1
|
Haripriya E, Hemalatha K, Matada GSP, Pal R, Das PK, Ashadul Sk MD, Mounika S, Viji MP, Aayishamma I, Jayashree KR. Advancements of anticancer agents by targeting the Hippo signalling pathway: biological activity, selectivity, docking analysis, and structure-activity relationship. Mol Divers 2024:10.1007/s11030-024-11009-1. [PMID: 39436581 DOI: 10.1007/s11030-024-11009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
The Hippo signalling pathway is prominent and governs cell proliferation and stem cell activity, acting as a growth regulator and tumour suppressor. Defects in Hippo signalling and hyperactivation of its downstream effector's Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) play roles in cancer development, implying that pharmacological inhibition of YAP and TAZ activity could be an effective cancer treatment strategy. Conversely, YAP and TAZ can also have beneficial effects in promoting tissue repair and regeneration following damage, therefore their activation may be therapeutically effective in certain instances. Recently, a complex network of intracellular and extracellular signalling mechanisms that affect YAP and TAZ activity has been uncovered. The YAP/TAZ-TEAD interaction leads to tumour development and the protein structure of YAP/TAZ-TEAD includes three interfaces and one hydrophobic pocket. There are clinical and preclinical trial drugs available to inhibit the hippo signalling pathway, but these drugs have moderate to severe side effects, so researchers are in search of novel, potent, and selective hippo signalling pathway inhibitors. In this review, we have discussed the hippo pathway in detail, including its structure, activation, and role in cancer. We have also provided the various inhibitors under clinical and preclinical trials, and advancement of small molecules their detailed docking analysis, structure-activity relationship, and biological activity. We anticipate that the current study will be a helpful resource for researchers.
Collapse
Affiliation(s)
- E Haripriya
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K Hemalatha
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M D Ashadul Sk
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - S Mounika
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - I Aayishamma
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K R Jayashree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
2
|
Zhou C, Sun C, Zhou W, Tian T, Schultz DC, Wu T, Yu M, Wu L, Pi L, Li C. Development of Novel Indole-Based Covalent Inhibitors of TEAD as Potential Antiliver Cancer Agents. J Med Chem 2024; 67:16270-16295. [PMID: 39270302 DOI: 10.1021/acs.jmedchem.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Abnormal activation of the YAP transcriptional signaling pathway drives proliferation in many hepatocellular carcinoma (HCC) and hepatoblastoma (HB) cases. Current treatment options often face resistance and toxicity, highlighting the need for alternative therapies. This article reports the discovery of a hit compound C-3 from docking-based virtual screening targeting TEAD lipid binding pocket, which inhibited TEAD-mediated transcription. Optimization led to the identification of a potent and covalent inhibitor CV-4-26 that exhibited great antitumor activity in HCC and HB cell lines in vitro, xenografted human HCC, and murine HB in vivo. These outcomes signify the potential of a highly promising therapeutic candidate for addressing a subset of HCC and HB cancers. In the cases of current treatment challenges due to high upregulation of YAP-TEAD activity, these findings offer a targeted alternative for more effective interventions against liver cancer.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Chunbao Sun
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Tian Tian
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Daniel C Schultz
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Mu Yu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
- UF Institute of Genetics, University of Florida, Gainesville, Florida 32610, United States
| | - Liya Pi
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
3
|
Kim J, Jin H, Kim J, Cho SY, Moon S, Wang J, Mao J, No KT. Leveraging the Fragment Molecular Orbital and MM-GBSA Methods in Virtual Screening for the Discovery of Novel Non-Covalent Inhibitors Targeting the TEAD Lipid Binding Pocket. Int J Mol Sci 2024; 25:5358. [PMID: 38791396 PMCID: PMC11121470 DOI: 10.3390/ijms25105358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The Hippo pathway controls organ size and homeostasis and is linked to numerous diseases, including cancer. The transcriptional enhanced associate domain (TEAD) family of transcription factors acts as a receptor for downstream effectors, namely yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), which binds to various transcription factors and is essential for stimulated gene transcription. YAP/TAZ-TEAD facilitates the upregulation of multiple genes involved in evolutionary cell proliferation and survival. TEAD1-4 overexpression has been observed in different cancers in various tissues, making TEAD an attractive target for drug development. The central drug-accessible pocket of TEAD is crucial because it undergoes a post-translational modification called auto-palmitoylation. Crystal structures of the C-terminal TEAD complex with small molecules are available in the Protein Data Bank, aiding structure-based drug design. In this study, we utilized the fragment molecular orbital (FMO) method, molecular dynamics (MD) simulations, shape-based screening, and molecular mechanics-generalized Born surface area (MM-GBSA) calculations for virtual screening, and we identified a novel non-covalent inhibitor-BC-001-with IC50 = 3.7 μM in a reporter assay. Subsequently, we optimized several analogs of BC-001 and found that the optimized compound BC-011 exhibited an IC50 of 72.43 nM. These findings can be used to design effective TEAD modulators with anticancer therapeutic implications.
Collapse
Affiliation(s)
- Jongwan Kim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Haiyan Jin
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (J.K.); (J.W.); (J.M.)
| | - Jinhyuk Kim
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (J.K.); (J.W.); (J.M.)
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea; (S.Y.C.); (S.M.)
| | - Seon Yeon Cho
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea; (S.Y.C.); (S.M.)
| | - Sungho Moon
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea; (S.Y.C.); (S.M.)
| | - Jianmin Wang
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (J.K.); (J.W.); (J.M.)
| | - Jiashun Mao
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (J.K.); (J.W.); (J.M.)
| | - Kyoung Tai No
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (J.K.); (J.W.); (J.M.)
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea; (S.Y.C.); (S.M.)
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Yuan Z, Chen X, Fan S, Chang L, Chu L, Zhang Y, Wang J, Li S, Xie J, Hu J, Miao R, Zhu L, Zhao Z, Li H, Li S. Binding Free Energy Calculation Based on the Fragment Molecular Orbital Method and Its Application in Designing Novel SHP-2 Allosteric Inhibitors. Int J Mol Sci 2024; 25:671. [PMID: 38203841 PMCID: PMC10779950 DOI: 10.3390/ijms25010671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The accurate prediction of binding free energy is a major challenge in structure-based drug design. Quantum mechanics (QM)-based approaches show promising potential in predicting ligand-protein binding affinity by accurately describing the behavior and structure of electrons. However, traditional QM calculations face computational limitations, hindering their practical application in drug design. Nevertheless, the fragment molecular orbital (FMO) method has gained widespread application in drug design due to its ability to reduce computational costs and achieve efficient ab initio QM calculations. Although the FMO method has demonstrated its reliability in calculating the gas phase potential energy, the binding of proteins and ligands also involves other contributing energy terms, such as solvent effects, the 'deformation energy' of a ligand's bioactive conformations, and entropy. Particularly in cases involving ionized fragments, the calculation of solvation free energy becomes particularly crucial. We conducted an evaluation of some previously reported implicit solvent methods on the same data set to assess their potential for improving the performance of the FMO method. Herein, we develop a new QM-based binding free energy calculation method called FMOScore, which enhances the performance of the FMO method. The FMOScore method incorporates linear fitting of various terms, including gas-phase potential energy, deformation energy, and solvation free energy. Compared to other widely used traditional prediction methods such as FEP+, MM/PBSA, MM/GBSA, and Autodock vina, FMOScore showed good performance in prediction accuracies. By constructing a retrospective case study, it was observed that incorporating calculations for solvation free energy and deformation energy can further enhance the precision of FMO predictions for binding affinity. Furthermore, using FMOScore-guided lead optimization against Src homology-2-containing protein tyrosine phosphatase 2 (SHP-2), we discovered a novel and potent allosteric SHP-2 inhibitor (compound 8).
Collapse
Affiliation(s)
- Zhen Yuan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Xingyu Chen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Sisi Fan
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Longfeng Chang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Linna Chu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Ying Zhang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Jie Wang
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Shuang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Jinxin Xie
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Jianguo Hu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Runyu Miao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai 200062, China
- Lingang Laboratory, Shanghai 200031, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, China; (Z.Y.); (X.C.); (S.F.); (Z.Z.)
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai 200062, China
| |
Collapse
|
5
|
Shin JE, Kim SH, Kong M, Kim HR, Yoon S, Kee KM, Kim JA, Kim DH, Park SY, Park JH, Kim H, No KT, Lee HW, Gee HY, Hong S, Guan KL, Roe JS, Lee H, Kim DW, Park HW. Targeting FLT3-TAZ signaling to suppress drug resistance in blast phase chronic myeloid leukemia. Mol Cancer 2023; 22:177. [PMID: 37932786 PMCID: PMC10626670 DOI: 10.1186/s12943-023-01837-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/01/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Although the development of BCR::ABL1 tyrosine kinase inhibitors (TKIs) rendered chronic myeloid leukemia (CML) a manageable condition, acquisition of drug resistance during blast phase (BP) progression remains a critical challenge. Here, we reposition FLT3, one of the most frequently mutated drivers of acute myeloid leukemia (AML), as a prognostic marker and therapeutic target of BP-CML. METHODS We generated FLT3 expressing BCR::ABL1 TKI-resistant CML cells and enrolled phase-specific CML patient cohort to obtain unpaired and paired serial specimens and verify the role of FLT3 signaling in BP-CML patients. We performed multi-omics approaches in animal and patient studies to demonstrate the clinical feasibility of FLT3 as a viable target of BP-CML by establishing the (1) molecular mechanisms of FLT3-driven drug resistance, (2) diagnostic methods of FLT3 protein expression and localization, (3) association between FLT3 signaling and CML prognosis, and (4) therapeutic strategies to tackle FLT3+ CML patients. RESULTS We reposition the significance of FLT3 in the acquisition of drug resistance in BP-CML, thereby, newly classify a FLT3+ BP-CML subgroup. Mechanistically, FLT3 expression in CML cells activated the FLT3-JAK-STAT3-TAZ-TEAD-CD36 signaling pathway, which conferred resistance to a wide range of BCR::ABL1 TKIs that was independent of recurrent BCR::ABL1 mutations. Notably, FLT3+ BP-CML patients had significantly less favorable prognosis than FLT3- patients. Remarkably, we demonstrate that repurposing FLT3 inhibitors combined with BCR::ABL1 targeted therapies or the single treatment with ponatinib alone can overcome drug resistance and promote BP-CML cell death in patient-derived FLT3+ BCR::ABL1 cells and mouse xenograft models. CONCLUSION Here, we reposition FLT3 as a critical determinant of CML progression via FLT3-JAK-STAT3-TAZ-TEAD-CD36 signaling pathway that promotes TKI resistance and predicts worse prognosis in BP-CML patients. Our findings open novel therapeutic opportunities that exploit the undescribed link between distinct types of malignancies.
Collapse
Affiliation(s)
- Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soo-Hyun Kim
- Leukemia Omics Research Institute, Eulji University, Uijeongbu-si, Gyeonggi-Do, Republic of Korea
| | - Mingyu Kong
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungmin Yoon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyung-Mi Kee
- Leukemia Omics Research Institute, Eulji University, Uijeongbu-si, Gyeonggi-Do, Republic of Korea
| | - Jung Ah Kim
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dong Hyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hongtae Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Kyoung Tai No
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon, 21983, Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seunghee Hong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunbeom Lee
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Korea
| | - Dong-Wook Kim
- Leukemia Omics Research Institute, Eulji University, Uijeongbu-si, Gyeonggi-Do, Republic of Korea.
- Hematology Department, Eulji Medical Center, Eulji University, Uijeongbu-si, Gyeonggi-Do, Republic of Korea.
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Jin H, Kim J, Lee O, Kim H, No KT. Leveraging the Fragment Molecular Orbital Method to Explore the PLK1 Kinase Binding Site and Polo-Box Domain for Potent Small-Molecule Drug Design. Int J Mol Sci 2023; 24:15639. [PMID: 37958623 PMCID: PMC10650754 DOI: 10.3390/ijms242115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Polo-like kinase 1 (PLK1) plays a pivotal role in cell division regulation and emerges as a promising therapeutic target for cancer treatment. Consequently, the development of small-molecule inhibitors targeting PLK1 has become a focal point in contemporary research. The adenosine triphosphate (ATP)-binding site and the polo-box domain in PLK1 present crucial interaction sites for these inhibitors, aiming to disrupt the protein's function. However, designing potent and selective small-molecule inhibitors can be challenging, requiring a deep understanding of protein-ligand interaction mechanisms at these binding sites. In this context, our study leverages the fragment molecular orbital (FMO) method to explore these site-specific interactions in depth. Using the FMO approach, we used the FMO method to elucidate the molecular mechanisms of small-molecule drugs binding to these sites to design PLK1 inhibitors that are both potent and selective. Our investigation further entailed a comparative analysis of various PLK1 inhibitors, each characterized by distinct structural attributes, helping us gain a better understanding of the relationship between molecular structure and biological activity. The FMO method was particularly effective in identifying key binding features and predicting binding modes for small-molecule ligands. Our research also highlighted specific "hot spot" residues that played a critical role in the selective and robust binding of PLK1. These findings provide valuable insights that can be used to design new and effective PLK1 inhibitors, which can have significant implications for developing anticancer therapeutics.
Collapse
Affiliation(s)
- Haiyan Jin
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
| | - Jongwan Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
| | - Onju Lee
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
| | - Hyein Kim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
| | - Kyoung Tai No
- The Interdisciplinary Graduate Program in Integrative Biotechnology & Translational Medicine, Yonsei University, Incheon 21983, Republic of Korea; (H.J.); (O.L.)
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon 21983, Republic of Korea;
- Baobab AiBIO Co., Ltd., Incheon 21983, Republic of Korea
| |
Collapse
|
7
|
Sladek V, Šmak P, Tvaroška I. How E-, L-, and P-Selectins Bind to sLe x and PSGL-1: A Quantification of Critical Residue Interactions. J Chem Inf Model 2023; 63:5604-5618. [PMID: 37486087 DOI: 10.1021/acs.jcim.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Selectins and their ability to interact with specific ligands are a cornerstone in cell communication. Over the last three decades, a considerable wealth of experimental and molecular modeling insights into their structure and modus operandi were gathered. Nonetheless, explaining the role of individual selectin residues on a quantitative level remained elusive, despite its importance in understanding the structure-function relationship in these molecules and designing their inhibitors. This work explores essential interactions of selectin-ligand binding, employing a multiscale approach that combines molecular dynamics, quantum-chemical calculations, and residue interaction network models. Such an approach successfully reproduces most of the experimental findings. It proves to be helpful, with the potential for becoming an established tool for quantitative predictions of residue contribution to the binding of biomolecular complexes. The results empower us to quantify the importance of particular residues and functional groups in the protein-ligand interface and to pinpoint differences in molecular recognition by the three selectins. We show that mutations in the E-, L-, and P-selectins, e.g., different residues in positions 46, 85, 97, and 107, present a crucial difference in how the ligand is engaged. We assess the role of sulfation of tyrosine residues in PSGL-1 and suggest that TyrSO3- in position 51 interacting with Arg85 in P-selectin is a significant factor in the increased affinity of P-selectin to PSGL-1 compared to E- and L-selectins. We propose an original pharmacophore targeting five essential PSGL-binding sites based on the analysis of the selectin···PSGL-1 interactions.
Collapse
Affiliation(s)
- Vladimir Sladek
- Institute of Chemistry, SAS, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Pavel Šmak
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Igor Tvaroška
- Institute of Chemistry, SAS, Dubravska cesta 9, 84538 Bratislava, Slovakia
| |
Collapse
|
8
|
Cui Y, Miao MZ, Wang M, Su QP, Qiu K, Arbeeva L, Chubinskaya S, Diekman BO, Loeser RF. Yes-associated protein nuclear translocation promotes anabolic activity in human articular chondrocytes. Osteoarthritis Cartilage 2023; 31:1078-1090. [PMID: 37100374 PMCID: PMC10524185 DOI: 10.1016/j.joca.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVE Yes-associated protein (YAP) has been widely studied as a mechanotransducer in many cell types, but its function in cartilage is controversial. The aim of this study was to identify the effect of YAP phosphorylation and nuclear translocation on the chondrocyte response to stimuli relevant to osteoarthritis (OA). DESIGN Cultured normal human articular chondrocytes from 81 donors were treated with increased osmolarity media as an in vitro model of mechanical stimulation, fibronectin fragments (FN-f) or IL-1β as catabolic stimuli, and IGF-1 as an anabolic stimulus. YAP function was assessed with gene knockdown and inhibition by verteporfin. Nuclear translocation of YAP and its transcriptional co-activator TAZ and site-specific YAP phosphorylation were determined by immunoblotting. Immunohistochemistry and immunofluorescence to detect YAP were performed on normal and OA human cartilage with different degrees of damage. RESULTS Chondrocyte YAP/TAZ nuclear translocation increased under physiological osmolarity (400 mOsm) and IGF-1 stimulation, which was associated with YAP phosphorylation at Ser128. In contrast, catabolic stimulation decreased the levels of nuclear YAP/TAZ through YAP phosphorylation at Ser127. Following YAP inhibition, anabolic gene expression and transcriptional activity decreased. Additionally, YAP knockdown reduced proteoglycan staining and levels of type II collagen. Total YAP immunostaining was greater in OA cartilage, but YAP was sequestered in the cytosol in cartilage areas with more severe damage. CONCLUSIONS YAP chondrocyte nuclear translocation is regulated by differential phosphorylation in response to anabolic and catabolic stimuli. Decreased nuclear YAP in OA chondrocytes may contribute to reduced anabolic activity and promotion of further cartilage loss.
Collapse
Affiliation(s)
- Y Cui
- Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.
| | - M Z Miao
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Division of Oral & Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, 27599, USA.
| | - M Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA.
| | - Q P Su
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - K Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA.
| | - L Arbeeva
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.
| | - S Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - B O Diekman
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27599, USA.
| | - R F Loeser
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
9
|
Zhao B, Pobbati AV, Rubin BP, Stauffer S. Leveraging Hot Spots of TEAD-Coregulator Interactions in the Design of Direct Small Molecule Protein-Protein Interaction Disruptors Targeting Hippo Pathway Signaling. Pharmaceuticals (Basel) 2023; 16:ph16040583. [PMID: 37111340 PMCID: PMC10146773 DOI: 10.3390/ph16040583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The Hippo signaling pathway is a highly conserved pathway that plays important roles in the regulation of cell proliferation and apoptosis. Transcription factors TEAD1-4 and transcriptional coregulators YAP/TAZ are the downstream effectors of the Hippo pathway and can modulate Hippo biology. Dysregulation of this pathway is implicated in tumorigenesis and acquired resistance to therapies. The emerging importance of YAP/TAZ-TEAD interaction in cancer development makes it a potential therapeutic target. In the past decade, disrupting YAP/TAZ-TEAD interaction as an effective approach for cancer treatment has achieved great progress. This approach followed a trajectory wherein peptidomimetic YAP-TEAD protein-protein interaction disruptors (PPIDs) were first designed, followed by the discovery of allosteric small molecule PPIDs, and currently, the development of direct small molecule PPIDs. YAP and TEAD form three interaction interfaces. Interfaces 2 and 3 are amenable for direct PPID design. One direct YAP-TEAD PPID (IAG933) that targets interface 3 has entered a clinical trial in 2021. However, in general, strategically designing effective small molecules PPIDs targeting TEAD interfaces 2 and 3 has been challenging compared with allosteric inhibitor development. This review focuses on the development of direct surface disruptors and discusses the challenges and opportunities for developing potent YAP/TAZ-TEAD inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhao
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ajaybabu V Pobbati
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Shaun Stauffer
- Cleveland Clinic Center for Therapeutics Discovery, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
10
|
Nakata H, Fedorov DG. Analytic Gradient for Time-Dependent Density Functional Theory Combined with the Fragment Molecular Orbital Method. J Chem Theory Comput 2023; 19:1276-1285. [PMID: 36753486 DOI: 10.1021/acs.jctc.2c01177] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The analytic energy gradient of energy with respect to nuclear coordinates is derived for the fragment molecular orbital (FMO) method combined with time-dependent density functional theory (TDDFT). The response terms arising from the use of a polarizable embedding are derived. The obtained analytic FMO-TDDFT gradient is shown to be accurate in comparison to both numerical FMO-TDDFT and unfragmented TDDFT gradients, at the level of two- and three-body expansions. The gradients are used for geometry optimizations, molecular dynamics, vibrational calculations, and simulations of IR and Raman spectra of excited states. The developed method is used to optimize the geometry of the ground and excited electronic states of the photoactive yellow protein (PDB: 2PHY).
Collapse
Affiliation(s)
- Hiroya Nakata
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
11
|
Pobbati AV, Kumar R, Rubin BP, Hong W. Therapeutic targeting of TEAD transcription factors in cancer. Trends Biochem Sci 2023; 48:450-462. [PMID: 36709077 DOI: 10.1016/j.tibs.2022.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
The Hippo signaling pathway inhibits the activity of the oncogenic YAP (Yes-associated protein)/TAZ (transcriptional co-activator with PDZ-binding motif)-TEAD (TEA/ATTS domain) transcriptional complex. In cancers, inactivating mutations in upstream Hippo components and/or enhanced activity of YAP/TAZ and TEAD have been observed. The activity of this transcriptional complex can be effectively inhibited by targeting the TEAD family of transcription factors. The development of TEAD inhibitors has been driven by the discovery that TEAD has druggable hydrophobic pockets, and is currently at the clinical development stage. Three small molecule TEAD inhibitors are currently being tested in Phase I clinical trials. In this review, we highlight the role of TEADs in cancer, discuss various avenues through which TEAD activity can be inhibited, and outline the opportunities for the administration of TEAD inhibitors.
Collapse
Affiliation(s)
- Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology, and Research), Singapore 138673.
| |
Collapse
|
12
|
Fedorov DG. Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method. J Chem Phys 2022; 157:231001. [PMID: 36550057 DOI: 10.1063/5.0131256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fast parameterized methods such as density-functional tight-binding (DFTB) facilitate realistic calculations of large molecular systems, which can be accelerated by the fragment molecular orbital (FMO) method. Fragmentation facilitates interaction analyses between functional parts of molecular systems. In addition to DFTB, other parameterized methods combined with FMO are also described. Applications of FMO methods to biochemical and inorganic systems are reviewed.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
13
|
Lou J, Lu Y, Cheng J, Zhou F, Yan Z, Zhang D, Meng X, Zhao Y. A chemical perspective on the modulation of TEAD transcriptional activities: Recent progress, challenges, and opportunities. Eur J Med Chem 2022; 243:114684. [DOI: 10.1016/j.ejmech.2022.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
|
14
|
The Importance of Charge Transfer and Solvent Screening in the Interactions of Backbones and Functional Groups in Amino Acid Residues and Nucleotides. Int J Mol Sci 2022; 23:ijms232113514. [PMID: 36362296 PMCID: PMC9654426 DOI: 10.3390/ijms232113514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Quantum mechanical (QM) calculations at the level of density-functional tight-binding are applied to a protein–DNA complex (PDB: 2o8b) consisting of 3763 atoms, averaging 100 snapshots from molecular dynamics simulations. A detailed comparison of QM and force field (Amber) results is presented. It is shown that, when solvent screening is taken into account, the contributions of the backbones are small, and the binding of nucleotides in the double helix is governed by the base–base interactions. On the other hand, the backbones can make a substantial contribution to the binding of amino acid residues to nucleotides and other residues. The effect of charge transfer on the interactions is also analyzed, revealing that the actual charge of nucleotides and amino acid residues can differ by as much as 6 and 8% from the formal integer charge, respectively. The effect of interactions on topological models (protein -residue networks) is elucidated.
Collapse
|
15
|
Furet P, Bordas V, Le Douget M, Salem B, Mesrouze Y, Imbach-Weese P, Sellner H, Voegtle M, Soldermann N, Chapeau E, Wartmann M, Scheufler C, Fernandez C, Kallen J, Guagnano V, Chène P, Schmelzle T. The First Class of Small Molecules Potently Disrupting the YAP-TEAD Interaction by Direct Competition. ChemMedChem 2022; 17:e202200303. [PMID: 35950546 DOI: 10.1002/cmdc.202200303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/10/2022] [Indexed: 11/08/2022]
Abstract
Inhibition of the YAP-TEAD protein protein interaction is an attractive therapeutic concept under intense investigation with the objective to treat cancers associated with a dysregulation of the Hippo pathway. However, owing to the very extended surface of interaction of the two proteins, the identification of small drug-like molecules able to efficiently prevent YAP from binding to TEAD by direct competition has been elusive so far. We disclose here the discovery of the first class of small molecules potently inhibiting the YAP-TEAD interaction by binding at one of the main interaction sites of YAP at the surface of TEAD. These inhibitors, providing a path forward to pharmacological intervention in the Hippo pathway, evolved from a weakly active virtual screening hit advanced to high potency by structure-based design.
Collapse
Affiliation(s)
- Pascal Furet
- Novartis Pharma AG, Biomedical Research, 4002, Basel, SWITZERLAND
| | - Vincent Bordas
- Novartis Institutes for BioMedical Research Basel, GDC, SWITZERLAND
| | | | - Bahaa Salem
- Novartis Institutes for BioMedical Research Basel, GDC, SWITZERLAND
| | - Yannick Mesrouze
- Novartis Institutes for BioMedical Research Basel, ODD, SWITZERLAND
| | | | - Holger Sellner
- Novartis Institutes for BioMedical Research Basel, GDC, SWITZERLAND
| | - Markus Voegtle
- Novartis Institutes for BioMedical Research Basel, GDC, SWITZERLAND
| | | | - Emilie Chapeau
- Novartis Institutes for BioMedical Research Basel, ODD, SWITZERLAND
| | - Markus Wartmann
- Novartis Institutes for BioMedical Research Basel, ODD, SWITZERLAND
| | | | - Cesar Fernandez
- Novartis Institutes for BioMedical Research Basel, CBT, SWITZERLAND
| | - Joerg Kallen
- Novartis Institutes for BioMedical Research Basel, CBT, SWITZERLAND
| | - Vito Guagnano
- Novartis Institutes for BioMedical Research Basel, GDC, SWITZERLAND
| | - Patrick Chène
- Novartis Institutes for BioMedical Research Basel, ODD, SWITZERLAND
| | - Tobias Schmelzle
- Novartis Institutes for BioMedical Research Basel, ODD, SWITZERLAND
| |
Collapse
|
16
|
Monteleone S, Fedorov DG, Townsend-Nicholson A, Southey M, Bodkin M, Heifetz A. Hotspot Identification and Drug Design of Protein-Protein Interaction Modulators Using the Fragment Molecular Orbital Method. J Chem Inf Model 2022; 62:3784-3799. [PMID: 35939049 DOI: 10.1021/acs.jcim.2c00457] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-protein interactions (PPIs) are essential for the function of many proteins. Aberrant PPIs have the potential to lead to disease, making PPIs promising targets for drug discovery. There are over 64,000 PPIs in the human interactome reference database; however, to date, very few PPI modulators have been approved for clinical use. Further development of PPI-specific therapeutics is highly dependent on the availability of structural data and the existence of reliable computational tools to explore the interface between two interacting proteins. The fragment molecular orbital (FMO) quantum mechanics method offers comprehensive and computationally inexpensive means of identifying the strength (in kcal/mol) and the chemical nature (electrostatic or hydrophobic) of the molecular interactions taking place at the protein-protein interface. We have integrated FMO and PPI exploration (FMO-PPI) to identify the residues that are critical for protein-protein binding (hotspots). To validate this approach, we have applied FMO-PPI to a dataset of protein-protein complexes representing several different protein subfamilies and obtained FMO-PPI results that are in agreement with published mutagenesis data. We observed that critical PPIs can be divided into three major categories: interactions between residues of two proteins (intermolecular), interactions between residues within the same protein (intramolecular), and interactions between residues of two proteins that are mediated by water molecules (water bridges). We extended our findings by demonstrating how this information obtained by FMO-PPI can be utilized to support the structure-based drug design of PPI modulators (SBDD-PPI).
Collapse
Affiliation(s)
- Stefania Monteleone
- Evotec UK Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Andrea Townsend-Nicholson
- Institute of Structural & Molecular Biology, Research Department of Structural & Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Michelle Southey
- Evotec UK Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Michael Bodkin
- Evotec UK Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Alexander Heifetz
- Evotec UK Ltd., 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| |
Collapse
|
17
|
Cheng Q, Yu X, Xiong Z, Wan Z, Li Y, Ma W, Tan W, Liu M, Shea KJ. Abiotic Synthetic Antibodies to Target a Specific Protein Domain and Inhibit Its Function. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19178-19191. [PMID: 35442625 DOI: 10.1021/acsami.2c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Bacillus thuringiensis (Bt) Cry proteins are widely used in insect pest control. Despite their economic benefits, remaining concerns over potential ecological and health risks warrant their ongoing surveillance. Affinity reagents, most often antibodies, protein scaffolds, and aptamers, are the traditional tools used for protein binding and detection. We report a synthetic antibody (SA) alternative to traditional biological affinity reagents for binding Bt Cry proteins. Analysis of hotspots of the Bt Cry protein-insect midgut cadherin-like receptor complexes was used for the design of the SA. The SA was selected from a small focused library of hydrogel copolymers containing functional monomers complementary to key exposed hotspots of Bt Cry proteins. A directed chemical evolution identified a SA, APhe-NP23, with affinity and selectivity for Bt Cry1Ab/Ac proteins. The putative intermolecular polymer-protein interfaces were identified by the SA's uptake of Bt Cry1Ac pepsin hydrolysates, binding epitope mutation studies, and protein-protein inhibition studies of the toxin binding to its native insect receptor binding domains. The SA inhibitor binds to the same protein domains as the insect's cadherin-like receptors, Bt-R1 and SeCad1b. The SA binds rapidly to Bt Cry1Ab/Ac with high capacity, is pH-responsive, and is synthesized reproducibly. We believe that a hotspot-directed approach is general for creation of abiotic protein affinity reagents that target functional protein domains. Affinity ligands are typically high-information content biologicals. Their structure and function are determined from their amino acid or oligo sequence. In contract, the SA described in this work is a statistical copolymer that lacks sequence specificity. These results are an important contribution to the concept that randomness and biospecificity are not mutually exclusive.
Collapse
Affiliation(s)
- Qiaolian Cheng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiaoyang Yu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zhouxuan Xiong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zihao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yuxin Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Kenneth J Shea
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| |
Collapse
|
18
|
Hwang S, Baek SH, Park D. Interaction Analysis of the Spike Protein of Delta and Omicron Variants of SARS-CoV-2 with hACE2 and Eight Monoclonal Antibodies Using the Fragment Molecular Orbital Method. J Chem Inf Model 2022; 62:1771-1782. [PMID: 35312321 PMCID: PMC8982492 DOI: 10.1021/acs.jcim.2c00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
In the past 2 years,
since the emergence of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), multiple SARS-CoV-2 variants
have emerged. Whenever a new variant emerges, considerable time is
required to analyze the binding affinity of the viral surface proteins
to human angiotensin-converting enzyme 2 (hACE2) and monoclonal antibodies.
To efficiently predict the binding affinities associated with hACE2
and monoclonal antibodies in a short time, herein, we propose a method
applying statistical analysis to simulations performed using molecular
and quantum mechanics. This method efficiently predicted the trend
of binding affinity for the binding of the spike protein of each variant
of SARS-CoV-2 to hACE2 and individually to eight commercial monoclonal
antibodies. Additionally, this method accurately predicted interaction
energy changes in the crystal structure for 10 of 13 mutated residues
in the Omicron variant, showing a significant change in the interaction
energy of hACE2. S375F was found to be a mutation that majorly changed
the binding affinity of the spike protein to hACE2 and the eight monoclonal
antibodies. Our proposed analysis method enables the prediction of
the binding affinity of new variants to hACE2 or to monoclonal antibodies
in a shorter time compared to that utilized by the experimental method.
Collapse
Affiliation(s)
- Sungbo Hwang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seung-Hwa Baek
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea.,Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
19
|
Li L, Li R, Wang Y. Identification of Small-molecule YAP-TEAD inhibitors by High-throughput docking for the Treatment of colorectal cancer. Bioorg Chem 2022; 122:105707. [PMID: 35247806 DOI: 10.1016/j.bioorg.2022.105707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022]
Abstract
The YAP-TEAD transcriptional complex is responsible for the expression of genes that regulate cancer cell growth, proliferation, and apoptosis. Dysregulation of the Hippo pathway due to overexpression of YAP has been reported in various cancers. Inhibition of TEAD represses the expression of associated genes, proving the value of this transcription factor for the development of novel anti-cancer therapies. We retrieved a promising hit compound L06 which is a potent TEAD4 inhibitor through docking-based virtual screening. L06 inhibits TEAD autopalmitoylation, interrupts YAP-TEAD interaction, and reduces the YAP-TEAD transcriptional activity. Moreover, L06 reduces the expression of CTGF, inhibits HCT 116 colorectal cancer cell proliferation, migration and invasion. The YAP-TEAD complex is a viable drug target, and L06 is a lead compound for the development of more potent TEAD inhibitors to treat colorectal cancer and other hyperproliferative pathologies.
Collapse
Affiliation(s)
- Lijun Li
- Department of General Surgery, Taizhou People's Hospital, Taizhou 225300, PR China.
| | - Ruizhe Li
- Moray house school of education and sport, The university of Edinburgh, Edinburgh, UK
| | - Yumei Wang
- Department of Emergency Internal Medicine, Taizhou People's Hospital, Taizhou 225300, PR China
| |
Collapse
|