1
|
Kuipers ME, van Liefferinge F, van der Wal E, Rovituso M, Slats AM, Hiemstra PS, Van Doorn-Wink KC. Effect of FLASH proton therapy on primary bronchial epithelial cell organoids. Clin Transl Radiat Oncol 2025; 52:100927. [PMID: 39968050 PMCID: PMC11833640 DOI: 10.1016/j.ctro.2025.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Purpose The effects of conventional (CONV) and FLASH proton therapy on primary bronchial epithelial cell (PBEC) organoids from individuals with chronic obstructive pulmonary disease (COPD) were investigated. The primary objective was to compare the effect of FLASH and CONV on COPD PBEC organoids with a focus on DNA damage, organoid formation, and gene expression. Methods PBECs were obtained from six COPD donors, cultured as three-dimensional (3D) organoids and exposed to 2 and 8 Gy CONV and FLASH proton radiation at the Holland Proton Therapy Center. DNA damage was assessed by γH2AX staining. Organoid formation capacity was assessed by counting the organoids formed after reseeding irradiated cells at 24 h and 7 days. Bulk RNA sequencing (RNAseq) and qPCR analyses were performed to identify pathways and differences in the radiation response. Results γH2AX foci analysis showed a significant dose-dependent increase in DNA damage at 1 h for both CONV and FLASH treatments, without differences between the two modalities. Organoid formation assays revealed a dose-dependent decrease in organoid formation capacity at 24 h for both treatments. At 7 days, 2 Gy FLASH-treated samples showed significantly reduced organoid formation compared to 2 Gy CONV (p = 0.008). RNAseq identified CONV and FLASH-induced changes in expression of DNA-damage response and apoptosis pathway genes. A dose-dependent upregulation of MDM2, GDF15, DDB2, BAX, P21, AEN and a decrease in MKi67 expression was confirmed by qPCR analysis. Conclusion No significant differences were found in DNA damage or gene expression profiles between CONV and FLASH. The organoid formation assay showed a prolonged detrimental effect in the FLASH-treated organoids, suggesting a more complex interaction of FLASH with lung epithelial cells. The results of this study contribute to the advancement of robust in vitro human lung models for investigating the mechanisms of action of FLASH, potentially facilitating the treatment of NSCLC patients with proton FLASH therapy.
Collapse
Affiliation(s)
- Merian E. Kuipers
- Leiden University Medical Center (LUMC), Department of Pulmonology, C02-Q, Albinusdreef 2 2333 ZA Leiden, the Netherlands
| | - Floriane van Liefferinge
- Leiden University Medical Center (LUMC), Department of Pulmonology, C02-Q, Albinusdreef 2 2333 ZA Leiden, the Netherlands
| | - Ernst van der Wal
- Holland Proton Therapy Center (HollandPTC), Huismansingel 4 2629 JH Delft, the Netherlands
| | - Marta Rovituso
- Holland Proton Therapy Center (HollandPTC), Huismansingel 4 2629 JH Delft, the Netherlands
| | - Annelies M. Slats
- Leiden University Medical Center (LUMC), Department of Pulmonology, C02-Q, Albinusdreef 2 2333 ZA Leiden, the Netherlands
| | - Pieter S. Hiemstra
- Leiden University Medical Center (LUMC), Department of Pulmonology, C02-Q, Albinusdreef 2 2333 ZA Leiden, the Netherlands
| | - Krista C.J. Van Doorn-Wink
- Holland Proton Therapy Center (HollandPTC), Huismansingel 4 2629 JH Delft, the Netherlands
- Leiden University Medical Center (LUMC), Department of Radiotherapy, K01-P, Albinusdreef 2 2333 ZA Leiden, the Netherlands
| |
Collapse
|
2
|
Paganetti H, Simone CB, Bosch WR, Haas-Kogan D, Kirsch DG, Li H, Liang X, Liu W, Mahajan A, Story MD, Taylor PA, Willers H, Xiao Y, Buchsbaum JC. NRG Oncology White Paper on the Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2025; 121:202-217. [PMID: 39059509 PMCID: PMC11646189 DOI: 10.1016/j.ijrobp.2024.07.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
This position paper, led by the NRG Oncology Particle Therapy Work Group, focuses on the concept of relative biologic effect (RBE) in clinical proton therapy (PT), with the goal of providing recommendations for the next-generation clinical trials with PT on the best practice of investigating and using RBE, which could deviate from the current standard proton RBE value of 1.1 relative to photons. In part 1, current clinical utilization and practice are reviewed, giving the context and history of RBE. Evidence for variation in RBE is presented along with the concept of linear energy transfer (LET). The intertwined nature of tumor radiobiology, normal tissue constraints, and treatment planning with LET and RBE considerations is then reviewed. Part 2 summarizes current and past clinical data and then suggests the next steps to explore and employ tools for improved dynamic models for RBE. In part 3, approaches and methods for the next generation of prospective clinical trials are explored, with the goal of optimizing RBE to be both more reflective of clinical reality and also deployable in trials to allow clinical validation and interpatient comparisons. These concepts provide the foundation for personalized biologic treatments reviewed in part 4. Finally, we conclude with a summary including short- and long-term scientific focus points for clinical PT. The practicalities and capacity to use RBE in treatment planning are reviewed and considered with more biological data in hand. The intermediate step of LET optimization is summarized and proposed as a potential bridge to the ultimate goal of case-specific RBE planning that can be achieved as a hypothesis-generating tool in near-term proton trials.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, Massachusetts
| | - David G Kirsch
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Buchsbaum
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
3
|
Denbeigh JM, Howard ME, Garcia DA, Debrot EK, Cole KC, Remmes NB, Beltran CJ. Characterizing Proton-Induced Biological Effects in a Mouse Spinal Cord Model: A Comparison of Bragg Peak and Entrance Beam Response in Single and Fractionated Exposures. Int J Radiat Oncol Biol Phys 2024; 119:924-935. [PMID: 38310485 DOI: 10.1016/j.ijrobp.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 02/05/2024]
Abstract
PURPOSE Proton relative biological effectiveness (RBE) is a dynamic variable influenced by factors like linear energy transfer (LET), dose, tissue type, and biological endpoint. The standard fixed proton RBE of 1.1, currently used in clinical planning, may not accurately represent the true biological effects of proton therapy (PT) in all cases. This uncertainty can contribute to radiation-induced normal tissue toxicity in patients. In late-responding tissues such as the spinal cord, toxicity can cause devastating complications. This study investigated spinal cord tolerance in mice subjected to proton irradiation and characterized the influence of fractionation on proton- induced myelopathy at entrance (ENT) and Bragg peak (BP) positions. METHODS AND MATERIALS Cervical spinal cords of 8-week-old C57BL/6J female mice were irradiated with single- or multi-fractions (18x) using lateral opposed radiation fields at 1 of 2 positions along the Bragg curve: ENT (dose-mean LET = 1.2 keV/μm) and BP (LET = 6.9 keV/μm). Mice were monitored over 1 year for changes in weight, mobility, and general health, with radiation-induced myelopathy as the primary biological endpoint. Calculations of the RBE of the ENT and BP curve (RBEENT/BP) were performed. RESULTS Single-fraction RBEENT/BP for 50% effect probability (tolerance dose (TD50), grade II paresis, determined using log-logistic model fitting) was 1.10 ± 0.06 (95% CI) and for multifraction treatments it was 1.19 ± 0.05 (95% CI). Higher incidence and faster onset of paralysis were seen in mice treated at the BP compared with ENT. CONCLUSIONS The findings challenge the universally fixed RBE value in PT, indicating up to a 25% mouse spinal cord RBEENT/BP variation for multifraction treatments. These results highlight the importance of considering fractionation in determining RBE for PT. Robust characterization of proton-induced toxicity, aided by in vivo models, is paramount for refining clinical decision-making and mitigating potential patient side effects.
Collapse
Affiliation(s)
- Janet M Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida.
| | - Michelle E Howard
- Department of Radiation Oncology, University of Iowa, Iowa City, Iowa
| | - Darwin A Garcia
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Emily K Debrot
- St George Cancer Care Centre, Kogarah, New South Wales, Australia
| | - Kristin C Cole
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
4
|
Stillger MN, Li MJ, Hönscheid P, von Neubeck C, Föll MC. Advancing rare cancer research by MALDI mass spectrometry imaging: Applications, challenges, and future perspectives in sarcoma. Proteomics 2024; 24:e2300001. [PMID: 38402423 DOI: 10.1002/pmic.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
MALDI mass spectrometry imaging (MALDI imaging) uniquely advances cancer research, by measuring spatial distribution of endogenous and exogenous molecules directly from tissue sections. These molecular maps provide valuable insights into basic and translational cancer research, including tumor biology, tumor microenvironment, biomarker identification, drug treatment, and patient stratification. Despite its advantages, MALDI imaging is underutilized in studying rare cancers. Sarcomas, a group of malignant mesenchymal tumors, pose unique challenges in medical research due to their complex heterogeneity and low incidence, resulting in understudied subtypes with suboptimal management and outcomes. In this review, we explore the applicability of MALDI imaging in sarcoma research, showcasing its value in understanding this highly heterogeneous and challenging rare cancer. We summarize all MALDI imaging studies in sarcoma to date, highlight their impact on key research fields, including molecular signatures, cancer heterogeneity, and drug studies. We address specific challenges encountered when employing MALDI imaging for sarcomas, and propose solutions, such as using formalin-fixed paraffin-embedded tissues, and multiplexed experiments, and considerations for multi-site studies and digital data sharing practices. Through this review, we aim to spark collaboration between MALDI imaging researchers and clinical colleagues, to deploy the unique capabilities of MALDI imaging in the context of sarcoma.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mujia Jenny Li
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Pia Hönscheid
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, German Cancer Research Center Heidelberg, Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| |
Collapse
|
5
|
Schneider M, Schilz JD, Schürer M, Gantz S, Dreyer A, Rothe G, Tillner F, Bodenstein E, Horst F, Beyreuther E. SAPPHIRE -establishment of small animal proton and photon image-guided radiation experiments. Phys Med Biol 2024; 69:095020. [PMID: 38537301 DOI: 10.1088/1361-6560/ad3887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Thein vivoevolution of radiotherapy necessitates innovative platforms for preclinical investigation, bridging the gap between bench research and clinical applications. Understanding the nuances of radiation response, specifically tailored to proton and photon therapies, is critical for optimizing treatment outcomes. Within this context, preclinicalin vivoexperimental setups incorporating image guidance for both photon and proton therapies are pivotal, enabling the translation of findings from small animal models to clinical settings. TheSAPPHIREproject represents a milestone in this pursuit, presenting the installation of the small animal radiation therapy integrated beamline (SmART+ IB, Precision X-Ray Inc., Madison, Connecticut, USA) designed for preclinical image-guided proton and photon therapy experiments at University Proton Therapy Dresden. Through Monte Carlo simulations, low-dose on-site cone beam computed tomography imaging and quality assurance alignment protocols, the project ensures the safe and precise application of radiation, crucial for replicating clinical scenarios in small animal models. The creation of Hounsfield lookup tables and comprehensive proton and photon beam characterizations within this system enable accurate dose calculations, allowing for targeted and controlled comparison experiments. By integrating these capabilities,SAPPHIREbridges preclinical investigations and potential clinical applications, offering a platform for translational radiobiology research and cancer therapy advancements.
Collapse
Affiliation(s)
- Moritz Schneider
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Joshua D Schilz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Michael Schürer
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Sebastian Gantz
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Anne Dreyer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Gert Rothe
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Falk Tillner
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Elisabeth Bodenstein
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Felix Horst
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Elke Beyreuther
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| |
Collapse
|
6
|
Metzkes-Ng J, Brack FE, Kroll F, Bernert C, Bock S, Bodenstein E, Brand M, Cowan TE, Gebhardt R, Hans S, Helbig U, Horst F, Jansen J, Kraft SD, Krause M, Leßmann E, Löck S, Pawelke J, Püschel T, Reimold M, Rehwald M, Richter C, Schlenvoigt HP, Schramm U, Schürer M, Seco J, Szabó ER, Umlandt MEP, Zeil K, Ziegler T, Beyreuther E. The DRESDEN PLATFORM is a research hub for ultra-high dose rate radiobiology. Sci Rep 2023; 13:20611. [PMID: 37996453 PMCID: PMC10667545 DOI: 10.1038/s41598-023-46873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The recently observed FLASH effect describes the observation of normal tissue protection by ultra-high dose rates (UHDR), or dose delivery in a fraction of a second, at similar tumor-killing efficacy of conventional dose delivery and promises great benefits for radiotherapy patients. Dedicated studies are now necessary to define a robust set of dose application parameters for FLASH radiotherapy and to identify underlying mechanisms. These studies require particle accelerators with variable temporal dose application characteristics for numerous radiation qualities, equipped for preclinical radiobiological research. Here we present the DRESDEN PLATFORM, a research hub for ultra-high dose rate radiobiology. By uniting clinical and research accelerators with radiobiology infrastructure and know-how, the DRESDEN PLATFORM offers a unique environment for studying the FLASH effect. We introduce its experimental capabilities and demonstrate the platform's suitability for systematic investigation of FLASH by presenting results from a concerted in vivo radiobiology study with zebrafish embryos. The comparative pre-clinical study was conducted across one electron and two proton accelerator facilities, including an advanced laser-driven proton source applied for FLASH-relevant in vivo irradiations for the first time. The data show a protective effect of UHDR irradiation up to [Formula: see text] and suggests consistency of the protective effect even at escalated dose rates of [Formula: see text]. With the first clinical FLASH studies underway, research facilities like the DRESDEN PLATFORM, addressing the open questions surrounding FLASH, are essential to accelerate FLASH's translation into clinical practice.
Collapse
Affiliation(s)
| | | | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elisabeth Bodenstein
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - René Gebhardt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Uwe Helbig
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Horst
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jeannette Jansen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Mechthild Krause
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | - Christian Richter
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Joao Seco
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Emília Rita Szabó
- ELI ALPS, ELI-HU Non-Profit Ltd., Szeged, Hungary
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
7
|
Reimold M, Assenbaum S, Bernert C, Beyreuther E, Brack FE, Karsch L, Kraft SD, Kroll F, Nossula A, Pawelke J, Rehwald M, Schlenvoigt HP, Schramm U, Umlandt MEP, Zeil K, Ziegler T, Metzkes-Ng J. Dosimetry for radiobiological in vivoexperiments at laser plasma-based proton accelerators. Phys Med Biol 2023; 68:185009. [PMID: 37579761 DOI: 10.1088/1361-6560/acf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Objective.Laser plasma-based accelerators (LPAs) of protons can contribute to research of ultra-high dose rate radiobiology as they provide pulse dose rates unprecedented at medical proton sources. Yet, LPAs pose challenges regarding precise and accurate dosimetry due to the high pulse dose rates, but also due to the sources' lower spectral stability and pulsed operation mode. Forin vivomodels, further challenges arise from the necessary small field dosimetry for volumetric dose distributions. For these novel source parameters and intended applications, a dosimetric standard needs to be established.Approach.In this work, we present a dosimetry and beam monitoring framework forin vivoirradiations of small target volumes with LPA protons, solving aforementioned challenges. The volumetric dose distribution in a sample (mean dose value and lateral/depth dose inhomogeneity) is provided by combining two independent dose measurements using radiochromic films (dose rate-independent) and ionization chambers (dose rate-dependent), respectively. The unique feature of the dosimetric setup is beam monitoring with a transmission time-of-flight spectrometer to quantify spectral fluctuations of the irradiating proton pulses. The resulting changes in the depth dose profile during irradiation of anin vivosample are hence accessible and enable pulse-resolved depth dose correction for each dose measurement.Main results.A first successful small animal pilot study using an LPA proton source serves as a testcase for the presented dosimetry approach and proves its performance in a realistic setting.Significance.With several facilities worldwide either setting up or already using LPA infrastructure for radiobiological studies with protons, the importance of LPA-adapted dosimetric frameworks as presented in this work is clearly underlined.
Collapse
Affiliation(s)
- Marvin Reimold
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Stefan Assenbaum
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, D-01309 Dresden, Germany
| | | | - Leonhard Karsch
- OncoRay-National Center for Radiation Research in Oncology, D-01309 Dresden, Germany
| | - Stephan D Kraft
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - Alexej Nossula
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
- Martin-Luther-Universität Halle-Wittenberg, D-06120 Halle, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, D-01309 Dresden, Germany
| | - Martin Rehwald
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | | |
Collapse
|
8
|
Pape K, Lößner AJ, William D, Czempiel T, Beyreuther E, Klimova A, Lehmann C, Schmäche T, Merker SR, Naumann M, Ada AM, Baenke F, Seidlitz T, Bütof R, Dietrich A, Krause M, Weitz J, Klink B, von Neubeck C, Stange DE. Sensitization of Patient-Derived Colorectal Cancer Organoids to Photon and Proton Radiation by Targeting DNA Damage Response Mechanisms. Cancers (Basel) 2022; 14:4984. [PMID: 36291768 PMCID: PMC9599341 DOI: 10.3390/cancers14204984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022] Open
Abstract
Pathological complete response (pCR) has been correlated with overall survival in several cancer entities including colorectal cancer. Novel total neoadjuvant treatment (TNT) in rectal cancer has achieved pathological complete response in one-third of the patients. To define better treatment options for nonresponding patients, we used patient-derived organoids (PDOs) as avatars of the patient's tumor to apply both photon- and proton-based irradiation as well as single and combined chemo(radio)therapeutic treatments. While response to photon and proton therapy was similar, PDOs revealed heterogeneous responses to irradiation and different chemotherapeutic drugs. Radiotherapeutic response of the PDOs was significantly correlated with their ability to repair irradiation-induced DNA damage. The classical combination of 5-FU and irradiation could not sensitize radioresistant tumor cells. Ataxia-telangiectasia mutated (ATM) kinase was activated upon radiation, and by inhibition of this central sensor of DNA damage, radioresistant PDOs were resensitized. The study underlined the capability of PDOs to define nonresponders to irradiation and could delineate therapeutic approaches for radioresistant patients.
Collapse
Affiliation(s)
- Kristin Pape
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Anna J. Lößner
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Doreen William
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hereditary Cancer Syndrome Center Dresden, ERN-GENTURIS, Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tabea Czempiel
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hereditary Cancer Syndrome Center Dresden, ERN-GENTURIS, Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Elke Beyreuther
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, 01307 Dresden, Germany
| | - Anna Klimova
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Claudia Lehmann
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Tim Schmäche
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Sebastian R. Merker
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Max Naumann
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
| | - Anne-Marlen Ada
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Franziska Baenke
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Therese Seidlitz
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Rebecca Bütof
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Antje Dietrich
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
| | - Mechthild Krause
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Barbara Klink
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hereditary Cancer Syndrome Center Dresden, ERN-GENTURIS, Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center of Genetics (NCG), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Cläre von Neubeck
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniel E. Stange
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| |
Collapse
|
9
|
Schneider M, Bodenstein E, Bock J, Dietrich A, Gantz S, Heuchel L, Krause M, Lühr A, von Neubeck C, Nexhipi S, Schürer M, Tillner F, Beyreuther E, Suckert T, Müller JR. Combined proton radiography and irradiation for high-precision preclinical studies in small animals. Front Oncol 2022; 12:982417. [PMID: 36419890 PMCID: PMC9677333 DOI: 10.3389/fonc.2022.982417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Proton therapy has become a popular treatment modality in the field of radiooncology due to higher spatial dose conformity compared to conventional radiotherapy, which holds the potential to spare normal tissue. Nevertheless, unresolved research questions, such as the much debated relative biological effectiveness (RBE) of protons, call for preclinical research, especially regarding in vivo studies. To mimic clinical workflows, high-precision small animal irradiation setups with image-guidance are needed. MATERIAL AND METHODS A preclinical experimental setup for small animal brain irradiation using proton radiographies was established to perform planning, repositioning, and irradiation of mice. The image quality of proton radiographies was optimized regarding the resolution, contrast-to-noise ratio (CNR), and minimal dose deposition in the animal. Subsequently, proof-of-concept histological analysis was conducted by staining for DNA double-strand breaks that were then correlated to the delivered dose. RESULTS The developed setup and workflow allow precise brain irradiation with a lateral target positioning accuracy of<0.26mm for in vivo experiments at minimal imaging dose of<23mGy per mouse. The custom-made software for image registration enables the fast and precise animal positioning at the beam with low observer-variability. DNA damage staining validated the successful positioning and irradiation of the mouse hippocampus. CONCLUSION Proton radiography enables fast and effective high-precision lateral alignment of proton beam and target volume in mouse irradiation experiments with limited dose exposure. In the future, this will enable irradiation of larger animal cohorts as well as fractionated proton irradiation.
Collapse
Affiliation(s)
- Moritz Schneider
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Elisabeth Bodenstein
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Johanna Bock
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Antje Dietrich
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Sebastian Gantz
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Lena Heuchel
- Technical University (TU) Dortmund- Faculty of Physics, Medical Physics and Radiotherapy, Dortmund, Germany
| | - Mechthild Krause
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Armin Lühr
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- Technical University (TU) Dortmund- Faculty of Physics, Medical Physics and Radiotherapy, Dortmund, Germany
| | - Cläre von Neubeck
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sindi Nexhipi
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Michael Schürer
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Falk Tillner
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden, Dresden, Germany
| | - Elke Beyreuther
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Theresa Suckert
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), partner site Dresden- German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Johannes Richard Müller
- OncoRay, National Center for Radiation Research in Oncology- Faculty of Medicine and University Hospital Carl Gustav Carus- Technische Universitat Dresden-Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Deutsche Forschungsgemeinschaft Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Mairani A, Mein S, Blakely E, Debus J, Durante M, Ferrari A, Fuchs H, Georg D, Grosshans DR, Guan F, Haberer T, Harrabi S, Horst F, Inaniwa T, Karger CP, Mohan R, Paganetti H, Parodi K, Sala P, Schuy C, Tessonnier T, Titt U, Weber U. Roadmap: helium ion therapy. Phys Med Biol 2022; 67. [PMID: 35395649 DOI: 10.1088/1361-6560/ac65d3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVμm-1to ∼40 keVμm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVμm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.
Collapse
Affiliation(s)
- Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - David R Grosshans
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Fada Guan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhe Mohan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America.,Harvard Medical School, Boston, United States of America
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Paola Sala
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Titt
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Ulrich Weber
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| |
Collapse
|
11
|
Naumann M, Czempiel T, Lößner AJ, Pape K, Beyreuther E, Löck S, Drukewitz S, Hennig A, von Neubeck C, Klink B, Krause M, William D, Stange DE, Bütof R, Dietrich A. Combined Systemic Drug Treatment with Proton Therapy: Investigations on Patient-Derived Organoids. Cancers (Basel) 2022; 14:cancers14153781. [PMID: 35954444 PMCID: PMC9367296 DOI: 10.3390/cancers14153781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
To optimize neoadjuvant radiochemotherapy of pancreatic ductal adenocarcinoma (PDAC), the value of new irradiation modalities such as proton therapy needs to be investigated in relevant preclinical models. We studied individual treatment responses to RCT using patient-derived PDAC organoids (PDO). Four PDO lines were treated with gemcitabine, 5-fluorouracile (5FU), photon and proton irradiation and combined RCT. Therapy response was subsequently measured via viability assays. In addition, treatment-naive PDOs were characterized via whole exome sequencing and tumorigenicity was investigated in NMRI Foxn1nu/nu mice. We found a mutational pattern containing common mutations associated with PDAC within the PDOs. Although we could unravel potential complications of the viability assay for PDOs in radiobiology, distinct synergistic effects of gemcitabine and 5FU with proton irradiation were observed in two PDO lines that may lead to further mechanistical studies. We could demonstrate that PDOs are a powerful tool for translational proton radiation research.
Collapse
Affiliation(s)
- Max Naumann
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tabea Czempiel
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (T.C.); (S.D.); (B.K.); (D.W.)
| | - Anna Jana Lößner
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (A.J.L.); (K.P.); (A.H.); (D.E.S.)
| | - Kristin Pape
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (A.J.L.); (K.P.); (A.H.); (D.E.S.)
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Steffen Löck
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany
| | - Stephan Drukewitz
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (T.C.); (S.D.); (B.K.); (D.W.)
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Alexander Hennig
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (A.J.L.); (K.P.); (A.H.); (D.E.S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Cläre von Neubeck
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
- Clinic for Particle Therapy, University Hospital Essen, Universität Duisburg Essen, 45147 Essen, Germany
| | - Barbara Klink
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (T.C.); (S.D.); (B.K.); (D.W.)
- Department of Genetics, Laboratoire National de Santé, 3555 Dudelange, Luxembourg
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, 01307 Dresden, Germany
| | - Mechthild Krause
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany
| | - Doreen William
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany; (T.C.); (S.D.); (B.K.); (D.W.)
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, ERN-GENTURIS, Hereditary Cancer Syndrome Center Dresden, 01307 Dresden, Germany
| | - Daniel E. Stange
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (A.J.L.); (K.P.); (A.H.); (D.E.S.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Rebecca Bütof
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany
| | - Antje Dietrich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (M.N.); (E.B.); (S.L.); (C.v.N.); (M.K.); (R.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
12
|
Experimental Setup for Irradiation of Cell Cultures at L2A2. QUANTUM BEAM SCIENCE 2022. [DOI: 10.3390/qubs6010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Laser–plasma proton sources and their applications to preclinical research has become a very active field of research in recent years. In addition to their small dimensions as compared to classical ion accelerators, they offer the possibility to study the biological effects of ultra-short particle bunches and the correspondingly high dose rates. We report on the design of an experimental setup for the irradiation of cell cultures at the L2A2 laboratory at the University of Santiago de Compostela, making use of a 1.2 J Ti: Sapphire laser with a 10 Hz repetition rate. Our setup comprises a proton energy separator consisting of two antiparallel magnetic fields realized by a set of permanent magnets. It allows for selecting a narrow energy window around an adaptable design value of 5 MeV out of the initially broad spectrum typical for Target Normal Sheath Acceleration (TNSA). At the same time, unwanted electrons and X-rays are segregated from the protons. This part of the setup is located inside the target vessel of the L2A2 laser. A subsequent vacuum flange sealed with a thin kapton window allows for particle passage to external sample irradiation. A combination of passive detector materials and real-time monitors is applied for measurement of the deposited radiation dose. A critical point of this interdisciplinary project is the manipulation of biological samples under well-controlled, sterile conditions. Cell cultures are prepared in sealed flasks with an ultra-thin entrance window and analysed at the nearby Fundación Pública Galega Medicina Xenómica and IDIS. The first trials will be centred at the quantification of DNA double-strand breaks as a function of radiation dose.
Collapse
|
13
|
High-Throughput 3D Tumor Spheroid Array Platform for Evaluating Sensitivity of Proton-Drug Combinations. Int J Mol Sci 2022; 23:ijms23020587. [PMID: 35054773 PMCID: PMC8775525 DOI: 10.3390/ijms23020587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Proton beam therapy (PBT) is a critical treatment modality for head and neck squamous cell carcinoma (HNSCC). However, not much is known about drug combinations that may improve the efficacy of PBT. This study aimed to test the feasibility of a three-dimensional (3D) tumor-spheroid-based high-throughput screening platform that could assess cellular sensitivity against PBT. Spheroids of two HNSCC cell lines—Fadu and Cal27—cultured with a mixture of Matrigel were arrayed on a 384-pillar/well plate, followed by exposure to graded doses of protons or targeted drugs including olaparib at various concentrations. Calcein staining of HNSCC spheroids revealed a dose-dependent decrease in cell viability for proton irradiation or multiple targeted drugs, and provided quantitative data that discriminated the sensitivity between the two HNSCC cell lines. The combined effect of protons and olaparib was assessed by calculating the combination index from the survival rates of 4 × 4 matrices, showing that Cal27 spheroids had greater synergy with olaparib than Fadu spheroids. In contrast, adavosertib did not synergize with protons in both spheroids. Taken together, we demonstrated that the 3D pillar/well array platform was a useful tool that provided rapid, quantitative data for evaluating sensitivity to PBT and drug combinations. Our results further supported that administration of the combination of PBT and olaparib may be an effective treatment strategy for HNSCC patients.
Collapse
|