo Bello,
| | - Vincenzo Callipo
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, IRCCS Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Marta Lamperti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, IRCCS Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, IRCCS Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, IRCCS Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, IRCCS Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, IRCCS Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Guglielmo Puglisi
- Motor, Cognition and Action Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Antonella Leonetti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, IRCCS Galeazzi-Sant'Ambrogio, Milano, Italy
| | - Gabriella Cerri
- Motor, Cognition and Action Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, IRCCS Galeazzi-Sant'Ambrogio, Milano, Italy
- *Correspondence: Luca Viganò, ; Lorenzo Bello,
| |
Collapse
|
9
|
Surgical Treatment of Glioblastoma: State-of-the-Art and Future Trends. J Clin Med 2022; 11:jcm11185354. [PMID: 36143001 PMCID: PMC9505564 DOI: 10.3390/jcm11185354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive disease and is associated with poor prognosis despite treatment advances in recent years. Surgical resection of tumor remains the main therapeutic option when approaching these patients, especially when combined with adjuvant radiochemotherapy. In the present study, we conducted a comprehensive literature review on the state-of-the-art and future trends of the surgical treatment of GBM, emphasizing topics that have been the object of recent study.
Collapse
|
10
|
Giampiccolo D, Nunes S, Cattaneo L, Sala F. Functional Approaches to the Surgery of Brain Gliomas. Adv Tech Stand Neurosurg 2022; 45:35-96. [PMID: 35976447 DOI: 10.1007/978-3-030-99166-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the surgery of gliomas, recent years have witnessed unprecedented theoretical and technical development, which extensively increased indication to surgery. On one hand, it has been solidly demonstrated the impact of gross total resection on life expectancy. On the other hand, the paradigm shift from classical cortical localization of brain function towards connectomics caused by the resurgence of awake surgery and the advent of tractography has permitted safer surgeries focused on subcortical white matter tracts preservation and allowed for surgical resections within regions, such as Broca's area or the primary motor cortex, which were previously deemed inoperable. Furthermore, new asleep electrophysiological techniques have been developed whenever awake surgery is not an option, such as operating in situations of poor compliance (including paediatric patients) or pre-existing neurological deficits. One such strategy is the use of intraoperative neurophysiological monitoring (IONM), enabling the identification and preservation of functionally defined, but anatomically ambiguous, cortico-subcortical structures through mapping and monitoring techniques. These advances tie in with novel challenges, specifically risk prediction and the impact of neuroplasticity, the indication for tumour resection beyond visible borders, or supratotal resection, and most of all, a reappraisal of the importance of the right hemisphere from early psychosurgery to mapping and preservation of social behaviour, executive control, and decision making.Here we review current advances and future perspectives in a functional approach to glioma surgery.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
- Institute of Neurosciences, Cleveland Clinic London, London, UK
| | - Sonia Nunes
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy
| | - Luigi Cattaneo
- Center for Mind and Brain Sciences (CIMeC) and Center for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Francesco Sala
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, University of Verona, Verona, Italy.
| |
Collapse
|
11
|
Fornia L, Rossi M, Rabuffetti M, Bellacicca A, Viganò L, Simone L, Howells H, Puglisi G, Leonetti A, Callipo V, Bello L, Cerri G. Motor impairment evoked by direct electrical stimulation of human parietal cortex during object manipulation. Neuroimage 2021; 248:118839. [PMID: 34963652 DOI: 10.1016/j.neuroimage.2021.118839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 10/19/2022] Open
Abstract
In primates, the parietal cortex plays a crucial role in hand-object manipulation. However, its involvement in object manipulation and related hand-muscle control has never been investigated in humans with a direct and focal electrophysiological approach. To this aim, during awake surgery for brain tumors, we studied the impact of direct electrical stimulation (DES) of parietal lobe on hand-muscles during a hand-manipulation task (HMt). Results showed that DES applied to fingers-representation of postcentral gyrus (PCG) and anterior intraparietal cortex (aIPC) impaired HMt execution. Different types of EMG-interference patterns were observed ranging from a partial (task-clumsy) or complete (task-arrest) impairment of muscles activity. Within PCG both patterns coexisted along a medio (arrest)-lateral (clumsy) distribution, while aIPC hosted preferentially the task-arrest. The interference patterns were mainly associated to muscles suppression, more pronounced in aIPC with respect to PCG. Moreover, within PCG were observed patterns with different level of muscle recruitment, not reported in the aIPC. Overall, EMG-interference patterns and their probabilistic distribution suggested the presence of different functional parietal sectors, possibly playing different roles in hand-muscle control during manipulation. We hypothesized that task-arrest, compared to clumsy patterns, might suggest the existence of parietal sectors more closely implicated in shaping the motor output.
Collapse
Affiliation(s)
- Luca Fornia
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy; IRCCS Fondazione Don Carlo Gnocchi, Milano, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Italy
| | | | - Andrea Bellacicca
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Italy
| | - Luciano Simone
- Cognition, Motion & Neuroscience, Center for Human Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy
| | - Guglielmo Puglisi
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy
| | - Antonella Leonetti
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Italy
| | - Vincenzo Callipo
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Research Hospital IRCSS, Rozzano, Milano, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Italy
| | - Gabriella Cerri
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Research Hospital IRCSS, Rozzano, Milano, Italy.
| |
Collapse
|