1
|
Mao Y, Su X, Guo Q, Yao X, Zhao Q, Guo Y, Wang Y, Li X, Lu Y. Long non-coding RNA LINC00930 targeting miR-6792-3p/ZBTB16 regulates the proliferation and EMT of pancreatic cancer. BMC Cancer 2024; 24:638. [PMID: 38789960 PMCID: PMC11127394 DOI: 10.1186/s12885-024-12365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Emerging evidence suggests the dysregulation of long non-coding RNAs (lncRNAs) involved in pancreatic cancer (PC). However, the function of LINC00930 in PC has not been elaborated. In this study, we found that LINC00930 was significantly down-regulated in PC cell lines and tissues, and associated with tumor size, lymphatic metastasis, TNM stage and poor prognosis. According to the bioinformatics database, the downregulation of LINC00930 was a common event in PC associated with prognosis and EMT. Overexpression of LINC00930 inhibited the aggressive cancer phenotypes including proliferation, metastasis and epithelial-mesenchymal transition (EMT) of PC in vitro and in vivo. Bioinformatics and dual-luciferase reporter assay indicated that miR-6792-3p could directly bind to LINC00930. Additionally, the Zinc finger and BTB domain containing 16 (ZBTB16) was significantly declined in PC, which was predicted to be the downstream gene of miR-6792-3p. MiR-6792-3p mimic rescued the decreased proliferation, metastasis and EMT caused by ZBTB16 in PC cells. The LINC00930/miR-6792-3p/ZBTB16 axis was associated with the malignant progression and process of PC. The relative expression of LINC00930 was negatively correlated with the expression of miR-6792-3p and was closely linked with ZBTB16 levels in PC. LINC00930 might serve as a potential prognostic biomarker and therapeutic target for PC.
Collapse
Affiliation(s)
- Yingqing Mao
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
- The Sixth People's Hospital of Nantong, Nantong, 226001, P. R. China
| | - Xian Su
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
- Department of Hepatobiliary Surgery, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qingsong Guo
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Xihao Yao
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Qun Zhao
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Yibing Guo
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Yao Wang
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Xiaohong Li
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China.
| | - Yuhua Lu
- Research Center of Clinical Medical, Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, P. R. China.
| |
Collapse
|
2
|
Souza da Silva R, Pina MJ, Cirnes L, Gouveia L, Albergaria A, Schmitt F. Comprehensive Genomic Studies on the Cell Blocks of Pancreatic Cancer. Diagnostics (Basel) 2024; 14:906. [PMID: 38732320 PMCID: PMC11083533 DOI: 10.3390/diagnostics14090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Pancreatic cancer is one of the deadliest malignancies, characterized by late-stage diagnosis and limited treatment options. Comprehensive genomic profiling plays an important role in understanding the molecular mechanisms underlying the disease and identifying potential therapeutic targets. Cell blocks (CBs), derived from EUS-FNA, have become valuable resources for diagnosis and genomic analysis. We examine the molecular profile of pancreatic ductal adenocarcinoma (PDAC) using specimens obtained from CB EUS-FNA, across a large gene panel, within the framework of next-generation sequencing (NGS). Our findings revealed that over half (55%) of PDAC CB cases provided adequate nucleic acid for next-generation sequencing, with tumor cell percentages averaging above 30%. Despite challenges such as low DNA quantification and degraded DNA, sequencing reads showed satisfactory quality control statistics, demonstrating the detection of genomic alterations. Most cases (84.6%) harbored at least one gene variant, including clinically significant gene mutation variants such as KRAS, TP53, and CDKN2A. Even at minimal concentrations, as long as the extracted DNA is of high quality, performing comprehensive molecular profiling on PDAC samples from cell blocks has remained feasible. This strategy has yielded valuable information about the diagnosis, genetic landscape, and potential therapeutic targets, aligning closely with a precision cytopathology approach.
Collapse
Affiliation(s)
- Ricella Souza da Silva
- IPATIMUP Diagnostics, IPATIMUP—Institute of Molecular Pathology and Immunology of Porto University, 4200-135 Porto, Portugal; (R.S.d.S.)
| | - Maria João Pina
- IPATIMUP Diagnostics, IPATIMUP—Institute of Molecular Pathology and Immunology of Porto University, 4200-135 Porto, Portugal; (R.S.d.S.)
| | - Luís Cirnes
- IPATIMUP Diagnostics, IPATIMUP—Institute of Molecular Pathology and Immunology of Porto University, 4200-135 Porto, Portugal; (R.S.d.S.)
| | - Luís Gouveia
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - André Albergaria
- IPATIMUP Diagnostics, IPATIMUP—Institute of Molecular Pathology and Immunology of Porto University, 4200-135 Porto, Portugal; (R.S.d.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal
| | - Fernando Schmitt
- IPATIMUP Diagnostics, IPATIMUP—Institute of Molecular Pathology and Immunology of Porto University, 4200-135 Porto, Portugal; (R.S.d.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS@RISE (Health Research Network), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Supuramanian SS, Dsa S, Harihar S. Molecular interaction of metastasis suppressor genes and tumor microenvironment in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:912-932. [PMID: 37970212 PMCID: PMC10645471 DOI: 10.37349/etat.2023.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths in women worldwide where the process of metastasis is a major contributor to the mortality associated with this disease. Metastasis suppressor genes are a group of genes that play a crucial role in preventing or inhibiting the spread of cancer cells. They suppress the metastasis process by inhibiting colonization and by inducing dormancy. These genes function by regulating various cellular processes in the tumor microenvironment (TME), such as cell adhesion, invasion, migration, and angiogenesis. Dysregulation of metastasis suppressor genes can lead to the acquisition of an invasive and metastatic phenotype and lead to poor prognostic outcomes. The components of the TME generally play a necessary in the metastasis progression of tumor cells. This review has identified and elaborated on the role of a few metastatic suppressors associated with the TME that have been shown to inhibit metastasis in BC by different mechanisms, such as blocking certain cell signaling molecules involved in cancer cell migration, invasion, enhancing immune surveillance of cancer cells, and promoting the formation of a protective extracellular matrix (ECM). Understanding the interaction of metastatic suppressor genes and the components of TME has important implications for the development of novel therapeutic strategies to target the metastatic cascade. Targeting these genes or their downstream signaling pathways offers a promising approach to inhibiting the spread of cancer cells and improves patient outcomes.
Collapse
Affiliation(s)
| | - Sid Dsa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
4
|
Quraish RU, Hirahata T, Quraish AU, ul Quraish S. An Overview: Genetic Tumor Markers for Early Detection and Current Gene Therapy Strategies. Cancer Inform 2023; 22:11769351221150772. [PMID: 36762284 PMCID: PMC9903029 DOI: 10.1177/11769351221150772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/24/2022] [Indexed: 02/04/2023] Open
Abstract
Genomic instability is considered a fundamental factor involved in any neoplastic disease. Consequently, the genetically unstable cells contribute to intratumoral genetic heterogeneity and phenotypic diversity of cancer. These genetic alterations can be detected by several diagnostic techniques of molecular biology and the detection of alteration in genomic integrity may serve as reliable genetic molecular markers for the early detection of cancer or cancer-related abnormal changes in the body cells. These genetic molecular markers can detect cancer earlier than any other method of cancer diagnosis, once a tumor is diagnosed, then replacement or therapeutic manipulation of these cancer-related abnormal genetic changes can be possible, which leads toward effective and target-specific cancer treatment and in many cases, personalized treatment of cancer could be performed without the adverse effects of chemotherapy and radiotherapy. In this review, we describe how these genetic molecular markers can be detected and the possible ways for the application of this gene diagnosis for gene therapy that can attack cancerous cells, directly or indirectly, which lead to overall improved management and quality of life for a cancer patient.
Collapse
Affiliation(s)
| | - Tetsuyuki Hirahata
- Tetsuyuki Hirahata, Hirahata Gene Therapy Laboratory, HIC Clinic #1105, Itocia Office Tower 11F, 2-7-1, Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan.
| | | | | |
Collapse
|
5
|
Wang J, Sun HC, Cao C, Hu JD, Qian J, Jiang T, Jiang WB, Zhou S, Qiu XW, Wang HL. Identification and validation of a novel signature based on cell-cell communication in head and neck squamous cell carcinoma by integrated analysis of single-cell transcriptome and bulk RNA-sequencing. Front Oncol 2023; 13:1136729. [PMID: 37213285 PMCID: PMC10196046 DOI: 10.3389/fonc.2023.1136729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Background The heterogeneous crosstalk between tumor cells and other cells in their microenvironment means a notable difference in clinical outcomes of head and neck squamous cell carcinoma (HNSCC). CD8+ T cells and macrophages are effector factors of the immune system, which have direct killing and phagocytosis effects on tumor cells. How the evolution of their role in the tumor microenvironment influences patients clinically remains a mystery. This study aims to investigate the complex communication networks in the HNSCC tumor immune microenvironment, elucidate the interactions between immune cells and tumors, and establish prognostic risk model. Methods 20 HNSCC samples single-cell rna sequencing (scRNA-seq) data and bulk rna-seq data were derived from public databases. The "cellchat" R package was used to identify cell-to-cell communication networks and prognostic related genes, and then cell-cell communication (ccc) molecular subtypes were constructed by unsupervised clustering. Kaplan-Meier(K-M) survival analysis, clinical characteristics analysis, immune microenvironment analysis, immune cell infiltration analysis and CD8+T cell differentiation correlation analysis were performed. Finally, the ccc gene signature including APP, ALCAM, IL6, IL10 and CD6 was constructed based on univariate Cox analysis and multivariate Cox regression. Kaplan-Meier analysis and time-dependent receiver operating characteristic (ROC) analysis were used to evaluate the model in the train group and the validation group, respectively. Results With CD8+T cells from naive to exhaustion state, significantly decreased expression of protective factor (CD6 gene) is associated with poorer prognosis in patients with HNSCC. The role of macrophages in the tumor microenvironment has been identified as tumor-associated macrophage (TAM), which can promote tumor proliferation and help tumor cells provide more nutrients and channels to facilitate tumor cell invasion and metastasis. In addition, based on the strength of all ccc in the tumor microenvironment, we identified five prognostic ccc gene signatures (cccgs), which were identified as independent prognostic factors by univariate and multivariate analysis. The predictive power of cccgs was well demonstrated in different clinical groups in train and test cohorts. Conclusion Our study highlights the propensity for crosstalk between tumors and other cells and developed a novel signature on the basis of a strong association gene for cell communication that has a powerful ability to predict prognosis and immunotherapy response in patients with HNSCC. This may provide some guidance for developing diagnostic biomarkers for risk stratification and therapeutic targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Jian Wang
- *Correspondence: Jian Wang, ; Hong-Cun Sun,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang Z, Yu H, Yao W, Zhu N, Miao R, Liu Z, Song X, Xue C, Cai C, Cheng M, Lin K, Qi D. RRP9 promotes gemcitabine resistance in pancreatic cancer via activating AKT signaling pathway. Cell Commun Signal 2022; 20:188. [PMID: 36434608 PMCID: PMC9700947 DOI: 10.1186/s12964-022-00974-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/18/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly lethal malignancy regarding digestive system, which is the fourth leading factor of cancer-related mortalities in the globe. Prognosis is poor due to diagnosis at advanced disease stage, low rates of surgical resection, and resistance to traditional radiotherapy and chemotherapy. In order to develop novel therapeutic strategies, further elucidation of the molecular mechanisms underlying PC chemoresistance is required. Ribosomal RNA biogenesis has been implicated in tumorigenesis. Small nucleolar RNAs (snoRNAs) is responsible for post-transcriptional modifications of ribosomal RNAs during biogenesis, which have been identified as potential markers of various cancers. Here, we investigate the U3 snoRNA-associated protein RRP9/U3-55 K along with its role in the development of PC and gemcitabine resistance. METHODS qRT-PCR, western blot and immunohistochemical staining assays were employed to detect RRP9 expression in human PC tissue samples and cell lines. RRP9-overexpression and siRNA-RRP9 plasmids were constructed to test the effects of RRP9 overexpression and knockdown on cell viability investigated by MTT assay, colony formation, and apoptosis measured by FACS and western blot assays. Immunoprecipitation and immunofluorescence staining were utilized to demonstrate a relationship between RRP9 and IGF2BP1. A subcutaneous xenograft tumor model was elucidated in BALB/c nude mice to examine the RRP9 role in PC in vivo. RESULTS Significantly elevated RRP9 expression was observed in PC tissues than normal tissues, which was negatively correlated with patient prognosis. We found that RRP9 promoted gemcitabine resistance in PC in vivo and in vitro. Mechanistically, RRP9 activated AKT signaling pathway through interacting with DNA binding region of IGF2BP1 in PC cells, thereby promoting PC progression, and inducing gemcitabine resistance through a reduction in DNA damage and inhibition of apoptosis. Treatment with a combination of the AKT inhibitor MK-2206 and gemcitabine significantly inhibited tumor proliferation induced by overexpression of RRP9 in vitro and in vivo. CONCLUSIONS Our data reveal that RRP9 has a critical function to induce gemcitabine chemoresistance in PC through the IGF2BP1/AKT signaling pathway activation, which might be a candidate to sensitize PC cells to gemcitabine. Video abstract.
Collapse
Affiliation(s)
- Zhiqi Zhang
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Haitao Yu
- grid.415468.a0000 0004 1761 4893Intensive Care Unit, Qingdao Municipal Hospital, Qingdao, 266001 Shandong Province China
| | - Wenyan Yao
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Na Zhu
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Ran Miao
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Zhiquan Liu
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Xuwei Song
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Chunhua Xue
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Cheng Cai
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Ming Cheng
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| | - Ke Lin
- grid.203458.80000 0000 8653 0555Intensive Care Unit, University-Town Hospital of Chongqing Medical University, Chongqing, 401331 China
| | - Dachuan Qi
- grid.24516.340000000123704535Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, No.1279 Sanmen Road, Hongkou District, Shanghai, 200434 China
| |
Collapse
|
7
|
FOXM1-CD44 Signaling Is Critical for the Acquisition of Regorafenib Resistance in Human Liver Cancer Cells. Int J Mol Sci 2022; 23:ijms23147782. [PMID: 35887129 PMCID: PMC9324640 DOI: 10.3390/ijms23147782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Regorafenib is a multikinase inhibitor that was approved by the US Food and Drug administration in 2017. Cancer stem cells (CSCs) are a small subset of cancer-initiating cells that are thought to contribute to therapeutic resistance. The forkhead box protein M1 (FOXM1) plays an important role in the regulation of the stemness of CSCs and mediates resistance to chemotherapy. However, the relationship between FOXM1 and regorafenib resistance in liver cancer cells remains unknown. We found that regorafenib-resistant HepG2 clones overexpressed FOXM1 and various markers of CSCs. Patients with hepatocellular carcinoma also exhibited an upregulation of FOXM1 and resistance to regorafenib, which were correlated with a poor survival rate. We identified a close relationship between FOXM1 expression and regorafenib resistance, which was correlated with the survival of patients with hepatocellular carcinoma. Thus, a strategy that antagonizes FOXM1–CD44 signaling would enhance the therapeutic efficacy of regorafenib in these patients.
Collapse
|
8
|
Francisco AB, Kanke M, Massa AP, Dinh TA, Sritharan R, Vakili K, Bardeesy N, Sethupathy P. Multiomic analysis of microRNA-mediated regulation reveals a proliferative axis involving miR-10b in fibrolamellar carcinoma. JCI Insight 2022; 7:e154743. [PMID: 35482409 PMCID: PMC9220943 DOI: 10.1172/jci.insight.154743] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Fibrolamellar carcinoma (FLC) is an aggressive liver cancer primarily afflicting adolescents and young adults. Most patients with FLC harbor a heterozygous deletion on chromosome 19 that leads to the oncogenic gene fusion, DNAJB1-PRKACA. There are currently no effective therapeutics for FLC. To address that, it is critical to gain deeper mechanistic insight into FLC pathogenesis. We assembled a large sample set of FLC and nonmalignant liver tissue (n = 52) and performed integrative multiomic analysis. Specifically, we carried out small RNA sequencing to define altered microRNA expression patterns in tumor samples and then coupled this analysis with RNA sequencing and chromatin run-on sequencing data to identify candidate master microRNA regulators of gene expression in FLC. We also evaluated the relationship between DNAJB1-PRKACA and microRNAs of interest in several human and mouse cell models. Finally, we performed loss-of-function experiments for a specific microRNA in cells established from a patient-derived xenograft (PDX) model. We identified miR-10b-5p as the top candidate pro-proliferative microRNA in FLC. In multiple human cell models, overexpression of DNAJB1-PRKACA led to significant upregulation of miR-10b-5p. Inhibition of miR-10b in PDX-derived cells increased the expression of several potentially novel target genes, concomitant with a significant reduction in metabolic activity, proliferation, and anchorage-independent growth. This study highlights a potentially novel proliferative axis in FLC and provides a rich resource for further investigation of FLC etiology.
Collapse
Affiliation(s)
- Adam B. Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Andrew P. Massa
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Timothy A. Dinh
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ramja Sritharan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Khashayar Vakili
- Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Nabeel Bardeesy
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
9
|
Machtakova M, Thérien-Aubin H, Landfester K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem Soc Rev 2021; 51:128-152. [PMID: 34762084 DOI: 10.1039/d1cs00686j] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomacromolecular therapeutic agents, particularly proteins, antigens, enzymes, and nucleic acids are emerging as powerful candidates for the treatment of various diseases and the development of the recent vaccine based on mRNA highlights the enormous potential of this class of drugs for future medical applications. However, biomacromolecular therapeutic agents present an enormous delivery challenge compared to traditional small molecules due to both a high molecular weight and a sensitive structure. Hence, the translation of their inherent pharmaceutical capacity into functional therapies is often hindered by the limited performance of conventional delivery vehicles. Polymer drug delivery systems are a modular solution able to address those issues. In this review, we discuss recent developments in the design of polymer delivery systems specifically tailored to the delivery challenges of biomacromolecular therapeutic agents. In the future, only in combination with a multifaceted and highly tunable delivery system, biomacromolecular therapeutic agents will realize their promising potential for the treatment of diseases and for the future of human health.
Collapse
Affiliation(s)
- Marina Machtakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Héloïse Thérien-Aubin
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. .,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
10
|
Tonini V, Zanni M. Pancreatic cancer in 2021: What you need to know to win. World J Gastroenterol 2021; 27:5851-5889. [PMID: 34629806 PMCID: PMC8475010 DOI: 10.3748/wjg.v27.i35.5851] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the solid tumors with the worst prognosis. Five-year survival rate is less than 10%. Surgical resection is the only potentially curative treatment, but the tumor is often diagnosed at an advanced stage of the disease and surgery could be performed in a very limited number of patients. Moreover, surgery is still associated with high post-operative morbidity, while other therapies still offer very disappointing results. This article reviews every aspect of pancreatic cancer, focusing on the elements that can improve prognosis. It was written with the aim of describing everything you need to know in 2021 in order to face this difficult challenge.
Collapse
Affiliation(s)
- Valeria Tonini
- Department of Medical Sciences and Surgery, University of Bologna- Emergency Surgery Unit, IRCCS Sant’Orsola Hospital, Bologna 40121, Italy
| | - Manuel Zanni
- University of Bologna, Emergency Surgery Unit, IRCCS Sant'Orsola Hospital, Bologna 40121, Italy
| |
Collapse
|