1
|
Pesapane F, Rotili A, Scalco E, Pupo D, Carriero S, Corso F, De Marco P, Origgi D, Nicosia L, Ferrari F, Penco S, Pizzamiglio M, Rizzo G, Cassano E. Predictive value of tumoral and peritumoral radiomic features in neoadjuvant chemotherapy response for breast cancer: a retrospective study. LA RADIOLOGIA MEDICA 2025:10.1007/s11547-025-01969-1. [PMID: 39992329 DOI: 10.1007/s11547-025-01969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) improves surgical outcomes for breast cancer patients, with pathologic complete response (pCR) correlated with enhanced survival. The role of radiomics, particularly from peritumoral tissue, in predicting pCR remains under investigation. METHODS This retrospective study analyzed radiomic features from pretreatment dynamic contrast-enhanced breast MRI scans of 150 patients undergoing NACT. A proportional approach was used to define peritumoral zones, assessed both with a 10% and 30% extension, allowing more standardized assessments relative to the tumor size. Radiomic features were evaluated alongside clinical and biological data to predict pCR. The association of clinical/biological and radiomic features with pCR to NACT was evaluated using univariate and multivariate analysis, logistic regression, and a random forest model. A clinical/biological model, a radiomic model, and a combined clinical/biological and 4 radiomic models for predicting the response to NACT were constructed. Area under the curve (AUC) and 95% confidence intervals (CIs) were used to assess the performance of the models. RESULTS Ninety-five patients (average age 47 years) were finally included. HER2 + , basal-like molecular subtypes, and a high level of Ki67 (≥ 20%) were associated with a higher likelihood of pCR to NACT. The combined clinical-biological-radiomic model, especially with a 10% peritumoral extension, showed improved predictive accuracy (AUC 0.76, CI 0.65-0.85) compared to models using clinical-biological data alone (AUC 0.73, CI 0.63-0.83). CONCLUSIONS Integrating peritumoral radiomic features with clinical and biological data enhances the prediction of pCR to NACT, underscoring the potential of a multifaceted approach in treatment personalization.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Anna Rotili
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elisa Scalco
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate, MI, Italy
| | - Davide Pupo
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Serena Carriero
- Department of Radiology and Interventional Radiology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Corso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo De Marco
- Medical Physics Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | - Daniela Origgi
- Medical Physics Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | - Luca Nicosia
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Ferrari
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Pizzamiglio
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giovanna Rizzo
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), CNR, Segrate, MI, Italy
| | - Enrico Cassano
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
2
|
Chia JLL, He GS, Ngiam KY, Hartman M, Ng QX, Goh SSN. Harnessing Artificial Intelligence to Enhance Global Breast Cancer Care: A Scoping Review of Applications, Outcomes, and Challenges. Cancers (Basel) 2025; 17:197. [PMID: 39857979 PMCID: PMC11764353 DOI: 10.3390/cancers17020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND In recent years, Artificial Intelligence (AI) has shown transformative potential in advancing breast cancer care globally. This scoping review seeks to provide a comprehensive overview of AI applications in breast cancer care, examining how they could reshape diagnosis, treatment, and management on a worldwide scale and discussing both the benefits and challenges associated with their adoption. METHODS In accordance with PRISMA-ScR and ensuing guidelines on scoping reviews, PubMed, Web of Science, Cochrane Library, and Embase were systematically searched from inception to end of May 2024. Keywords included "Artificial Intelligence" and "Breast Cancer". Original studies were included based on their focus on AI applications in breast cancer care and narrative synthesis was employed for data extraction and interpretation, with the findings organized into coherent themes. RESULTS Finally, 84 articles were included. The majority were conducted in developed countries (n = 54). The majority of publications were in the last 10 years (n = 83). The six main themes for AI applications were AI for breast cancer screening (n = 32), AI for image detection of nodal status (n = 7), AI-assisted histopathology (n = 8), AI in assessing post-neoadjuvant chemotherapy (NACT) response (n = 23), AI in breast cancer margin assessment (n = 5), and AI as a clinical decision support tool (n = 9). AI has been used as clinical decision support tools to augment treatment decisions for breast cancer and in multidisciplinary tumor board settings. Overall, AI applications demonstrated improved accuracy and efficiency; however, most articles did not report patient-centric clinical outcomes. CONCLUSIONS AI applications in breast cancer care show promise in enhancing diagnostic accuracy and treatment planning. However, persistent challenges in AI adoption, such as data quality, algorithm transparency, and resource disparities, must be addressed to advance the field.
Collapse
Affiliation(s)
- Jolene Li Ling Chia
- NUS Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr. S117597, Singapore 119077, Singapore (G.S.H.)
| | - George Shiyao He
- NUS Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr. S117597, Singapore 119077, Singapore (G.S.H.)
| | - Kee Yuen Ngiam
- Department of Surgery, National University Hospital, Singapore 119074, Singapore; (K.Y.N.); (M.H.)
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| | - Mikael Hartman
- Department of Surgery, National University Hospital, Singapore 119074, Singapore; (K.Y.N.); (M.H.)
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| | - Qin Xiang Ng
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Serene Si Ning Goh
- Department of Surgery, National University Hospital, Singapore 119074, Singapore; (K.Y.N.); (M.H.)
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, #10-01, Singapore 117549, Singapore
| |
Collapse
|
3
|
Mao N, Bao Y, Dong C, Zhou H, Zhang H, Ma H, Wang Q, Xie H, Qu N, Wang P, Lin F, Lu J. Delta Radiomics Based on MRI for Predicting Axillary Lymph Node Pathologic Complete Response After Neoadjuvant Chemotherapy in Breast Cancer Patients. Acad Radiol 2025; 32:37-49. [PMID: 39271381 DOI: 10.1016/j.acra.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024]
Abstract
PURPOSE To develop and test a radiomics nomogram based on magnetic resonance imaging (MRI) and clinicopathological factors for predicting the axillary pathologic complete response (apCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients with axillary lymph node (ALN) metastases. MATERIALS AND METHODS A total of 319 patients who underwent MRI examination and received NAC treatment were enrolled from two centers, and the presence of ALN metastasis was confirmed by biopsy pathology before NAC. The radiomics features were extracted from regions of interest of ALNs before (pre-radiomics) and after (post-radiomics) NAC. The difference of features before and after NAC, named delta radiomics, was calculated. The variance threshold, selectKbest and least absolute shrinkage and selection operator algorithm were used to select radiomics features. Radscore was calculated by a linear combination of selected features, weighted by their respective coefficients. The univariate and multivariate logistic regression was used to select the clinicopathological factors and radscores, and a radiomics nomogram was built by multivariable logistic regression analysis. The performance of the nomogram was evaluated by the area under the receiver operator characteristic curve (AUC), decision curve analysis (DCA) and calibration curves. Furthermore, to explore the biological basis of radiomics nomogram, 16 patients with RNA-sequence data were included for genetic analysis. RESULTS The radiomics nomogram was constructed by two radscores (post- and delta- radscores) and one clinicopathological factor (progesterone hormone, PR), and showed powerful predictive performance in both internal and external test sets, with AUCs of 0.894 (95% confidence interval [CI], 0.877-0.959) and 0.903 (95% CI, 0.801-0.986), respectively. The calibration curves and DCA showed favorable consistency and clinical utility. With the assistance of nomogram, the rate of unnecessary ALND would be reduced from 60.42% to 21.88%, and the rate of final benefit rate would be increased from 39.58% to 70.83%. Moreover, genetic analysis revealed that high apCR prediction scores were associated with the upregulation of immune-mediated genes and pathways. CONCLUSION The radiomics nomogram showed great performance in predicting apCR after NAC for breast cancer patients, which could help clinicians to identify patients with apCR and avoid unnecessary axillary lymph node dissection.
Collapse
Affiliation(s)
- Ning Mao
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, P R China (N.M., J.L.); Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Shandong, P R China (N.M., H.Z., H.M., Q.W., H.X., F.L.)
| | - Yuhan Bao
- Breast center, The Second Hospital of Shandong University, Jinan, Shandong, P R China (Y.B.)
| | - Chuntong Dong
- Department of Radiology, Qingdao Cardiovascular Hospital, Qingdao, Shandong, P R China (C.D.)
| | - Heng Zhou
- School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai, Shandong, P R China (H.Z.)
| | - Haicheng Zhang
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Shandong, P R China (N.M., H.Z., H.M., Q.W., H.X., F.L.)
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Shandong, P R China (N.M., H.Z., H.M., Q.W., H.X., F.L.)
| | - Qi Wang
- Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Shandong, P R China (N.M., H.Z., H.M., Q.W., H.X., F.L.)
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Shandong, P R China (N.M., H.Z., H.M., Q.W., H.X., F.L.)
| | - Nina Qu
- Department of Ultrasound, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.Q.)
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, P R China (P.W.)
| | - Fan Lin
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, P R China (N.M., H.M., H.X., F.L.); Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Shandong, P R China (N.M., H.Z., H.M., Q.W., H.X., F.L.)
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, P R China (N.M., J.L.).
| |
Collapse
|
4
|
Kolli M, George A, Aoutla S, Chandrasekar SK, Girivasan SN, Kolli RT. Ki-67 With MRI in Predicting the Complete Pathological Response Post-neoadjuvant Chemotherapy. Cureus 2024; 16:e73469. [PMID: 39534551 PMCID: PMC11555758 DOI: 10.7759/cureus.73469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Neoadjuvant chemotherapy (NAC) is increasingly used for high-risk breast cancer to achieve pathologic complete response (pCR), an indicator of event-free survival and favorable survival outcomes. Integrating MRI and Ki-67 biomarker analysis into predictive models offers a promising approach to optimize NAC response assessment and guide personalized treatment strategies. This study evaluates the validity of combined MRI and Ki-67 metrics for predicting pCR. We conducted a systematic review and meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, including studies on NAC-treated breast cancer patients assessed by MRI and Ki-67. The predictive models were evaluated based on key parameters, including MRI-based tumor size reduction and Ki-67 levels, with outcomes measured by area under the receiver operating characteristic curve (AUC) and calibration metrics. Findings across ten studies consistently show that high Ki-67 levels and significant tumor size reduction on MRI are predictive of pCR, achieving AUCs near 0.90. The analysis highlighted that models integrating MRI with Ki-67 metrics outperformed single-modality approaches, showing enhanced predictive accuracy and calibration. However, high heterogeneity (I² = 77%) was noted, suggesting variability in imaging and Ki-67 assessment protocols across studies. This study underscores the combined utility of MRI and Ki-67 for the non-invasive prediction of pCR, offering both structural and biological insights into tumor responsiveness. The results align with prior research, affirming the role of Radiomic-clinicopathological models in providing a more comprehensive assessment compared to individual markers. Further refinement of imaging and biomarker protocols could improve model reproducibility and applicability. Our findings highlight the robust predictive accuracy of MRI-Ki-67 integrated models for assessing pCR, marking a significant step toward personalized cancer care. Future studies should focus on refining these models with additional biomarkers and standardized protocols, facilitating their integration into routine clinical oncology to enhance treatment decision-making and patient outcomes.
Collapse
Affiliation(s)
| | - Agnes George
- Medicine, Apollo Medicals Private Limited, Chennai, IND
- Neurology, Baby Memorial Hospital, Kozhikode, IND
| | - Sridevi Aoutla
- Radiology, Shri Adithya Multi Speciality Hospital, Madurai, IND
| | | | | | | |
Collapse
|
5
|
Oliveira C, Oliveira F, Constantino C, Alves C, Brito MJ, Cardoso F, Costa DC. Baseline [ 18F]FDG PET/CT and MRI first-order breast tumor features do not improve pathological complete response prediction to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 2024; 51:3709-3718. [PMID: 38922396 PMCID: PMC11445295 DOI: 10.1007/s00259-024-06815-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE To verify the ability of pretreatment [18F]FDG PET/CT and T1-weighed dynamic contrast-enhanced MRI to predict pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients. METHODS This retrospective study includes patients with BC of no special type submitted to baseline [18F]FDG PET/CT, NAC and surgery. [18F]FDG PET-based features reflecting intensity and heterogeneity of tracer uptake were extracted from the primary BC and suspicious axillary lymph nodes (ALN), for comparative analysis related to NAC response (pCR vs. non-pCR). Multivariate logistic regression was performed for response prediction combining the breast tumor-extracted PET-based features and clinicopathological features. A subanalysis was performed in a patients' subsample by adding breast tumor-extracted first-order MRI-based features to the multivariate logistic regression. RESULTS A total of 170 tumors from 168 patients were included. pCR was observed in 60/170 tumors (20/107 luminal B-like, 25/45 triple-negative and 15/18 HER2-enriched surrogate molecular subtypes). Higher intensity and higher heterogeneity of [18F]FDG uptake in the primary BC were associated with NAC response in HER2-negative tumors (immunohistochemistry score 0, 1 + or 2 + non-amplified by in situ hybridization). Also, higher intensity of tracer uptake was observed in ALN in the pCR group among HER2-negative tumors. No [18F]FDG PET-based features were associated with pCR in the other subgroup analyses. A subsample of 103 tumors was also submitted to extraction of MRI-based features. When combined with clinicopathological features, neither [18F]FDG PET nor MRI-based features had additional value for pCR prediction. The only significant predictors were estrogen receptor status, HER2 expression and grade. CONCLUSION Pretreatment [18F]FDG PET-based features from primary BC and ALN are not associated with response to NAC, except in HER2-negative tumors. As compared with pathological features, no breast tumor-extracted PET or MRI-based feature improved response prediction.
Collapse
Affiliation(s)
- Carla Oliveira
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Centre/Champalimaud Foundation, Lisbon, Portugal.
| | - Francisco Oliveira
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Centre/Champalimaud Foundation, Lisbon, Portugal
| | - Cláudia Constantino
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Centre/Champalimaud Foundation, Lisbon, Portugal
| | - Celeste Alves
- Breast Unit, Champalimaud Clinical Centre/Champalimaud Foundation, Lisbon, Portugal
| | - Maria José Brito
- Breast Unit, Champalimaud Clinical Centre/Champalimaud Foundation, Lisbon, Portugal
- Pathology Department, Champalimaud Clinical Centre/Champalimaud Foundation, Lisbon, Portugal
| | - Fátima Cardoso
- Breast Unit, Champalimaud Clinical Centre/Champalimaud Foundation, Lisbon, Portugal
| | - Durval C Costa
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Centre/Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
6
|
He W, Huang W, Zhang L, Wu X, Zhang S, Zhang B. Radiogenomics: bridging the gap between imaging and genomics for precision oncology. MedComm (Beijing) 2024; 5:e722. [PMID: 39252824 PMCID: PMC11381657 DOI: 10.1002/mco2.722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/11/2024] Open
Abstract
Genomics allows the tracing of origin and evolution of cancer at molecular scale and underpin modern cancer diagnosis and treatment systems. Yet, molecular biomarker-guided clinical decision-making encounters major challenges in the realm of individualized medicine, consisting of the invasiveness of procedures and the sampling errors due to high tumor heterogeneity. By contrast, medical imaging enables noninvasive and global characterization of tumors at a low cost. In recent years, radiomics has overcomes the limitations of human visual evaluation by high-throughput quantitative analysis, enabling the comprehensive utilization of the vast amount of information underlying radiological images. The cross-scale integration of radiomics and genomics (hereafter radiogenomics) has the enormous potential to enhance cancer decoding and act as a catalyst for digital precision medicine. Herein, we provide a comprehensive overview of the current framework and potential clinical applications of radiogenomics in patient care. We also highlight recent research advances to illustrate how radiogenomics can address common clinical problems in solid tumors such as breast cancer, lung cancer, and glioma. Finally, we analyze existing literature to outline challenges and propose solutions, while also identifying future research pathways. We believe that the perspectives shared in this survey will provide a valuable guide for researchers in the realm of radiogenomics aiming to advance precision oncology.
Collapse
Affiliation(s)
- Wenle He
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Wenhui Huang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Lu Zhang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Xuewei Wu
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Shuixing Zhang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| | - Bin Zhang
- Department of Radiology The First Affiliated Hospital of Jinan University Guangzhou Guangdong China
| |
Collapse
|
7
|
Shi D, Li S, Liu F, Jiang X, Wu L, Chen L, Zheng Q, Bao H, Guo H, Xu J. Comprehensive characterization of tumor therapeutic response with simultaneous mapping cell size, density, and transcytolemmal water exchange. ARXIV 2024:arXiv:2408.01918v1. [PMID: 39130198 PMCID: PMC11312621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Early assessment of tumor therapeutic response is an important topic in precision medicine to optimize personalized treatment regimens and reduce unnecessary toxicity, cost, and delay. Although diffusion MRI (dMRI) has shown potential to address this need, its predictive accuracy is limited, likely due to its unspecific sensitivity to overall pathological changes. In this work, we propose a new quantitative dMRI-based method dubbed EXCHANGE (MRI of water Exchange, Confined and Hindered diffusion under Arbitrary Gradient waveform Encodings) for simultaneous mapping of cell size, cell density, and transcytolemmal water exchange. Such rich microstructural information comprehensively evaluates tumor pathologies at the cellular level. Validations using numerical simulations and in vitro cell experiments confirmed that the EXCHANGE method can accurately estimate mean cell size, density, and water exchange rate constants. The results from in vivo animal experiments show the potential of EXCHANGE for monitoring tumor treatment response. Finally, the EXCHANGE method was implemented in breast cancer patients with neoadjuvant chemotherapy, demonstrating its feasibility in assessing tumor therapeutic response in clinics. In summary, a new, quantitative dMRI-based EXCHANGE method was proposed to comprehensively characterize tumor microstructural properties at the cellular level, suggesting a unique means to monitor tumor treatment response in clinical practice.
Collapse
Affiliation(s)
- Diwei Shi
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Sisi Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fan Liu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lei Wu
- Qinghai University Affiliated Hospital, Qinghai, Xining 810000, China
| | - Li Chen
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Quanshui Zheng
- Center for Nano and Micro Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Haihua Bao
- Qinghai University Affiliated Hospital, Qinghai, Xining 810000, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Li ZY, Wu SN, Lin ZH, Jiang MC, Chen C, Liang RX, Lin WJ, Xue ES. Ultrasound-based radiomics-clinical nomogram for noninvasive prediction of residual cancer burden grading in breast cancer. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024; 52:566-574. [PMID: 38538081 DOI: 10.1002/jcu.23666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/12/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE To assess the predictive value of an ultrasound-based radiomics-clinical nomogram for grading residual cancer burden (RCB) in breast cancer patients. METHODS This retrospective study of breast cancer patients who underwent neoadjuvant therapy (NAC) and ultrasound scanning between November 2020 and July 2023. First, a radiomics model was established based on ultrasound images. Subsequently, multivariate LR (logistic regression) analysis incorporating both radiomic scores and clinical factors was performed to construct a nomogram. Finally, Receiver operating characteristics (ROC) curve analysis and decision curve analysis (DCA) were employed to evaluate and validate the diagnostic accuracy and effectiveness of the nomogram. RESULTS A total of 1122 patients were included in this study. Among them, 427 patients exhibited a favorable response to NAC chemotherapy, while 695 patients demonstrated a poor response to NAC therapy. The radiomics model achieved an AUC value of 0.84 in the training cohort and 0.83 in the validation cohort. The ultrasound-based radiomics-clinical nomogram achieved an AUC value of 0.90 in the training cohort and 0.91 in the validation cohort. CONCLUSIONS Ultrasound-based radiomics-clinical nomogram can accurately predict the effectiveness of NAC therapy by predicting RCB grading in breast cancer patients.
Collapse
Affiliation(s)
- Zhi-Yong Li
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sheng-Nan Wu
- Department of Ultrasound, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Ultrasound, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhen-Hu Lin
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mei-Chen Jiang
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Cong Chen
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rong-Xi Liang
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wen-Jin Lin
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - En-Sheng Xue
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
9
|
Tabnak P, HajiEsmailPoor Z, Baradaran B, Pashazadeh F, Aghebati Maleki L. MRI-Based Radiomics Methods for Predicting Ki-67 Expression in Breast Cancer: A Systematic Review and Meta-analysis. Acad Radiol 2024; 31:763-787. [PMID: 37925343 DOI: 10.1016/j.acra.2023.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 11/06/2023]
Abstract
RATIONALE AND OBJECTIVES The purpose of this systematic review and meta-analysis was to assess the quality and diagnostic accuracy of MRI-based radiomics for predicting Ki-67 expression in breast cancer. MATERIALS AND METHODS A systematic literature search was performed to find relevant studies published in different databases, including PubMed, Web of Science, and Embase up until March 10, 2023. All papers were independently evaluated for eligibility by two reviewers. Studies that matched research questions and provided sufficient data for quantitative synthesis were included in the systematic review and meta-analysis, respectively. The quality of the articles was assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS) tools. The predictive value of MRI-based radiomics for Ki-67 antigen in patients with breast cancer was assessed using pooled sensitivity (SEN), specificity, and area under the curve (AUC). Meta-regression was performed to explore the cause of heterogeneity. Different covariates were used for subgroup analysis. RESULTS 31 studies were included in the systematic review; among them, 21 reported sufficient data for meta-analysis. 20 training cohorts and five validation cohorts were pooled separately. The pooled sensitivity, specificity, and AUC of MRI-based radiomics for predicting Ki-67 expression in training cohorts were 0.80 [95% CI, 0.73-0.86], 0.82 [95% CI, 0.78-0.86], and 0.88 [95%CI, 0.85-0.91], respectively. The corresponding values for validation cohorts were 0.81 [95% CI, 0.72-0.87], 0.73 [95% CI, 0.62-0.82], and 0.84 [95%CI, 0.80-0.87], respectively. Based on QUADAS-2, some risks of bias were detected for reference standard and flow and timing domains. However, the quality of the included article was acceptable. The mean RQS score of the included articles was close to 6, corresponding to 16.6% of the maximum possible score. Significant heterogeneity was observed in pooled sensitivity and specificity of training cohorts (I2 > 75%). We found that using deep learning radiomic methods, magnetic field strength (3 T vs. 1.5 T), scanner manufacturer, region of interest structure (2D vs. 3D), route of tissue sampling, Ki-67 cut-off, logistic regression for model construction, and LASSO for feature reduction as well as PyRadiomics software for feature extraction had a great impact on heterogeneity according to our joint model analysis. Diagnostic performance in studies that used deep learning-based radiomics and multiple MRI sequences (e.g., DWI+DCE) was slightly higher. In addition, radiomic features derived from DWI sequences performed better than contrast-enhanced sequences in terms of specificity and sensitivity. No publication bias was found based on Deeks' funnel plot. Sensitivity analysis showed that eliminating every study one by one does not impact overall results. CONCLUSION This meta-analysis showed that MRI-based radiomics has a good diagnostic accuracy in differentiating breast cancer patients with high Ki-67 expression from low-expressing groups. However, the sensitivity and specificity of these methods still do not surpass 90%, restricting them from being used as a supplement to current pathological assessments (e.g., biopsy or surgery) to predict Ki-67 expression accurately.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H.); Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.)
| | - Zanyar HajiEsmailPoor
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H.); Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.)
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Iranian Evidence-Based Medicine (EBM) Centre: A Joanna Briggs Institute (JBI) Centre of Excellence, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (F.P.)
| | - Leili Aghebati Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.); Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran (P.T., Z.H., B.B., L.A.M.).
| |
Collapse
|
10
|
Zheng G, Hou J, Shu Z, Peng J, Han L, Yuan Z, He X, Gong X. Prediction of neoadjuvant chemotherapy pathological complete response for breast cancer based on radiomics nomogram of intratumoral and derived tissue. BMC Med Imaging 2024; 24:22. [PMID: 38245712 PMCID: PMC10800060 DOI: 10.1186/s12880-024-01198-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Non-invasive identification of breast cancer (BCa) patients with pathological complete response (pCR) after neoadjuvant chemotherapy (NACT) is critical to determine appropriate surgical strategies and guide the resection range of tumor. This study aimed to examine the effectiveness of a nomogram created by combining radiomics signatures from both intratumoral and derived tissues with clinical characteristics for predicting pCR after NACT. METHODS The clinical data of 133 BCa patients were analyzed retrospectively and divided into training and validation sets. The radiomics features for Intratumoral, peritumoral, and background parenchymal enhancement (BPE) in the training set were dimensionalized. Logistic regression analysis was used to select the optimal feature set, and a radiomics signature was constructed using a decision tree. The signature was combined with clinical features to build joint models and generate nomograms. The area under curve (AUC) value of receiver operating characteristic (ROC) curve was then used to assess the performance of the nomogram and independent predictors. RESULTS Among single region, intratumoral had the best predictive value. The diagnostic performance of the intratumoral improved after adding the BPE features. The AUC values of the radiomics signature were 0.822 and 0.82 in the training and validation sets. Multivariate logistic regression analysis revealed that age, ER, PR, Ki-67, and radiomics signature were independent predictors of pCR in constructing a nomogram. The AUC of the nomogram in the training and validation sets were 0.947 and 0.933. The DeLong test showed that the nomogram had statistically significant differences compared to other independent predictors in both the training and validation sets (P < 0.05). CONCLUSION BPE has value in predicting the efficacy of neoadjuvant chemotherapy, thereby revealing the potential impact of tumor growth environment on the efficacy of neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Guangying Zheng
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jie Hou
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhenyu Shu
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou City, Zhejiang Province, China
| | - Jiaxuan Peng
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Lu Han
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhongyu Yuan
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Xiaodong He
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou City, Zhejiang Province, China
| | - Xiangyang Gong
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou City, Zhejiang Province, China.
| |
Collapse
|
11
|
Panthi B, Mohamed RM, Adrada BE, Boge M, Candelaria RP, Chen H, Hunt KK, Huo L, Hwang KP, Korkut A, Lane DL, Le-Petross HC, Leung JWT, Litton JK, Pashapoor S, Perez F, Son JB, Sun J, Thompson A, Tripathy D, Valero V, Wei P, White J, Xu Z, Yang W, Zhou Z, Yam C, Rauch GM, Ma J. Longitudinal dynamic contrast-enhanced MRI radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer. Front Oncol 2023; 13:1264259. [PMID: 37941561 PMCID: PMC10628525 DOI: 10.3389/fonc.2023.1264259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Early prediction of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) patients could help oncologists select individualized treatment and avoid toxic effects associated with ineffective therapy in patients unlikely to achieve pathologic complete response (pCR). The objective of this study is to evaluate the performance of radiomic features of the peritumoral and tumoral regions from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquired at different time points of NAST for early treatment response prediction in TNBC. This study included 163 Stage I-III patients with TNBC undergoing NAST as part of a prospective clinical trial (NCT02276443). Peritumoral and tumoral regions of interest were segmented on DCE images at baseline (BL) and after two (C2) and four (C4) cycles of NAST. Ten first-order (FO) radiomic features and 300 gray-level-co-occurrence matrix (GLCM) features were calculated. Area under the receiver operating characteristic curve (AUC) and Wilcoxon rank sum test were used to determine the most predictive features. Multivariate logistic regression models were used for performance assessment. Pearson correlation was used to assess intrareader and interreader variability. Seventy-eight patients (48%) had pCR (52 training, 26 testing), and 85 (52%) had non-pCR (57 training, 28 testing). Forty-six radiomic features had AUC at least 0.70, and 13 multivariate models had AUC at least 0.75 for training and testing sets. The Pearson correlation showed significant correlation between readers. In conclusion, Radiomic features from DCE-MRI are useful for differentiating pCR and non-pCR. Similarly, predictive radiomic models based on these features can improve early noninvasive treatment response prediction in TNBC patients undergoing NAST.
Collapse
Affiliation(s)
- Bikash Panthi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rania M. Mohamed
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Beatriz E. Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Medine Boge
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Koc University Hospital, Istanbul, Türkiye
| | - Rosalind P. Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deanna L. Lane
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Huong C. Le-Petross
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica W. T. Leung
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sanaz Pashapoor
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Frances Perez
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jia Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alastair Thompson
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wei Yang
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zijian Zhou
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gaiane M. Rauch
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
12
|
Zeng Q, Ke M, Zhong L, Zhou Y, Zhu X, He C, Liu L. Radiomics Based on Dynamic Contrast-Enhanced MRI to Early Predict Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Therapy. Acad Radiol 2023; 30:1638-1647. [PMID: 36564256 DOI: 10.1016/j.acra.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
RATIONALE AND OBJECTIVES To investigate the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-based radiomics at baseline and after two cycles of neoadjuvant therapy (NAT) and associated longitudinal changes for early prediction of the NAT response in patients with breast cancer. MATERIALS AND METHODS One hundred seventeen patients with breast cancer who underwent DCE-MRI before NAT and after two cycles of NAT from April 2019 to November 2021 were enrolled retrospectively. Patients were randomly divided into a training set (n = 81) and a test set (n = 36) at a ratio of 7:3. Clinical-pathological data and the relative tumor maximum diameter regression value (diameter%) were also collected. A total of 851 radiomic features were extracted from the phase with the most pronounced tumor enhancement on DCE-MRI T1 imaging acquired both pre- and post-treatment. Delta and delta% radiomics features were also calculated. The Least Absolute Shrinkage and Selection Operator (LASSO) method was applied to select features, and a logistic regression model was used to calculate pre-NAT, early-NAT, delta, and delta% radscores and then select among four radscores to build a Fusion radiomics model. The final clinical-radiomics model was constructed by combining fusion radscores and clinical-pathological variables. The discrimination and clinical utility of the models were further evaluated and compared. RESULTS The area under the curve (AUC) values of the fusion radiomics model based on pre-NAT, Delta, and Delta% radscores were 0.868 of 0.825. The clinical-radiomics model integrating Fusion radscores and clinical-pathological variables achieved AUC values of 0.920 of 0.884, which were higher than those of the clinical model constructed by AUC values (0.858/0.831), although no significant improvement was observed in the test set (Delong test, p = 0.196). Decision curve analysis (DCA) showed that the clinical-radiomics model demonstrated more clinical utility than the clinical model. CONCLUSION DCE-MRI-based radiomics features may have potential for pathological complete response (pCR) prediction in the early phase of NAT. By combining radiomics features and clinical-pathological characteristics, higher diagnostic performance can be achieved.
Collapse
Affiliation(s)
- Qiao Zeng
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.)
| | - Mengmeng Ke
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.)
| | - Linhua Zhong
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.)
| | - Yongjie Zhou
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.)
| | - Xuechao Zhu
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.)
| | - Chongwu He
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.)
| | - Lan Liu
- Department of Radiology, Jiangxi Cancer Hospital, No. 519, Beijing East Road, Qingshanhu District Nanchang, Jiangxi Province, 330029, China (Q.Z., M.K., L.Z., Y.C., X.Z., L.L.); Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China (C.H.).
| |
Collapse
|
13
|
Zhang J, Wu Q, Yin W, Yang L, Xiao B, Wang J, Yao X. Development and validation of a radiopathomic model for predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer patients. BMC Cancer 2023; 23:431. [PMID: 37173635 PMCID: PMC10176880 DOI: 10.1186/s12885-023-10817-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) has become the standard therapeutic option for early high-risk and locally advanced breast cancer. However, response rates to NAC vary between patients, causing delays in treatment and affecting the prognosis for patients who do not sensitive to NAC. MATERIALS AND METHODS In total, 211 breast cancer patients who completed NAC (training set: 155, validation set: 56) were retrospectively enrolled. we developed a deep learning radiopathomics model(DLRPM) by Support Vector Machine (SVM) method based on clinicopathological features, radiomics features, and pathomics features. Furthermore, we comprehensively validated the DLRPM and compared it with three single-scale signatures. RESULTS DLRPM had favourable performance for the prediction of pathological complete response (pCR) in the training set (AUC 0.933[95% CI 0.895-0.971]), and in the validation set (AUC 0.927 [95% CI 0.858-0.996]). In the validation set, DLRPM also significantly outperformed the radiomics signature (AUC 0.821[0.700-0.942]), pathomics signature (AUC 0.766[0.629-0.903]), and deep learning pathomics signature (AUC 0.804[0.683-0.925]) (all p < 0.05). The calibration curves and decision curve analysis also indicated the clinical effectiveness of the DLRPM. CONCLUSIONS DLRPM can help clinicians accurately predict the efficacy of NAC before treatment, highlighting the potential of artificial intelligence to improve the personalized treatment of breast cancer patients.
Collapse
Affiliation(s)
- Jieqiu Zhang
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Qi Wu
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Yin
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lu Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Bo Xiao
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Xiaopeng Yao
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China.
| |
Collapse
|
14
|
Zheng T, Pan J, Du D, Liang X, Yi H, Du J, Wu S, Liu L, Shi G. Preoperative assessment of high-grade endometrial cancer using a radiomic signature and clinical indicators. Future Oncol 2023; 19:587-601. [PMID: 37097730 DOI: 10.2217/fon-2022-0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Aim: To develop and validate a radiomics-based combined model (ModelRC) to predict the pathological grade of endometrial cancer. Methods: A total of 403 endometrial cancer patients from two independent centers were enrolled as training, internal validation and external validation sets. Radiomic features were extracted from T2-weighted images, apparent diffusion coefficient map and contrast-enhanced 3D volumetric interpolated breath-hold examination images. Results: Compared with the clinical model and radiomics model, ModelRC showed superior performance; the areas under the receiver operating characteristic curves were 0.920 (95% CI: 0.864-0.962), 0.882 (95% CI: 0.779-0.955) and 0.881 (95% CI: 0.815-0.939) for the training, internal validation and external validation sets, respectively. Conclusion: ModelRC, which incorporated clinical and radiomic features, exhibited excellent performance in the prediction of high-grade endometrial cancer.
Collapse
Affiliation(s)
- Tao Zheng
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Jiangyang Pan
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Dan Du
- Department of Medical Imaging Center, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, PR China
| | - Xin Liang
- Department of Medical Imaging Center, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, PR China
| | - Huiling Yi
- Department of Medical Imaging Center, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, PR China
| | - Juan Du
- Department of Medical Imaging Center, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, PR China
| | - Shuo Wu
- Department of Medical Imaging Center, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, PR China
| | - Lanxiang Liu
- Department of Medical Imaging Center, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, PR China
| | - Gaofeng Shi
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| |
Collapse
|
15
|
Early Assessment of Neoadjuvant Chemotherapy Response Using Multiparametric Magnetic Resonance Imaging in Luminal B-like Subtype of Breast Cancer Patients: A Single-Center Prospective Study. Diagnostics (Basel) 2023; 13:diagnostics13040694. [PMID: 36832182 PMCID: PMC9955433 DOI: 10.3390/diagnostics13040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
This study aimed to evaluate the performance of multiparametric breast magnetic resonance imaging (mpMRI) for predicting response to neoadjuvant chemotherapy (NAC) in patients with luminal B subtype breast cancer. The prospective study included thirty-five patients treated with NAC for both early and locally advanced breast cancer of the luminal B subtype at the University Hospital Centre Zagreb between January 2015 and December 2018. All patients underwent breast mpMRI before and after two cycles of NAC. Evaluation of mpMRI examinations included analysis of both morphological (shape, margins, and pattern of enhancement) and kinetic characteristics (initial signal increase and post-initial behavior of the time-signal intensity curve), which were additionally interpreted with a Göttingen score (GS). Histopathological analysis of surgical specimens included grading the tumor response based on the residual cancer burden (RCB) grading system and revealed 29 NAC responders (RCB-0 (pCR), I, II) and 6 NAC non-responders (RCB-III). Changes in GS were compared with RCB classes. A lack of GS decrease after the second cycle of NAC is associated with RCB class and non-responders to NAC.
Collapse
|
16
|
Pesapane F, De Marco P, Rapino A, Lombardo E, Nicosia L, Tantrige P, Rotili A, Bozzini AC, Penco S, Dominelli V, Trentin C, Ferrari F, Farina M, Meneghetti L, Latronico A, Abbate F, Origgi D, Carrafiello G, Cassano E. How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. J Clin Med 2023; 12:jcm12041372. [PMID: 36835908 PMCID: PMC9963325 DOI: 10.3390/jcm12041372] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Correspondence: ; Tel.: +39-02-574891
| | - Paolo De Marco
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Rapino
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Eleonora Lombardo
- UOC of Diagnostic Imaging, Policlinico Tor Vergata University, 00133 Rome, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Priyan Tantrige
- Department of Radiology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Carla Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Chiara Trentin
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Federica Ferrari
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Mariagiorgia Farina
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenza Meneghetti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Antuono Latronico
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesca Abbate
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Daniela Origgi
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Radiology, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
17
|
Portnow LH, Kochkodan-Self JM, Maduram A, Barrios M, Onken AM, Hong X, Mittendorf EA, Giess CS, Chikarmane SA. Multimodality Imaging Review of HER2-positive Breast Cancer and Response to Neoadjuvant Chemotherapy. Radiographics 2023; 43:e220103. [PMID: 36633970 DOI: 10.1148/rg.220103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2/neu or ErbB2)-positive breast cancers comprise 15%-20% of all breast cancers. The most common manifestation of HER2-positive breast cancer at mammography or US is an irregular mass with spiculated margins that often contains calcifications; at MRI, HER2-positive breast cancer may appear as a mass or as nonmass enhancement. HER2-positive breast cancers are often of intermediate to high nuclear grade at histopathologic analysis, with increased risk of local recurrence and metastases and poorer overall prognosis. However, treatment with targeted monoclonal antibody therapies such as trastuzumab and pertuzumab provides better local-regional control and leads to improved survival outcome. With neoadjuvant treatments, including monoclonal antibodies, taxanes, and anthracyclines, women are now potentially able to undergo breast conservation therapy and sentinel lymph node biopsy versus mastectomy and axillary lymph node dissection. Thus, the radiologist's role in assessing the extent of local-regional disease and response to neoadjuvant treatment at imaging is important to inform surgical planning and adjuvant treatment. However, assessment of treatment response remains difficult, with the potential for different imaging modalities to result in underestimation or overestimation of disease to varying degrees when compared with surgical pathologic analysis. In particular, the presence of calcifications at mammography is especially difficult to correlate with the results of pathologic analysis after chemotherapy. Breast MRI findings remain the best predictor of pathologic response. The authors review the initial manifestations of HER2-positive tumors, the varied responses to neoadjuvant chemotherapy, and the challenges in assessing residual cancer burden through a multimodality imaging review with pathologic correlation. © RSNA, 2023 Quiz questions for this article are available through the Online Learning Center.
Collapse
Affiliation(s)
- Leah H Portnow
- From the Departments of Radiology (L.H.P., J.M.K.S., A.M., M.B., C.S.G., S.A.C.), Pathology (A.M.O., X.H.), and Surgery (E.A.M.), Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| | - Jeanne M Kochkodan-Self
- From the Departments of Radiology (L.H.P., J.M.K.S., A.M., M.B., C.S.G., S.A.C.), Pathology (A.M.O., X.H.), and Surgery (E.A.M.), Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| | - Amy Maduram
- From the Departments of Radiology (L.H.P., J.M.K.S., A.M., M.B., C.S.G., S.A.C.), Pathology (A.M.O., X.H.), and Surgery (E.A.M.), Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| | - Mirelys Barrios
- From the Departments of Radiology (L.H.P., J.M.K.S., A.M., M.B., C.S.G., S.A.C.), Pathology (A.M.O., X.H.), and Surgery (E.A.M.), Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| | - Allison M Onken
- From the Departments of Radiology (L.H.P., J.M.K.S., A.M., M.B., C.S.G., S.A.C.), Pathology (A.M.O., X.H.), and Surgery (E.A.M.), Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| | - Xuefei Hong
- From the Departments of Radiology (L.H.P., J.M.K.S., A.M., M.B., C.S.G., S.A.C.), Pathology (A.M.O., X.H.), and Surgery (E.A.M.), Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| | - Elizabeth A Mittendorf
- From the Departments of Radiology (L.H.P., J.M.K.S., A.M., M.B., C.S.G., S.A.C.), Pathology (A.M.O., X.H.), and Surgery (E.A.M.), Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| | - Catherine S Giess
- From the Departments of Radiology (L.H.P., J.M.K.S., A.M., M.B., C.S.G., S.A.C.), Pathology (A.M.O., X.H.), and Surgery (E.A.M.), Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| | - Sona A Chikarmane
- From the Departments of Radiology (L.H.P., J.M.K.S., A.M., M.B., C.S.G., S.A.C.), Pathology (A.M.O., X.H.), and Surgery (E.A.M.), Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115
| |
Collapse
|
18
|
Duan J, Zhang Z, Chen Y, Zhao Y, Sun Q, Wang W, Zheng H, Liang D, Cheng J, Yan J, Li ZC. Imaging phenotypes from MRI for the prediction of glioma immune subtypes from RNA sequencing: A multicenter study. Mol Oncol 2023; 17:629-646. [PMID: 36688633 PMCID: PMC10061289 DOI: 10.1002/1878-0261.13380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Tumor subtyping based on its immune landscape may guide precision immunotherapy. The aims of this study were to identify immune subtypes of adult diffuse gliomas with RNA sequencing data, and to noninvasively predict this subtype using a biologically interpretable radiomic signature from MRI. A subtype discovery dataset (n = 210) from a public database and two radiogenomic datasets (n = 130 and 55, respectively) from two local hospitals were included. Brain tumor microenvironment-specific signatures were constructed from RNA sequencing to identify the immune types. A radiomic signature was built from MRI to predict the identified immune subtypes. The pathways underlying the radiomic signature were identified to annotate their biological meanings. The reproducibility of the findings was verified externally in multicenter datasets. Three distinctive immune subtypes were identified, including an inflamed subtype marked by elevated hypoxia-induced immunosuppression, a "cold" subtype that exhibited scarce immune infiltration with downregulated antigen presentation, and an intermediate subtype that showed medium immune infiltration. A 10-feature radiomic signature was developed to predict immune subtypes, achieving an AUC of 0.924 in the validation dataset. The radiomic features correlated with biological functions underpinning immune suppression, which substantiated the hypothesis that molecular changes can be reflected by radiomic features. The immune subtypes, predictive radiomic signature, and radiomics-correlated biological pathways were validated externally. Our data suggest that adult-type diffuse gliomas harbor three distinctive immune subtypes that can be predicted by MRI radiomic features with clear biological significance. The immune subtypes, radiomic signature, and radiogenomic links can be replicated externally.
Collapse
Affiliation(s)
- Jingxian Duan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinsheng Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yuanshen Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,National Innovation Center for Advanced Medical Devices, Shenzhen, China.,Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| |
Collapse
|
19
|
O'Donnell J, Gasior S, Davey M, O'Malley E, Lowery A, McGarry J, O'Connell A, Kerin M, McCarthy P. The accuracy of breast MRI radiomic methodologies in predicting pathological complete response to neoadjuvant chemotherapy: A systematic review and network meta-analysis. Eur J Radiol 2022; 157:110561. [DOI: 10.1016/j.ejrad.2022.110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
|
20
|
Zhang MQ, Du Y, Zha HL, Liu XP, Cai MJ, Chen ZH, Chen R, Wang J, Wang SJ, Zhang JL, Li CY. Construction and validation of a personalized nomogram of ultrasound for pretreatment prediction of breast cancer patients sensitive to neoadjuvant chemotherapy. Br J Radiol 2022; 95:20220626. [PMID: 36378247 PMCID: PMC9733610 DOI: 10.1259/bjr.20220626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To construct a combined radiomics model based on pre-treatment ultrasound for predicting of advanced breast cancers sensitive to neoadjuvant chemotherapy (NAC). METHODS A total of 288 eligible breast cancer patients who underwent NAC before surgery were enrolled in the retrospective study cohort. Radiomics features reflecting the phenotype of the pre-NAC tumors were extracted. With features selected using the least absolute shrinkage and selection operator (LASSO) regression, radiomics signature (Rad-score) was established based on the pre-NAC ultrasound. Then, radiomics nomogram of ultrasound (RU) was established on the basis of the best radiomic signature incorporating independent clinical features. The performance of RU was evaluated in terms of calibration curve, area under the curve (AUC), and decision curve analysis (DCA). RESULTS Nine features were selected to construct the radiomics signature in the training cohort. Combined with independent clinical characteristics, the performance of RU for identifying Grade 4-5 patients was significantly superior than the clinical model and Rad-score alone (p < 0.05, as per the Delong test), which achieved an AUC of 0.863 (95% CI, 0.814-0.963) in the training group and 0.854 (95% CI, 0.776-0.931) in the validation group. DCA showed that this model satisfactory clinical utility, suggesting its robustness as a response predictor. CONCLUSION This study demonstrated that RU has a potential role in predicting drug-sensitive breast cancers. ADVANCES IN KNOWLEDGE Aiming at early detection of Grade 4-5 breast cancer patients, the radiomics nomogram based on ultrasound has been approved as a promising indicator with high clinical utility. It is the first application of ultrasound-based radiomics nomogram to distinguish drug-sensitive breast cancers.
Collapse
Affiliation(s)
- Man-Qi Zhang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Du
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Ling Zha
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Pei Liu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng-Jun Cai
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Hui Chen
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Chen
- Department of Breast surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jue Wang
- Department of Breast surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shou-Ju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu-Lou Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Ying Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Pesapane F, Agazzi GM, Rotili A, Ferrari F, Cardillo A, Penco S, Dominelli V, D'Ecclesiis O, Vignati S, Raimondi S, Bozzini A, Pizzamiglio M, Petralia G, Nicosia L, Cassano E. Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients With MRI-Radiomics: A Systematic Review and Meta-analysis. Curr Probl Cancer 2022; 46:100883. [PMID: 35914383 DOI: 10.1016/j.currproblcancer.2022.100883] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022]
Abstract
We performed a systematic review and a meta-analysis of studies using MRI-radiomics for predicting the pathological complete response in breast cancer patients undergoing neoadjuvant therapy , and we evaluated their methodological quality using the radiomics-quality-score (RQS). Random effects meta-analysis was performed pooling area under the receiver operating characteristics curves. Publication-bias was assessed using the Egger's test and visually inspecting the funnel plot. Forty-three studies were included in the qualitative review and 34 in the meta-analysis. Summary area under the receiver operating characteristics curve was 0,78 (95%CI:0,74-0,81). Heterogeneity according to the I2 statistic was substantial (71%) and there was no evidence of publication bias (P-value = 0,2). The average RQS was 12,7 (range:-1-26), with an intra-class correlation coefficient of 0.93 (95%CI:0.61-0.97). Year of publication, field intensity and synthetic RQS score do not appear to be moderators of the effect (P-value = 0.36, P-value = 0.28 and P-value = 0.92, respectively). MRI-radiomics may predict response to neoadjuvant therapy in breast cancer patients but the heterogeneity of the current studies is still substantial.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | | | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Ferrari
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Andrea Cardillo
- Radiology Department, Università degli studi di Torino, Turin, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Oriana D'Ecclesiis
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvano Vignati
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Raimondi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Anna Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Pizzamiglio
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy; Division of Radiology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
22
|
Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI Predicts Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers (Basel) 2022; 14:cancers14143515. [PMID: 35884576 PMCID: PMC9316501 DOI: 10.3390/cancers14143515] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Neoadjuvant chemotherapy (NAC) followed with surgery is the standard strategy in the treatment of locally advanced breast cancer, but the individual efficacy varies. Early and accurate prediction of complete responders determines the NAC regimens and prognosis. Breast MRI has been recommended to monitor NAC response before, during, and after treatment. Radiomics has been heralded as a breakthrough in medicine and regarded to have changed the landscape of biomedical research in oncology. Delta-radiomics characterizing the change in feature values by applying radiomics to multiple time points, is a promising strategy for predicting response after NAC. In our study, the delta-radiomics model built with the change of radiomic features before and after one cycle NAC could effectively predict pathological complete response (pCR) in breast cancer. The model provides strong support for clinical decision-making at the earliest stage and helps patients benefit the most from NAC. Abstract Objective: To investigate the value of delta-radiomics after the first cycle of neoadjuvant chemotherapy (NAC) using dynamic contrast-enhanced (DCE) MRI for early prediction of pathological complete response (pCR) in patients with breast cancer. Methods: From September 2018 to May 2021, a total of 140 consecutive patients (training, n = 98: validation, n = 42), newly diagnosed with breast cancer who received NAC before surgery, were prospectively enrolled. All patients underwent DCE-MRI at pre-NAC (pre-) and after the first cycle (1st-) of NAC. Radiomic features were extracted from the postcontrast early, peak, and delay phases. Delta-radiomics features were computed in each contrast phases. Least absolute shrinkage and selection operator (LASSO) and a logistic regression model were used to select features and build models. The model performance was assessed by receiver operating characteristic (ROC) analysis and compared by DeLong test. Results: The delta-radiomics model based on the early phases of DCE-MRI showed a highest AUC (0.917/0.842 for training/validation cohort) compared with that using the peak and delay phases images. The delta-radiomics model outperformed the pre-radiomics model (AUC = 0.759/0.617, p = 0.011/0.047 for training/validation cohort) in early phase. Based on the optimal model, longitudinal fusion radiomic models achieved an AUC of 0.871/0.869 in training/validation cohort. Clinical-radiomics model generated good calibration and discrimination capacity with AUC 0.934 (95%CI: 0.882, 0.986)/0.864 (95%CI: 0.746, 0.982) for training and validation cohort. Delta-radiomics based on early contrast phases of DCE-MRI combined clinicopathology information could predict pCR after one cycle of NAC in patients with breast cancer.
Collapse
|
23
|
Giugliano F, Valenza C, Tarantino P, Curigliano G. Immunotherapy for triple negative breast cancer: How can pathologic responses to experimental drugs in early-stage disease be enhanced? Expert Opin Investig Drugs 2022; 31:855-874. [PMID: 35762248 DOI: 10.1080/13543784.2022.2095260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : The treatment landscape of early triple negative breast cancer (TNBC) has recently expanded after the Food and Drug Administration (FDA) approval of pembrolizumab in combination with neoadjuvant chemotherapy. The addition of this immune checkpoint inhibitor (ICI) has shown to significantly increased pathological complete response (pCR) rate and event free survival (EFS) in the KEYNOTE-522 phase 3 trial. Several additional studies are ongoing with the goal of further improving outcomes and achieving an optimal integration of ICIs in the treatment of TNBC. AREAS COVERED : The article examines pCR and survival rates in TNBC. It appraises clinical trials investigating neoadjuvant ICIs for TNBC and the improvement of pCR rates (biomarker-driven escalation of treatment, optimization of chemotherapy backbone and addition of locoregional treatments or innovative agents). Insights on the role of pCR as surrogate endpoint and the possibility of enhancing pCR rates for women affected by early TNBC are offered. EXPERT OPINION : The pharmacopoeia of early TNBC is growing and becoming more heterogeneous with the advent of ICIs; to enhance the clinical benefit of patients, it is necessary to develop response endpoints that consider the mechanism of action of experimental drugs, to optimize patient selection through validated biomarkers, and to compare the most promising treatment strategies in randomized clinical trials.
Collapse
Affiliation(s)
- Federica Giugliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| | - Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| | - Paolo Tarantino
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy.,Breast Oncology Center, Dana-Farber Cancer Institute, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy.,Department of Oncology and Haematology, University of Milan, Milan, Italy
| |
Collapse
|