1
|
Wang J, Jiang B, Li J, Liu L, Du X, Jiang H, Hu J, Yuan M, Sakatani T, Kadokura T, Takeuchi M, Kosako M, Ma X, Girshova L, Tan J, Bondarenko S, Lee LWL, Khuhapinant A, Martynova E, Hasabou N. Phase 3 study of gilteritinib versus salvage chemotherapy in predominantly Asian patients with relapsed/refractory FLT3-mutated acute myeloid leukemia. Leukemia 2024; 38:2410-2418. [PMID: 39237634 PMCID: PMC11518977 DOI: 10.1038/s41375-024-02382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
The phase 3 COMMODORE trial evaluated gilteritinib versus salvage chemotherapy (SC) in a predominantly Asian relapsed/refractory (R/R) FLT3-mutated (FLT3mut+) acute myeloid leukemia (AML) patient population. The primary endpoint was overall survival (OS); secondary endpoints included event-free survival (EFS) and complete remission (CR) rate. As of June 30, 2020 (interim analysis: 32.2 months after study initiation), 234 patients were randomized (gilteritinib, n = 116; SC, n = 118). Median OS was significantly longer with gilteritinib versus SC (9.6 vs. 5.0 months; HR 0.566 [95% CI: 0.392, 0.818]; p = 0.00211) with a median follow-up of 10.3 months. Median EFS was also significantly longer with gilteritinib (2.8 vs. 0.6 months; HR 0.551 [95% CI: 0.395, 0.769]; p = 0.00004). CR rates with gilteritinib and SC were 16.4% and 10.2%, respectively; composite CR rates were 50.0% and 20.3%, respectively. Exposure-adjusted grade ≥3 adverse event (AE) rates were lower with gilteritinib (58.38 events/patient-year [E/PY]) versus SC (168.30 E/PY). Common AEs with gilteritinib were anemia (77.9%) and thrombocytopenia (45.1%). Gilteritinib plasma concentration peaked ~4 h postdose; ~3-fold accumulation occurred with multiple dosing. The COMMODORE trial demonstrated that gilteritinib significantly improved OS and EFS in predominantly Asian patients, validating the outcomes of gilteritinib from the ADMIRAL trial in R/R FLT3mut+ AML.
Collapse
MESH Headings
- Humans
- fms-Like Tyrosine Kinase 3/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Female
- Salvage Therapy
- Middle Aged
- Pyrazines/therapeutic use
- Pyrazines/administration & dosage
- Mutation
- Adult
- Aged
- Aniline Compounds/therapeutic use
- Young Adult
- Survival Rate
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Follow-Up Studies
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Asian People/genetics
- Aged, 80 and over
- Prognosis
Collapse
Affiliation(s)
- Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Bin Jiang
- Department of Hematology, Peking University International Hospital, Beijing, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Beijing, China
| | - Ligen Liu
- Department of Hematology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hao Jiang
- Department of Hematology, Peking University People's Hospital, Beijing, China
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Menghe Yuan
- Astellas China Investment Co, Ltd., Beijing, China
| | | | | | | | | | - Xiao Ma
- Astellas China Investment Co, Ltd., Beijing, China
| | - Larisa Girshova
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Jerome Tan
- Department of Hematology, Ampang Hospital, Selangor, Malaysia
| | - Sergey Bondarenko
- Clinical Research Institution of Pediatric Hematology and Transplantation Under the Name of Raisa Gorbacheva, State Medical University, St. Petersburg, Russia
| | - Lily Wong Lee Lee
- Department of Hematology, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
| | - Archrob Khuhapinant
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
2
|
Gabellier L, De Toledo M, Chakraborty M, Akl D, Hallal R, Aqrouq M, Buonocore G, Recasens-Zorzo C, Cartron G, Delort A, Piechaczyk M, Tempé D, Bossis G. SUMOylation inhibitor TAK-981 (subasumstat) synergizes with 5-azacytidine in preclinical models of acute myeloid leukemia. Haematologica 2024; 109:98-114. [PMID: 37608777 PMCID: PMC10772526 DOI: 10.3324/haematol.2023.282704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Acute myeloid leukemias (AML) are severe hematomalignancies with dismal prognosis. The post-translational modification SUMOylation plays key roles in leukemogenesis and AML response to therapies. Here, we show that TAK-981 (subasumstat), a first-in-class SUMOylation inhibitor, is endowed with potent anti-leukemic activity in various preclinical models of AML. TAK-981 targets AML cell lines and patient blast cells in vitro and in vivo in xenografted mice with minimal toxicity on normal hematopoietic cells. Moreover, it synergizes with 5-azacytidine (AZA), a DNA-hypomethylating agent now used in combination with the BCL-2 inhibitor venetoclax to treat AML patients unfit for standard chemotherapies. Interestingly, TAK-981+AZA combination shows higher anti-leukemic activity than AZA+venetoclax combination both in vitro and in vivo, at least in the models tested. Mechanistically, TAK-981 potentiates the transcriptional reprogramming induced by AZA, promoting apoptosis, alteration of the cell cycle and differentiation of the leukemic cells. In addition, TAK-981+AZA treatment induces many genes linked to inflammation and immune response pathways. In particular, this leads to the secretion of type-I interferon by AML cells. Finally, TAK-981+AZA induces the expression of natural killer-activating ligands (MICA/B) and adhesion proteins (ICAM-1) at the surface of AML cells. Consistently, TAK-981+AZA-treated AML cells activate natural killer cells and increase their cytotoxic activity. Targeting SUMOylation with TAK-981 may thus be a promising strategy to both sensitize AML cells to AZA and reduce their immune-escape capacities.
Collapse
Affiliation(s)
- Ludovic Gabellier
- IGMM, Univ. Montpellier, CNRS, Montpellier, France; Service d'Hématologie Clinique, CHU de Montpellier, 80 avenue Augustin Fliche, 34091 Montpellier
| | | | | | - Dana Akl
- IGMM, Univ. Montpellier, CNRS, Montpellier
| | | | | | | | | | - Guillaume Cartron
- IGMM, Univ. Montpellier, CNRS, Montpellier, France; Service d'Hématologie Clinique, CHU de Montpellier, 80 avenue Augustin Fliche, 34091 Montpellier
| | | | | | | | | |
Collapse
|
3
|
Hamidi A, Roloff GW, Shaw R, Acevedo M, Smith S, Drazer MW. Clinical guideline variability in the diagnosis of hereditary hematopoietic malignancy syndromes. Leuk Lymphoma 2023; 64:1562-1565. [PMID: 37294121 DOI: 10.1080/10428194.2023.2220457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
A growing understanding of the complexities of hematopoietic malignancies necessitates the existence of clinical recommendations that are sufficiently comprehensive. Although hereditary hematopoietic malignancies (HHMs) are increasingly recognized for conferring risk of myeloid malignancy, frequently utilized clinical recommendations have never been appraised for the ability to reliably guide HHM evaluation. We assessed established society-level clinical guidelines for inclusion of critical HHM genes and graded the strength of testing recommendations. We uncovered a substantial lack of consistency of recommendations guiding HHM evaluation. Such heterogeneity in guidelines likely contributes to refusal by payers to support HHM testing, leading to underdiagnoses and lost opportunities for clinical surveillance.
Collapse
Affiliation(s)
- Adam Hamidi
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Gregory W Roloff
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Reid Shaw
- Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Maria Acevedo
- University of Illinois at Chicago School of Medicine, Chicago, IL, USA
| | - Shaili Smith
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| | - Michael W Drazer
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
O’Connor TE, Shaw R, Madero-Marroquin R, Roloff GW. Clinical considerations at the intersection of hematopoietic cell transplantation and hereditary hematopoietic malignancy. Front Oncol 2023; 13:1180439. [PMID: 37251919 PMCID: PMC10213438 DOI: 10.3389/fonc.2023.1180439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
In recent years, advances in genetics and the integration of clinical-grade next-generation sequencing (NGS) assays into patient care have facilitated broader recognition of hereditary hematopoietic malignancy (HHM) among clinicians, in addition to the identification and characterization of novel HHM syndromes. Studies on genetic risk distribution within affected families and unique considerations of HHM biology represent exciting areas of translational research. More recently, data are now emerging pertaining to unique aspects of clinical management of malignancies arising in the context of pathogenic germline mutations, with particular emphasis on chemotherapy responsiveness. In this article, we explore considerations surrounding allogeneic transplantation in the context of HHMs. We review pre- and post-transplant patient implications, including genetic testing donor selection and donor-derived malignancies. Additionally, we consider the limited data that exist regarding the use of transplantation in HHMs and safeguards that might be pursued to mitigate transplant-related toxicities.
Collapse
Affiliation(s)
- Timothy E. O’Connor
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
| | - Reid Shaw
- Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
| | | | - Gregory W. Roloff
- Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Targeting UHRF1-SAP30-MXD4 axis for leukemia initiating cell eradication in myeloid leukemia. Cell Res 2022; 32:1105-1123. [PMID: 36302855 PMCID: PMC9715639 DOI: 10.1038/s41422-022-00735-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/28/2022] [Indexed: 01/31/2023] Open
Abstract
Aberrant self-renewal of leukemia initiation cells (LICs) drives aggressive acute myeloid leukemia (AML). Here, we report that UHRF1, an epigenetic regulator that recruits DNMT1 to methylate DNA, is highly expressed in AML and predicts poor prognosis. UHRF1 is required for myeloid leukemogenesis by maintaining self-renewal of LICs. Mechanistically, UHRF1 directly interacts with Sin3A-associated protein 30 (SAP30) through two critical amino acids, G572 and F573 in its SRA domain, to repress gene expression. Depletion of UHRF1 or SAP30 derepresses an important target gene, MXD4, which encodes a MYC antagonist, and leads to suppression of leukemogenesis. Further knockdown of MXD4 can rescue the leukemogenesis by activating the MYC pathway. Lastly, we identified a UHRF1 inhibitor, UF146, and demonstrated its significant therapeutic efficacy in the myeloid leukemia PDX model. Taken together, our study reveals the mechanisms for altered epigenetic programs in AML and provides a promising targeted therapeutic strategy against AML.
Collapse
|
6
|
Śniegocka M, Liccardo F, Fazi F, Masciarelli S. Understanding ER homeostasis and the UPR to enhance treatment efficacy of acute myeloid leukemia. Drug Resist Updat 2022; 64:100853. [PMID: 35870226 DOI: 10.1016/j.drup.2022.100853] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Protein biogenesis, maturation and degradation are tightly regulated processes that are governed by a complex network of signaling pathways. The endoplasmic reticulum (ER) is responsible for biosynthesis and maturation of secretory proteins. Circumstances that alter cellular protein homeostasis, determine accumulation of misfolded and unfolded proteins in the ER, a condition defined as ER stress. In case of stress, the ER activates an adaptive response called unfolded protein response (UPR), a series of pathways of major relevance for cancer biology. The UPR plays a preeminent role in adaptation of tumor cells to the harsh conditions that they experience, due to high rates of proliferation, metabolic abnormalities and hostile environment scarce in oxygen and nutrients. Furthermore, the UPR is among the main adaptive cell stress responses contributing to the development of resistance to drugs and chemotherapy. Clinical management of Acute Myeloid Leukemia (AML) has improved significantly in the last decade, thanks to development of molecular targeted therapies. However, the emergence of treatment-resistant clones renders the rate of AML cure dismal. Moreover, different cell populations that constitute the bone marrow niche recently emerged as a main determinant leading to drug resistance. Herein we summarize the most relevant literature regarding the role played by the UPR in expansion of AML and ability to develop drug resistance and we discuss different possible modalities to overturn this adaptive response against leukemia. To this aim, we also describe the interconnection of the UPR with other cellular stress responses regulating protein homeostasis. Finally, we review the newest findings about the crosstalk between AML cells and cells of the bone marrow niche, under physiological conditions and in response to therapies, discussing in particular the importance of the niche in supporting survival of AML cells by favoring protein homeostasis.
Collapse
Affiliation(s)
- Martyna Śniegocka
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesca Liccardo
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
7
|
Raimondi V, Ciotti G, Gottardi M, Ciccarese F. 2-Hydroxyglutarate in Acute Myeloid Leukemia: A Journey from Pathogenesis to Therapies. Biomedicines 2022; 10:biomedicines10061359. [PMID: 35740380 PMCID: PMC9220225 DOI: 10.3390/biomedicines10061359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022] Open
Abstract
The oncometabolite 2-hydroxyglutarate (2-HG) plays a key role in differentiation blockade and metabolic reprogramming of cancer cells. Approximatively 20–30% of acute myeloid leukemia (AML) cases carry mutations in the isocitrate dehydrogenase (IDH) enzymes, leading to a reduction in the Krebs cycle intermediate α-ketoglutarate (α-KG) to 2-HG. Relapse and chemoresistance of AML blasts following initial good response to standard therapy account for the very poor outcome of this pathology, which represents a great challenge for hematologists. The decrease of 2-HG levels through pharmacological inhibition of mutated IDH enzymes induces the differentiation of AML blasts and sensitizes leukemic cells to several anticancer drugs. In this review, we provide an overview of the main genetic mutations in AML, with a focus on IDH mutants and the role of 2-HG in AML pathogenesis. Moreover, we discuss the impact of high levels of 2-HG on the response of AML cells to antileukemic therapies and recent evidence for highly efficient combinations of mutant IDH inhibitors with other drugs for the management of relapsed/refractory (R/R) AML.
Collapse
Affiliation(s)
- Vittoria Raimondi
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
- Correspondence:
| | - Giulia Ciotti
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, 31033 Castelfranco Veneto, Italy; (G.C.); (M.G.)
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV–IRCCS, 31033 Castelfranco Veneto, Italy; (G.C.); (M.G.)
| | - Francesco Ciccarese
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy;
| |
Collapse
|
8
|
Roloff GW, Odenike O, Bajel A, Wei AH, Foley N, Uy GL. Contemporary Approach to Acute Myeloid Leukemia Therapy in 2022. Am Soc Clin Oncol Educ Book 2022; 42:1-16. [PMID: 35658497 DOI: 10.1200/edbk_349605] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent advances in acute myeloid leukemia biology and drug development have transformed the therapeutic landscape for patients diagnosed with this disease. By harnessing insights from the study of the molecular pathogenesis of the disease, the acute myeloid leukemia treatment armamentarium now extends beyond conventional cytotoxic agents to include targeted therapies, and immunotherapeutics, with multiple novel modalities under investigation. During the past 5 years, recent drug approvals have also focused attention on disease scenarios and patient populations for whom newer therapies might be deployed. In this review, we highlight select acute myeloid leukemia therapies in the frontline setting through the lens of both disease and patient-related factors. Particular emphasis is placed on the assessment of patient fitness, as contemporary acute myeloid leukemia therapy decisions largely hinge on the determination of whether intensive chemotherapy is suitable for a patient. Additionally, we detail scenarios and areas of controversy wherein disease biology may inspire a reframing of traditional intensive treatment philosophies, regardless of patient fitness. Lastly, we provide an overview of emerging agents that are being investigated in the relapsed/refractory setting.
Collapse
Affiliation(s)
- Gregory W Roloff
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL
| | - Olatoyosi Odenike
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL
| | - Ashish Bajel
- Department of Clinical Haematology, Peter MacCallum Cancer Centre & The Royal Melbourne Hospital, Melbourne, Australia
| | - Andrew H Wei
- Department of Clinical Haematology, Peter MacCallum Cancer Centre & The Royal Melbourne Hospital, Melbourne, Australia
| | - Nicole Foley
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Geoffrey L Uy
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
9
|
Molecular Mechanism Investigation on Monomer Kaempferol of the Traditional Medicine Dingqing Tablet in Promoting Apoptosis of Acute Myeloid Leukemia HL-60 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8383315. [PMID: 35251215 PMCID: PMC8894007 DOI: 10.1155/2022/8383315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022]
Abstract
The traditional medicine Dingqing Tablet produces effective efficacy in treating acute myeloid leukemia, but its specific mechanism remains to be investigated. Dingqing Tablet consists of Codonopsis, Indigo Naturalis, Cortex Moutan, Radix Notoginseng, Citrus Reticulata, and Eolite. The active components of Dingqing Tablets were screened by the TCMSP database. Meanwhile, the SwissTargetPrediction database was utilized to predict the corresponding targets. Relevant disease targets of acute myeloid leukemia were obtained from GeneCards. The obtained targets of Dingqing Tablets and genes of acute myeloid leukemia were used, and the overlapped genes were presented in the Venn diagram. A drug-component-target network was constructed via Cytoscape 3.6.0 software. Molecular docking methodology was also used with AutoDock Vina 1.1.2. Furthermore, the effects of kaempferol on the proliferation and apoptosis of HL-60 cells were identified using 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), 5-Ethynyl-2′-deoxyuridine (EDU), flow cytometry, and TdT-mediated dUTP nick-end labeling (TUNEL) assays. The combination of kaempferol and AKT1 was verified using an immunoprecipitation (IP) experiment and the effects of Kaempferol on HL-60 cell apoptosis by western blot (WB) and qPCR. The key component kaempferol and the core target gene AKT1 were sorted out using a drug-component target network diagram. Molecular docking results revealed that the binding energy between kaempferol and AKT1 was lower than -5 kcal/mol. MTT and EDU assays indicated that kaempferol markedly inhibited the proliferation of HL-60 cells. Flow cytometry and TUNEL assays suggested that kaempferol substantially promoted HL-60 cell apoptosis. IP assay results testified that kaempferol could bind to AKT1, thereby reducing the level of P-AKT and promoting HL-60 cell apoptosis. The monomer kaempferol of Dingqing Tablet could promote apoptosis of HL-60 cells, and the mechanism might correlate with the combination of kaempferol and AKT1, reducing the level of P-AKT and promoting the expression of the apoptotic signaling pathway.
Collapse
|