1
|
Chen RX, Liu SC, Kan XC, Wang YR, Wang JF, Wang TL, Li C, Jiang WJ, Chen YAL, Zhou T, Fan SL, Chang J, Xu X, Shi KH, Zhang YD, Wu MY, Yu Y, Li CX, Li XC. CircUGP2 Suppresses Intrahepatic Cholangiocarcinoma Progression via p53 Signaling Through Interacting With PURB to Regulate ADGRB1 Transcription and Sponging miR-3191-5p. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402329. [PMID: 39120980 PMCID: PMC11481218 DOI: 10.1002/advs.202402329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Indexed: 08/11/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer and its prognosis remains poor. Although growing numbers of studies have verified the involvement of circular RNAs (circRNAs) in various cancer types, their specific functions in ICC remain elusive. Herein, a circRNA, circUGP2 is identified by circRNA sequencing, which is downregulated in ICC tissues and correlated with patients' prognosis. Moreover, circUGP2 overexpression suppresses tumor progression in vitro and in vivo. Mechanistically, circUGP2 functions as a transcriptional co-activator of PURB over the expression of ADGRB1. It can also upregulate ADGRB1 expression by sponging miR-3191-5p. As a result, ADGRB1 prevents MDM2-mediated p53 polyubiquitination and thereby activates p53 signaling to inhibit ICC progression. Based on these findings, circUGP2 plasmid is encapsulated into a lipid nanoparticle (LNP) system, which has successfully targeted tumor site and shows superior anti-tumor effects. In summary, the present study has identified the role of circUGP2 as a tumor suppressor in ICC through regulating ADGRB1/p53 axis, and the application of LNP provides a promising translational strategy for ICC treatment.
Collapse
Affiliation(s)
- Rui Xiang Chen
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Shuo Chen Liu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Xue Chun Kan
- School of MedicineSoutheast UniversityNanjingJiangsu210009China
| | - Yi Rui Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Ji Fei Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Tian Lin Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Chang Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Wang Jie Jiang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Yan An Lan Chen
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Tao Zhou
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Shi Long Fan
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Jiang Chang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Xiao Xu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Kuang Heng Shi
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Yao Dong Zhang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Ming Yu Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Yue Yu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Chang Xian Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Xiang Cheng Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
2
|
Wu CE, Chen CP, Pan YR, Jung SM, Chang JWC, Chen JS, Yeh CN, Lunec J. In vitro and in vivo study of GSK2830371 and RG7388 combination in liver adenocarcinoma. Am J Cancer Res 2022; 12:4399-4410. [PMID: 36225643 PMCID: PMC9548005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an adenocarcinoma arising from the intrahepatic bile duct and accounts for the second highest incidence of primary liver cancers after hepatocellular carcinoma. The lack of effective treatment leads to a poor prognosis for advanced iCCA, so new targeted therapy is needed. The impairment of wild-type (WT) p53 tumor suppressor function by its negative regulators frequently occurs in iCCA. Therefore, restoration of WT p53 function by inhibiting its negative regulators is a therapeutic strategy being explored for cancer treatment. Combining an MDM2 inhibitor (MDM2i, RG7388) to stabilize p53 and a WIP1 inhibitor (WIP1i, GSK2830371) to increase p53 phosphorylation enhances p53 function. The combination of MDM2 and WIP1 inhibitors has been reported in several cancer types but in vivo studies are lacking. In the current study, liver adenocarcinoma cell lines, RBE and SK-Hep-1, were treated with RG7388 alone and in combination with GSK2830371. Cell proliferation, clonogenicity, protein and mRNA expressions, and cell cycle distribution were performed to investigate the effect and mechanism of growth suppression. To evaluate the antitumor efficacy of RG7388 and GSK2830371 in vivo, SK-Hep-1 xenografts in NOD-SCID mice were treated with combination therapy for two weeks. The combination of MDM2i and WIP1i significantly increased the growth inhibition, cytotoxicty, p53 protein expression, and phosphorylation (Ser15), leading to transactivation of downstream targets (p21WAF1 and MDM2). The in vivo results demonstrated that the combination treatment can significantly inhibit tumor growth. In this study, the liver adenocarcinoma cell lines responded to combination treatment via reactivation of p53 function evidenced by increased p53 expression, phosphorylation and expression of its downstream targets. This efficacy was also demonstrated in vivo. The current research provides a novel strategy for targeting the p53 pathway in liver adenocarcinoma that warrants further investigation.
Collapse
Affiliation(s)
- Chiao-En Wu
- Division of Haematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Chang Gung University College of MedicineTaoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial HospitalLinkou, Taoyuan, Taiwan
| | - Chiao-Ping Chen
- Division of Haematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Chang Gung University College of MedicineTaoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan, Taiwan
| | - Yi-Ru Pan
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou Branch, Chang Gung UniversityTaoyuan, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang-Gung Memorial Hospital, Chang-Gung Children Hospital, Linkou Branch, Chang-Gung University College of MedicineTaoyuan, Taiwan
| | - John Wen-Cheng Chang
- Division of Haematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Chang Gung University College of MedicineTaoyuan, Taiwan
| | - Jen-Shi Chen
- Division of Haematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Branch, Chang Gung University College of MedicineTaoyuan, Taiwan
| | - Chun-Nan Yeh
- Liver Research Center, Chang Gung Memorial HospitalLinkou, Taoyuan, Taiwan
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial HospitalLinkou, Taoyuan, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou Branch, Chang Gung UniversityTaoyuan, Taiwan
| | - John Lunec
- Newcastle University Cancer Centre, Bioscience Institute, Medical Faculty, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Wu CE, Chen CP, Huang WK, Pan YR, Aptullahoglu E, Yeh CN, Lunec J. p53 as a biomarker and potential target in gastrointestinal stromal tumors. Front Oncol 2022; 12:872202. [PMID: 35965531 PMCID: PMC9372431 DOI: 10.3389/fonc.2022.872202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022] Open
Abstract
KIT and PDGFRA play a major role in the oncogenic process in gastrointestinal stroma tumors (GIST) and small molecules have been employed with great success to target the KIT and PDGFRA pathways in this cancer. However, approximately 10% of patients with GIST are resistant to current targeted drug therapy. There is a need to explore other potential targets. Although p53 alterations frequently occur in most cancers, studies regarding p53 in GIST have been limited. The CDKN2A/MDM2/p53 axis regulates cell cycle progression and DNA damage responses, which in turn control tumor growth. This axis is the major event required for transformation from low- to high-risk GIST. Generally, p53 mutation is infrequent in GIST, but p53 overexpression has been reported to be associated with high-risk GIST and unfavorable prognosis, implying that p53 should play a critical role in GIST. Also, Wee1 regulates the cell cycle and the antitumor activity of Wee1 inhibition was reported to be p53 mutant dependent. In addition, Wee1 was reported to have potential activity in GIST through the regulation of KIT protein and this mechanism may be dependent on p53 status. In this article, we review previous reports regarding the role of p53 in GIST and propose targeting the p53 pathway as a novel additional treatment strategy for GIST.
Collapse
Affiliation(s)
- Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiao-Ping Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Kuan Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Ru Pan
- Department of General Surgery and Liver Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Erhan Aptullahoglu
- Department of Molecular Biology and Genetics, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Chun-Nan Yeh
- Department of General Surgery and Liver Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Chun-Nan Yeh, ; John Lunec,
| | - John Lunec
- Newcastle University Cancer Center, Bioscience Institute, Medical Faculty, Newcastle University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Chun-Nan Yeh, ; John Lunec,
| |
Collapse
|
4
|
Cheng CY, Chen CP, Wu CE. Precision Medicine in Cholangiocarcinoma: Past, Present, and Future. Life (Basel) 2022; 12:829. [PMID: 35743860 PMCID: PMC9225212 DOI: 10.3390/life12060829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA), or biliary tract cancer, has a poor prognosis. The median survival time among patients with CCA is under 2 years from diagnosis, and the global 5-year survival rate is only 10%. First-line therapy with chemotherapeutic agents, gemcitabine plus cisplatin, has traditionally been used to treat unresectable advanced CCA. In recent years, precision medicine has become a mainstream cancer treatment due to innovative next-generation sequencing technology. Several genetic alterations, including mutations, gene fusions, and copy number variations, have been found in CCA. In this review, we summarized the current understanding of genetic profiling in CCA and targeted therapy in CCA. Owing to the high heterogeneity of CCA, tumor microenvironmental factors, and the complexity of tumor biology, only pemigatinib, infigratinib, ivosidenib, larotrbctinib, and entrectinib are currently approved for the treatment of CCA patients with fibroblast growth factor receptor 2 gene (FGFR2) fusion, isocitrate dehydrogenase gene (IDH1) mutation, and neurotrophin receptor tyrosine kinase gene (NRTK) fusion, respectively. Additional targeted therapies, including other FGFR2 inhibitors, PI3K/AKT/mTOR inhibitors, and BRAF-directed targeted therapy, have been discussed for the management of CCA, and immune checkpoint inhibitors, particularly pembrolizumab, can be administered to patients with high microsatellite instability tumors. There is a further need for improvement in precision medicine therapies in the treatment of CCA and discuss the approved and potential targeted therapies for CCA.
Collapse
Affiliation(s)
- Chi-Yuan Cheng
- Department of Pharmacy, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| | - Chiao-Ping Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| |
Collapse
|
5
|
Chamberlain V, Drew Y, Lunec J. Tipping Growth Inhibition into Apoptosis by Combining Treatment with MDM2 and WIP1 Inhibitors in p53 WT Uterine Leiomyosarcoma. Cancers (Basel) 2021; 14:cancers14010014. [PMID: 35008180 PMCID: PMC8750798 DOI: 10.3390/cancers14010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
As there is no optimal therapeutic strategy defined for women with advanced or recurrent uLMS, there is an urgent need for the discovery of novel, targeted approaches. One such area of interest is the pharmacological inhibition of the MDM2-p53 interaction with small-molecular-weight MDM2 inhibitors. Growth inhibition and cytotoxic assays were used to evaluate uLMS cell line responses to MDM2 inhibitors as single agents and in combination, qRT-PCR to assess transcriptional changes and Caspase-Glo 3/7 assay to detect apoptosis. RG7388 and HDM201 are potent, selective antagonists of the MDM2-p53 interaction that can effectively stabilise and activate p53 in a dose-dependent manner. GSK2830371, a potent and selective WIP1 phosphatase inhibitor, was shown to significantly potentiate the growth inhibitory effects of RG7388 and HDM201, and significantly increase the mRNA expression of p53 transcriptional target genes in a p53WT cell line at a concentration that has no growth inhibitory effects as a single agent. RG7388, HDM201 and GSK2830371 failed to induce apoptosis as single agents; however, a combination treatment tipped cells into apoptosis from senescence. These data present the possibility of MDM2 and WIP1 inhibitor combinations as a potential treatment option for p53WT uLMS patients that warrants further investigation.
Collapse
Affiliation(s)
- Victoria Chamberlain
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (V.C.); (Y.D.)
| | - Yvette Drew
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (V.C.); (Y.D.)
- BC Cancer Centre Vancouver and Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 4EH, Canada
| | - John Lunec
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (V.C.); (Y.D.)
- Correspondence:
| |
Collapse
|