1
|
Wang Z, Fang Y, Wang R, Kong L, Liang S, Tao S. Reconstructing tumor clonal heterogeneity and evolutionary relationships based on tumor DNA sequencing data. Brief Bioinform 2024; 25:bbae516. [PMID: 39413797 PMCID: PMC11483135 DOI: 10.1093/bib/bbae516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
The heterogeneity of tumor clones drives the selection and evolution of distinct tumor cell populations, resulting in an intricate and dynamic tumor evolution process. While tumor bulk DNA sequencing helps elucidate intratumor heterogeneity, challenges such as the misidentification of mutation multiplicity due to copy number variations and uncertainties in the reconstruction process hinder the accurate inference of tumor evolution. In this study, we introduce a novel approach, REconstructing Tumor Clonal Heterogeneity and Evolutionary Relationships (RETCHER), which characterizes more realistic cancer cell fractions by accurately identifying mutation multiplicity while considering uncertainty during the reconstruction process and the credibility and reasonableness of subclone clustering. This method comprehensively and accurately infers multiple forms of tumor clonal heterogeneity and phylogenetic relationships. RETCHER outperforms existing methods on simulated data and infers clearer subclone structures and evolutionary relationships in real multisample sequencing data from five tumor types. By precisely analysing the complex clonal heterogeneity within tumors, RETCHER provides a new approach to tumor evolution research and offers scientific evidence for developing precise and personalized treatment strategies. This approach is expected to play a significant role in tumor evolution research, clinical diagnosis, and treatment. RETCHER is available for free at https://github.com/zlsys3/RETCHER.
Collapse
Affiliation(s)
- Zhen Wang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001, Liaoning, China
- College of Information Engineering, Dalian University, Dalian, Liaoning, China
| | - Yanhua Fang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Ruoyu Wang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001, Liaoning, China
| | - Liwen Kong
- College of Information Engineering, Dalian University, Dalian, Liaoning, China
| | - Shanshan Liang
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001, Liaoning, China
| | - Shuai Tao
- The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian 116001, Liaoning, China
- College of Information Engineering, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Ke J, Chen G, You Y, Xie Q, Liu Z, Song C, Zheng Y, Shan Z, Song J, Jiang Z, Wang H, Du Q, Wu Y, Chen X, Li Y. CD11b/CD86 involved in the microenvironment of colorectal cancer by promoting Wnt signaling activation. Cancer Med 2024; 13:e70245. [PMID: 39302044 PMCID: PMC11413919 DOI: 10.1002/cam4.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/03/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a malignancy that arises within the gastrointestinal tract. Despite ongoing research, the etiology and pathogenesis of CRC remain elusive; particularly, the distribution and characteristics of tumor-associated macrophages is currently an active area of investigation in understanding the pathological progression and prevention of CRC. METHODS This study utilized CRC patient surgical samples, mouse models of colitis-associated cancer, colonic organoid, and co-culture cell line to examine the changes in CD11b/CD86 at different pathological region and detect the Wnt signaling pathway activity. RESULTS Our findings revealed a sensitive and increased expression of CD11b from the early to the advanced CRC tissues and correlated with poor prognosis, while CD86 expression was reduced in advanced CRC tissues. CD133 expression was also elevated in advanced CRC tissues and mainly co-localized with CD11b, suggesting a positive regulatory effect of CD11b and CD133 expression that may contribute to CRC progression. In AOM/DSS mouse models, activation of the Wnt signaling pathway was associated with increased CD133 and CD11b expression. In vitro, THP-1 cell was induced to high expression of CD11b, and the above conditional cultural medium enhanced HCT116 cell colony number and CD133 protein expression. Furthermore, colonic crypts from AOM/DSS mouse models were isolated to culture, and the colonic organoids exhibited dilation and significant increases expression of CD133 and β-Catenin/N-P-B-Catenin. CONCLUSIONS CD11b might be an important factor to participate the progress of CRC. And the high CD11b of CRC microenviroment might potentially promote CD133 expression and associate with Wnt signal activation.
Collapse
Affiliation(s)
- Junyu Ke
- School of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese MedicineGaozhouChina
| | - Guirong Chen
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yihui You
- Maoming Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese MedicineMaomingChina
| | - Qinghua Xie
- Animal Experiment CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Zheng‐lin Liu
- The First Clinical Medical College of Guangzhou University of Traditional Chinese MedicineGuangzhouChina
| | - Chunhui Song
- Guangzhou International Bio IslandGuangzhouChina
| | - Yanqiu Zheng
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Zejun Shan
- School of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Jinbin Song
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Zhangyu Jiang
- International Institute for Translational Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
| | - Haiyan Wang
- School of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Qun Du
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yongqiang Wu
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese MedicineGaozhouChina
| | - Xin‐lin Chen
- School of Basic Medical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yanwu Li
- Science and Technology Innovation CenterGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
3
|
Jackson JC, Sanchez D, Johns AC, Campbell MT, Aydin AM, Gokden N, Maraboyina S, Muesse JL, Ward JF, Pisters LL, Zacharias NM, Guo CC, Tu SM. Germ Cell Tumor of the Testis: Lethal Subtypes of a Curable Cancer. J Clin Med 2024; 13:3436. [PMID: 38929965 PMCID: PMC11205088 DOI: 10.3390/jcm13123436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Germ cell tumor of the testis (GCT) is a curable cancer even when it is widely metastatic; however, outcomes can differ based on tumor histology. Chemo-resistance in certain phenotypes, such as teratoma and yolk sac tumor, contributes to poor clinical outcomes in some patients with GCT. Despite this resistance to S-YSTemic therapy, many of these tumor subtypes remain amenable to surgical resection and possible cure. In this study, we report on a series of seven patients highlighting two chemo-resistant subtypes of nonseminomatous germ cell tumor (NSGCT), sarcomatoid yolk sac tumor (S-YST), and epithelioid trophoblastic tumor (ETT) for which early resection rather than additional salvage chemotherapy or high-dose intense chemotherapy might provide a superior clinical outcome and enhance cure rate.
Collapse
Affiliation(s)
- Jamaal C. Jackson
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.J.); (D.S.); (J.F.W.); (L.L.P.); (N.M.Z.)
| | - Darren Sanchez
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.J.); (D.S.); (J.F.W.); (L.L.P.); (N.M.Z.)
| | - Andrew C. Johns
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.C.J.); (M.T.C.)
| | - Matthew T. Campbell
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.C.J.); (M.T.C.)
| | - Ahmet M. Aydin
- Division of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Neriman Gokden
- Division of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Sanjay Maraboyina
- Division of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jason L. Muesse
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - John F. Ward
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.J.); (D.S.); (J.F.W.); (L.L.P.); (N.M.Z.)
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.J.); (D.S.); (J.F.W.); (L.L.P.); (N.M.Z.)
| | - Niki M. Zacharias
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.J.); (D.S.); (J.F.W.); (L.L.P.); (N.M.Z.)
| | - Charles C. Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Shi-Ming Tu
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Iacobas DA, Iacobas S. Papillary Thyroid Cancer Remodels the Genetic Information Processing Pathways. Genes (Basel) 2024; 15:621. [PMID: 38790250 PMCID: PMC11120757 DOI: 10.3390/genes15050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The genetic causes of the differentiated, highly treatable, and mostly non-fatal papillary thyroid cancer (PTC) are not yet fully understood. The mostly accepted PTC etiology blames the altered sequence or/and expression level of certain biomarker genes. However, tumor heterogeneity and the patient's unique set of favoring factors question the fit-for-all gene biomarkers. Publicly accessible gene expression profiles of the cancer nodule and the surrounding normal tissue from a surgically removed PTC tumor were re-analyzed to determine the cancer-induced alterations of the genomic fabrics responsible for major functional pathways. Tumor data were compared with those of standard papillary and anaplastic thyroid cancer cell lines. We found that PTC regulated numerous genes associated with DNA replication, repair, and transcription. Results further indicated that changes of the gene networking in functional pathways and the homeostatic control of transcript abundances also had major contributions to the PTC phenotype occurrence. The purpose to proliferate and invade the entire gland may explain the substantial transcriptomic differences we detected between the cells of the cancer nodule and those spread in homo-cellular cultures (where they need only to survive). In conclusion, the PTC etiology should include the complex molecular mechanisms involved in the remodeling of the genetic information processing pathways.
Collapse
Affiliation(s)
- Dumitru Andrei Iacobas
- Personalized Genomics Laboratory, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
5
|
Awaji AA, Zaloa WAZE, Seleem MA, Alswah M, Elsebaei MM, Bayoumi AH, El-Morsy AM, Alfaifi MY, Shati AA, Elbehairi SEI, Almaghrabi M, Aljohani AKB, Ahmed HEA. N- and s-substituted Pyrazolopyrimidines: A promising new class of potent c-Src kinase inhibitors with prominent antitumor activity. Bioorg Chem 2024; 145:107228. [PMID: 38422592 DOI: 10.1016/j.bioorg.2024.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024]
Abstract
In this work, readily achievable synthetic pathways were utilized for construction of a library of N/S analogues based on the pyrazolopyrimidine scaffold with terminal alkyl or aryl fragments. Subsequently, we evaluated the anticancer effects of these novel analogs against the proliferation of various cancer cell lines, including breast, colon, and liver lines. The results were striking, most of the tested molecules exhibited strong and selective cytotoxic activity against the MDA-MB-231 cancer cell line; IC50 1.13 µM. Structure-activity relationship (SAR) analysis revealed that N-substituted derivatives generally enhanced the cytotoxic effect, particularly with aliphatic side chains that facilitated favorable target interactions. We also investigated apoptosis, DNA fragmentation, invasion assay, and anti-migration effects, and discussed their underlying molecular mechanisms for the most active compound 7c. We demonstrated that 7c N-propyl analogue could inhibit MDA-MB-231 TNBC cell proliferation by inducing apoptosis through the regulation of vital proteins, namely c-Src, p53, and Bax. In addition, our results also revealed the potential of these compounds against tumor metastasis by downregulating the invasion and migration modes. Moreover, the in vitro inhibitory effect of active analogs against c-Src kinase was studied and proved that might be the main cause of their antiproliferative effect. Overall, these compelling results point towards the therapeutic potential of these derivatives, particularly those with N-substitution as promising candidates for the treatment of TNBC type of breast cancer.
Collapse
Affiliation(s)
- Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Waheed Ali Zaki El Zaloa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed A Seleem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Mohamed M Elsebaei
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; Cell Culture Lab, Egyptian Organization for Biological Products and Vaccines (VACSERA Holding Company), 51 Wezaret El-Zeraa St., Agouza, Giza, Egypt.
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
6
|
Iacobas DA. Advanced Molecular Solutions for Cancer Therapy-The Good, the Bad, and the Ugly of the Biomarker Paradigm. Curr Issues Mol Biol 2024; 46:1694-1699. [PMID: 38534725 DOI: 10.3390/cimb46030109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
Identifying the most effective actionable molecules whose "smart" manipulation might selectively kill/slow down/stop the proliferation of cancer cells, with few side effects on the normal cells of the tissue, was for decades the single major objective of countless investigators [...].
Collapse
Affiliation(s)
- Dumitru Andrei Iacobas
- Laboratory of Personalized Genomics, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
7
|
Tu SM, Chen JZ, Singh SR, Maraboyina S, Gokden N, Hsu PC, Langford T. Stem Cell Theory of Cancer: Clinical Implications for Cellular Metabolism and Anti-Cancer Metabolomics. Cancers (Basel) 2024; 16:624. [PMID: 38339375 PMCID: PMC10854810 DOI: 10.3390/cancers16030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Although Otto Warburg may be right about the role of glycolysis versus OXPHOS in cancer metabolism, it remains unclear whether an altered metabolism is causative or correlative and is the main driver or a mere passenger in the pathogenesis of cancer. Currently, most of our successful treatments are designed to eliminate non-cancer stem cells (non-CSCs) such as differentiated cancer cells. When the treatments also happen to control CSCs or the stem-ness niche, it is often unintended, unexpected, or undetected for lack of a pertinent theory about the origin of cancer that clarifies whether cancer is a metabolic, genetic, or stem cell disease. Perhaps cellular context matters. After all, metabolic activity may be different in different cell types and their respective microenvironments-whether it is in a normal progenitor stem cell vs. progeny differentiated cell and whether it is in a malignant CSC vs. non-CSC. In this perspective, we re-examine different types of cellular metabolism, e.g., glycolytic vs. mitochondrial, of glucose, glutamine, arginine, and fatty acids in CSCs and non-CSCs. We revisit the Warburg effect, an obesity epidemic, the aspartame story, and a ketogenic diet. We propose that a pertinent scientific theory about the origin of cancer and of cancer metabolism influences the direction of cancer research as well as the design of drug versus therapy development in cancer care.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (J.Z.C.); (S.R.S.)
| | - Jim Z. Chen
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (J.Z.C.); (S.R.S.)
| | - Sunny R. Singh
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (J.Z.C.); (S.R.S.)
| | - Sanjay Maraboyina
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Ping-Ching Hsu
- Department of Environmental & Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Timothy Langford
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
8
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
9
|
Iacobas DA, Obiomon EA, Iacobas S. Genomic Fabrics of the Excretory System's Functional Pathways Remodeled in Clear Cell Renal Cell Carcinoma. Curr Issues Mol Biol 2023; 45:9471-9499. [PMID: 38132440 PMCID: PMC10742519 DOI: 10.3390/cimb45120594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most frequent form of kidney cancer. Metastatic stages of ccRCC reduce the five-year survival rate to 15%. In this report, we analyze the ccRCC-induced remodeling of the five KEGG-constructed excretory functional pathways in a surgically removed right kidney and its metastasis in the chest wall from the perspective of the Genomic Fabric Paradigm (GFP). The GFP characterizes every single gene in each region by these independent variables: the average expression level (AVE), relative expression variability (REV), and expression correlation (COR) with each other gene. While the traditional approach is limited to only AVE analysis, the novel REV analysis identifies the genes whose correct expression level is critical for cell survival and proliferation. The COR analysis determines the real gene networks responsible for functional pathways. The analyses covered the pathways for aldosterone-regulated sodium reabsorption, collecting duct acid secretion, endocrine and other factor-regulated sodium reabsorption, proximal tubule bicarbonate reclamation, and vasopressin-regulated water reabsorption. The present study confirms the conclusion of our previously published articles on prostate and kidney cancers that even equally graded cancer nodules from the same tumor have different transcriptomic topologies. Therefore, the personalization of anti-cancer therapy should go beyond the individual, to his/her major cancer nodules.
Collapse
Affiliation(s)
- Dumitru Andrei Iacobas
- Personalized Genomics Laboratory, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Ehiguese Alade Obiomon
- Personalized Genomics Laboratory, Undergraduate Medical Academy, Prairie View A&M University, Prairie View, TX 77446, USA;
| | - Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
10
|
Tu SM, Aydin AM, Maraboyina S, Chen Z, Singh S, Gokden N, Langford T. Stem Cell Origin of Cancer: Implications of Oncogenesis Recapitulating Embryogenesis in Cancer Care. Cancers (Basel) 2023; 15:cancers15092516. [PMID: 37173982 PMCID: PMC10177345 DOI: 10.3390/cancers15092516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
From this perspective, we wonder about the clinical implications of oncology recapturing ontogeny in the contexts of neoantigens, tumor biomarkers, and cancer targets. We ponder about the biological ramifications of finding remnants of mini-organs and residuals of tiny embryos in some tumors. We reminisce about classical experiments showing that the embryonic microenvironment possesses antitumorigenic properties. Ironically, a stem-ness niche-in the wrong place at the wrong time-is also an onco-niche. We marvel at the paradox of TGF-beta both as a tumor suppressor and a tumor promoter. We query about the dualism of EMT as a stem-ness trait engaged in both normal development and abnormal disease states, including various cancers. It is uncanny that during fetal development, proto-oncogenes wax, while tumor-suppressor genes wane. Similarly, during cancer development, proto-oncogenes awaken, while tumor-suppressor genes slumber. Importantly, targeting stem-like pathways has therapeutic implications because stem-ness may be the true driver, if not engine, of the malignant process. Furthermore, anti-stem-like activity elicits anti-cancer effects for a variety of cancers because stem-ness features may be a universal property of cancer. When a fetus survives and thrives despite immune surveillance and all the restraints of nature and the constraints of its niche, it is a perfect baby. Similarly, when a neoplasm survives and thrives in an otherwise healthy and immune-competent host, is it a perfect tumor? Therefore, a pertinent narrative of cancer depends on a proper perspective of cancer. If malignant cells are derived from stem cells, and both cells are intrinsically RB1 negative and TP53 null, do the absence of RB1 and loss of TP53 really matter in this whole narrative and an entirely different perspective of cancer?
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ahmet Murat Aydin
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sanjay Maraboyina
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Zhongning Chen
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sunny Singh
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Neriman Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Timothy Langford
- Department of Urology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
11
|
The Genes-Stemness-Secretome Interplay in Malignant Pleural Mesothelioma: Molecular Dynamics and Clinical Hints. Int J Mol Sci 2023; 24:ijms24043496. [PMID: 36834912 PMCID: PMC9963101 DOI: 10.3390/ijms24043496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
MPM has a uniquely poor somatic mutational landscape, mainly driven by environmental selective pressure. This feature has dramatically limited the development of effective treatment. However, genomic events are known to be associated with MPM progression, and specific genetic signatures emerge from the exceptional crosstalk between neoplastic cells and matrix components, among which one main area of focus is hypoxia. Here we discuss the novel therapeutic strategies focused on the exploitation of MPM genetic asset and its interconnection with the surrounding hypoxic microenvironment as well as transcript products and microvesicles representing both an insight into the pathogenesis and promising actionable targets.
Collapse
|
12
|
Tu SM, Moran C, Norton W, Zacharias NM. Stem Cell Theory of Cancer: Origin of Metastasis and Sub-clonality. Semin Diagn Pathol 2023; 40:63-68. [PMID: 35729019 DOI: 10.1053/j.semdp.2022.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/09/2022] [Indexed: 01/28/2023]
Abstract
Metastasis may be the secret weapon cancer uses to dominate and subjugate, to persist and prevail. However, it is no longer a secret when we realize that a stem cell has the same ways and means to fulfill its own omnipotence and accomplish its own omnipresence… and when we realize that a cancer cell has its own version of stem-ness origin and stem-like nature. In this perspective, we discuss whether stem-ness enables metastasis or mutations drive metastasis. We ponder about low-grade versus high-grade tumors and about primary versus metastatic tumors. We wonder about stochasticity and hierarchy in the genesis and evolution of cancer and of metastasis. We postulate that metastasis may hold the elusive code that makes or breaks a stem-cell versus a genetic theory of cancer. We speculate that the vaunted model of multistep carcinogenesis may be in error and needs some belated remodeling and a major overhaul. We propose that subsequent malignant neoplasms from germ cell tumors and donor-derived malignancies in organ transplants are quintessential experiments of nature and by man that may eventually empower us to elucidate a stem-cell origin of cancer and metastasis. Unfortunately, even the best experiments of cancer and of metastasis will be left unfinished, overlooked, or forgotten, when we do not formulate a proper cancer theory derived from pertinent and illuminating clinical observations. Ultimately, there should be no consternations when we realize that metastasis has a stem-cell rather than a genetic origin, and no reservations when we recognize that metastasis has been providing us some of the most enduring tests and endearing proofs to demonstrate that cancer is indeed a stem-cell rather than a genetic disease after all.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences.
| | - Cesar Moran
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center.
| | - William Norton
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center.
| | - Niki M Zacharias
- Department of Urology - Research, The University of Texas MD Anderson Cancer Center.
| |
Collapse
|
13
|
Review old bone, new tricks. Clin Exp Metastasis 2022; 39:727-742. [PMID: 35907112 DOI: 10.1007/s10585-022-10176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Despite the significant progress made over the past decade with combination of molecular profiling data and the development of new clinical strategies, our understanding of metastasis remains elusive. Bone metastasis is a complex process and a major cause of mortality in breast and prostate cancer patients, for which there is no effective treatment to-date. The current review summarizes the routes taken by the metastatic cells and the interactions between them and the bone microenvironment. We emphasize the role of the specified niches and cues that promote cellular adhesion, colonization, prolonged dormancy, and reactivation. Understanding these mechanisms will provide better insights for future studies and treatment strategies for bone metastatic conditions.
Collapse
|
14
|
Zhou H, He Q, Li C, Alsharafi BLM, Deng L, Long Z, Gan Y. Focus on the tumor microenvironment: A seedbed for neuroendocrine prostate cancer. Front Cell Dev Biol 2022; 10:955669. [PMID: 35938167 PMCID: PMC9355504 DOI: 10.3389/fcell.2022.955669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment (TME) is a microecology consisting of tumor and mesenchymal cells and extracellular matrices. The TME plays important regulatory roles in tumor proliferation, invasion, metastasis, and differentiation. Neuroendocrine differentiation (NED) is a mechanism by which castration resistance develops in advanced prostate cancer (PCa). NED is induced after androgen deprivation therapy and neuroendocrine prostate cancer (NEPC) is established finally. NEPC has poor prognosis and short overall survival and is a major cause of death in patients with PCa. Both the cellular and non-cellular components of the TME regulate and induce NEPC formation through various pathways. Insights into the roles of the TME in NEPC evolution, growth, and progression have increased over the past few years. These novel insights will help refine the NEPC formation model and lay the foundation for the discovery of new NEPC therapies targeting the TME.
Collapse
Affiliation(s)
- Hengfeng Zhou
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangrong He
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Chao Li
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | | | - Liang Deng
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Long
- Andrology Center, Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| | - Yu Gan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhi Long, ; Yu Gan,
| |
Collapse
|
15
|
Tu SM, Singh SR, Arnaoutakis K, Malapati S, Bhatti SA, Joon AY, Atiq OT, Pisters LL. Stem Cell Theory of Cancer: Implications for Translational Research from Bedside to Bench. Cancers (Basel) 2022; 14:cancers14143345. [PMID: 35884406 PMCID: PMC9321703 DOI: 10.3390/cancers14143345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/07/2022] Open
Abstract
A stem cell theory of cancer considers genetic makeup in the proper cellular context. It is a unified theory of cancer that unites the genome with the epigenome, links the intracellular with the extracellular, and connects the cellular constituents and compartments with the microenvironment. Although it allies with genomic medicine, it is better aligned with integrated medicine. In this perspective, we focus on translational research in cancer care. We expose some intrinsic fallacies in translational research when it relates to the basic principles of the scientific method in the care of patients with genomic medicine versus integrated medicine. We postulate that genomic medicine may be at the root of many failed efforts in drug development and data reproducibility. We propose an alternate heuristic approach that may expedite the development of safe and effective treatments and minimize the generation of unproductive pharmaceutical products and nonreproducible experimental results. Importantly, a heuristic approach emphasizes the role of a pertinent scientific theory and distinguishes therapy development from drug development, such that we discover not only useful drugs but also better ways to use them in order to optimize patient care and maximize clinical outcomes.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.R.S.); (K.A.); (S.M.); (S.A.B.); (O.T.A.)
- Correspondence:
| | - Sunny R. Singh
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.R.S.); (K.A.); (S.M.); (S.A.B.); (O.T.A.)
| | - Konstantinos Arnaoutakis
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.R.S.); (K.A.); (S.M.); (S.A.B.); (O.T.A.)
| | - Sindhu Malapati
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.R.S.); (K.A.); (S.M.); (S.A.B.); (O.T.A.)
| | - Sajjad A. Bhatti
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.R.S.); (K.A.); (S.M.); (S.A.B.); (O.T.A.)
| | - Aron Y. Joon
- Department of Bioinformatics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Omar T. Atiq
- Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (S.R.S.); (K.A.); (S.M.); (S.A.B.); (O.T.A.)
| | - Louis L. Pisters
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
16
|
Hu WY, Lu R, Hu DP, Imir OB, Zuo Q, Moline D, Afradiasbagharani P, Liu L, Lowe S, Birch L, Griend DJV, Madak-Erdogan Z, Prins GS. Per- and polyfluoroalkyl substances target and alter human prostate stem-progenitor cells. Biochem Pharmacol 2022; 197:114902. [PMID: 34968493 PMCID: PMC8890783 DOI: 10.1016/j.bcp.2021.114902] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are a large family of widely used synthetic chemicals that are environmentally and biologically persistent and present in most individuals. Chronic PFAS exposure have been linked to increased prostate cancer risk in occupational settings, however, underlying mechanisms have not been interrogated. Herein we examined exposure of normal human prostate stem-progenitor cells (SPCs) to 10 nM PFOA or PFOS using serial passage of prostasphere cultures. Exposure to either PFAS for 3-4 weeks increased spheroid numbers and size indicative of elevated stem cell self-renewal and progenitor cell proliferation. Transcriptome analysis using single-cell RNA sequencing (scRNA-seq) showed 1) SPC expression of PPARs and RXRs able to mediate PFAS effects, 2) the emergence of a new cell cluster of aberrantly differentiated luminal progenitor cells upon PFOS/PFOA exposure, and 3) enrichment of cancer-associated signaling pathways. Metabolomic analysis of PFAS-exposed prostaspheres revealed increased glycolytic pathways including the Warburg effect as well as strong enrichment of serine and glycine metabolism which may promote a pre-malignant SPC fate. Finally, growth of in vivo xenografts of tumorigenic RWPE-2 human prostate cells, shown to contain cancer stem-like cells, was markedly enhanced by daily PFOS feeding to nude mice hosts. Together, these findings are the first to identify human prostate SPCs as direct PFAS targets with resultant reprogrammed transcriptomes and metabolomes that augment a preneoplastic state and may contribute to an elevated prostate cancer risk with chronic exposures.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States; Chicago Center for Health and Environment, University of Illinois at Chicago, United States
| | - Ranli Lu
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States
| | - Dan Ping Hu
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States
| | - Ozan Berk Imir
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, United States
| | - Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, United States
| | - Dan Moline
- Department of Pathology, College of Medicine, University of Illinois at Chicago, United States
| | | | - Lifeng Liu
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, United States
| | - Lynn Birch
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States
| | - Donald J Vander Griend
- Chicago Center for Health and Environment, University of Illinois at Chicago, United States; Department of Pathology, College of Medicine, University of Illinois at Chicago, United States; University of Illinois Cancer Center, University of Illinois at Chicago, United States
| | - Zeynep Madak-Erdogan
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, United States; Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, United States; Department of Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, United States; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, United States; Chicago Center for Health and Environment, University of Illinois at Chicago, United States; Department of Pathology, College of Medicine, University of Illinois at Chicago, United States; Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, United States; Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, United States; University of Illinois Cancer Center, University of Illinois at Chicago, United States.
| |
Collapse
|
17
|
Liu Z, Xu H, Weng S, Ren Y, Han X. Stemness Refines the Classification of Colorectal Cancer With Stratified Prognosis, Multi-Omics Landscape, Potential Mechanisms, and Treatment Options. Front Immunol 2022; 13:828330. [PMID: 35154148 PMCID: PMC8828967 DOI: 10.3389/fimmu.2022.828330] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 12/18/2022] Open
Abstract
Background Stemness refers to the capacities of self-renewal and repopulation, which contributes to the progression, relapse, and drug resistance of colorectal cancer (CRC). Mounting evidence has established the links between cancer stemness and intratumoral heterogeneity across cancer. Currently, the intertumoral heterogeneity of cancer stemness remains elusive in CRC. Methods This study enrolled four CRC datasets, two immunotherapy datasets, and a clinical in-house cohort. Non-negative matrix factorization (NMF) was performed to decipher the heterogeneity of cancer stemness. Multiple machine learning algorithms were applied to develop a nine-gene stemness cluster predictor. The clinical outcomes, multi-omics landscape, potential mechanisms, and immune features of the stemness clusters were further explored. Results Based on 26 published stemness signatures derived by alternative approaches, we decipher two heterogeneous clusters, low stemness cluster 1 (C1) and high stemness cluster 2 (C2). C2 possessed a higher proportion of advanced tumors and displayed worse overall survival and relapse-free survival compared with C1. The MSI-H and CMS1 tumors tended to enrich in C1, and the mesenchymal subtype CMS4 was the prevalent subtype of C2. Subsequently, we developed a nine-gene stemness cluster predictor, which robustly validated and reproduced our stemness clusters in three independent datasets and an in-house cohort. C1 also displayed a generally superior mutational burden, and C2 possessed a higher burden of copy number deletion. Further investigations suggested that C1 enriched numerous proliferation-related biological processes and abundant immune infiltration, while C2 was significantly associated with mesenchyme development and differentiation. Given results derived from three algorithms and two immunotherapeutic cohorts, we observed C1 could benefit more from immunotherapy. For patients with C2, we constructed a ridge regression model and further identified nine latent therapeutic agents, which might improve their clinical outcomes. Conclusions This study proposed two stemness clusters with stratified prognosis, multi-omics landscape, potential mechanisms, and treatment options. Current work not only provided new insights into the heterogeneity of cancer stemness, but also shed light on optimizing decision-making in immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
18
|
Tu SM, Estecio MR, Lin SH, Zacharias NM. Stem Cell Theory of Cancer: Rude Awakening or Bad Dream from Cancer Dormancy? Cancers (Basel) 2022; 14:655. [PMID: 35158923 PMCID: PMC8833524 DOI: 10.3390/cancers14030655] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022] Open
Abstract
To be dormant or not depends on the origin and nature of both the cell and its niche. Similar to other cancer hallmarks, dormancy is ingrained with stemness, and stemness is embedded within dormancy. After all, cancer dormancy is dependent on multiple factors such as cell cycle arrest, metabolic inactivity, and the microenvironment. It is the net results and sum effects of a myriad of cellular interactions, interconnections, and interplays. When we unite all cancer networks and integrate all cancer hallmarks, we practice and preach a unified theory of cancer. From this perspective, we review cancer dormancy in the context of a stem cell theory of cancer. We revisit the seed and soil hypothesis of cancer. We reexamine its implications in both primary tumors and metastatic lesions. We reassess its roles in cell cycle arrest, metabolic inactivity, and stemness property. Cancer dormancy is particularly revealing when it informs us about the mysteries of late relapse, prolonged remission, and second malignancy. It is paradoxically rewarding when it delivers us the promises and power of cancer prevention and maintenance therapy in patient care.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marcos R. Estecio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Niki M. Zacharias
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
19
|
Personalized 3-Gene Panel for Prostate Cancer Target Therapy. Curr Issues Mol Biol 2022; 44:360-382. [PMID: 35723406 PMCID: PMC8929157 DOI: 10.3390/cimb44010027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022] Open
Abstract
Many years and billions spent for research did not yet produce an effective answer to prostate cancer (PCa). Not only each human, but even each cancer nodule in the same tumor, has unique transcriptome topology. The differences go beyond the expression level to the expression control and networking of individual genes. The unrepeatable heterogeneous transcriptomic organization among men makes the quest for universal biomarkers and “fit-for-all” treatments unrealistic. We present a bioinformatics procedure to identify each patient’s unique triplet of PCa Gene Master Regulators (GMRs) and predict consequences of their experimental manipulation. The procedure is based on the Genomic Fabric Paradigm (GFP), which characterizes each individual gene by the independent expression level, expression variability and expression coordination with each other gene. GFP can identify the GMRs whose controlled alteration would selectively kill the cancer cells with little consequence on the normal tissue. The method was applied to microarray data on surgically removed prostates from two men with metastatic PCas (each with three distinct cancer nodules), and DU145 and LNCaP PCa cell lines. The applications verified that each PCa case is unique and predicted the consequences of the GMRs’ manipulation. The predictions are theoretical and need further experimental validation.
Collapse
|