1
|
Ren S, Li J, Dorado J, Sierra A, González-Díaz H, Duardo A, Shen B. From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine. Health Inf Sci Syst 2024; 12:6. [PMID: 38125666 PMCID: PMC10728428 DOI: 10.1007/s13755-023-00264-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Prostate cancer is the most common cancer in men worldwide and has a high mortality rate. The complex and heterogeneous development of prostate cancer has become a core obstacle in the treatment of prostate cancer. Simultaneously, the issues of overtreatment in early-stage diagnosis, oligometastasis and dormant tumor recognition, as well as personalized drug utilization, are also specific concerns that require attention in the clinical management of prostate cancer. Some typical genetic mutations have been proved to be associated with prostate cancer's initiation and progression. However, single-omic studies usually are not able to explain the causal relationship between molecular alterations and clinical phenotypes. Exploration from a systems genetics perspective is also lacking in this field, that is, the impact of gene network, the environmental factors, and even lifestyle behaviors on disease progression. At the meantime, current trend emphasizes the utilization of artificial intelligence (AI) and machine learning techniques to process extensive multidimensional data, including multi-omics. These technologies unveil the potential patterns, correlations, and insights related to diseases, thereby aiding the interpretable clinical decision making and applications, namely intelligent medicine. Therefore, there is a pressing need to integrate multidimensional data for identification of molecular subtypes, prediction of cancer progression and aggressiveness, along with perosonalized treatment performing. In this review, we systematically elaborated the landscape from molecular mechanism discovery of prostate cancer to clinical translational applications. We discussed the molecular profiles and clinical manifestations of prostate cancer heterogeneity, the identification of different states of prostate cancer, as well as corresponding precision medicine practices. Taking multi-omics fusion, systems genetics, and intelligence medicine as the main perspectives, the current research results and knowledge-driven research path of prostate cancer were summarized.
Collapse
Affiliation(s)
- Shumin Ren
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Jiakun Li
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Julián Dorado
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
| | - Alejandro Sierra
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Humbert González-Díaz
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Aliuska Duardo
- Department of Computer Science and Information Technology, University of A Coruña, 15071 A Coruña, Spain
- IKERDATA S.L., ZITEK, University of Basque Country UPVEHU, Rectorate Building, 48940 Leioa, Spain
| | - Bairong Shen
- Department of Urology and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
2
|
Chelebian E, Avenel C, Ciompi F, Wählby C. DEPICTER: Deep representation clustering for histology annotation. Comput Biol Med 2024; 170:108026. [PMID: 38308865 DOI: 10.1016/j.compbiomed.2024.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Automatic segmentation of histopathology whole-slide images (WSI) usually involves supervised training of deep learning models with pixel-level labels to classify each pixel of the WSI into tissue regions such as benign or cancerous. However, fully supervised segmentation requires large-scale data manually annotated by experts, which can be expensive and time-consuming to obtain. Non-fully supervised methods, ranging from semi-supervised to unsupervised, have been proposed to address this issue and have been successful in WSI segmentation tasks. But these methods have mainly been focused on technical advancements in algorithmic performance rather than on the development of practical tools that could be used by pathologists or researchers in real-world scenarios. In contrast, we present DEPICTER (Deep rEPresentatIon ClusTERing), an interactive segmentation tool for histopathology annotation that produces a patch-wise dense segmentation map at WSI level. The interactive nature of DEPICTER leverages self- and semi-supervised learning approaches to allow the user to participate in the segmentation producing reliable results while reducing the workload. DEPICTER consists of three steps: first, a pretrained model is used to compute embeddings from image patches. Next, the user selects a number of benign and cancerous patches from the multi-resolution image. Finally, guided by the deep representations, label propagation is achieved using our novel seeded iterative clustering method or by directly interacting with the embedding space via feature space gating. We report both real-time interaction results with three pathologists and evaluate the performance on three public cancer classification dataset benchmarks through simulations. The code and demos of DEPICTER are publicly available at https://github.com/eduardchelebian/depicter.
Collapse
Affiliation(s)
- Eduard Chelebian
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden.
| | - Chirstophe Avenel
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Francesco Ciompi
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carolina Wählby
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Sykes JR, Denby KJ, Franks DW. Computer vision for plant pathology: A review with examples from cocoa agriculture. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11559. [PMID: 38638617 PMCID: PMC11022223 DOI: 10.1002/aps3.11559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 04/20/2024]
Abstract
Plant pathogens can decimate crops and render the local cultivation of a species unprofitable. In extreme cases this has caused famine and economic collapse. Timing is vital in treating crop diseases, and the use of computer vision for precise disease detection and timing of pesticide application is gaining popularity. Computer vision can reduce labour costs, prevent misdiagnosis of disease, and prevent misapplication of pesticides. Pesticide misapplication is both financially costly and can exacerbate pesticide resistance and pollution. Here, we review the application and development of computer vision and machine learning methods for the detection of plant disease. This review goes beyond the scope of previous works to discuss important technical concepts and considerations when applying computer vision to plant pathology. We present new case studies on adapting standard computer vision methods and review techniques for acquiring training data, the use of diagnostic tools from biology, and the inspection of informative features. In addition to an in-depth discussion of convolutional neural networks (CNNs) and transformers, we also highlight the strengths of methods such as support vector machines and evolved neural networks. We discuss the benefits of carefully curating training data and consider situations where less computationally expensive techniques are advantageous. This includes a comparison of popular model architectures and a guide to their implementation.
Collapse
Affiliation(s)
- Jamie R. Sykes
- Department of Computer ScienceUniversity of YorkDeramore Lane, YorkYO10 5GHYorkshireUnited Kingdom
| | - Katherine J. Denby
- Centre for Novel Agricultural Products, Department of BiologyUniversity of YorkWentworth Way, YorkYO10 5DDYorkshireUnited Kingdom
| | - Daniel W. Franks
- Department of Computer ScienceUniversity of YorkDeramore Lane, YorkYO10 5GHYorkshireUnited Kingdom
- Department of BiologyUniversity of YorkWentworth Way, YorkYO10 5DDYorkshireUnited Kingdom
| |
Collapse
|
4
|
Zahedi R, Ghamsari R, Argha A, Macphillamy C, Beheshti A, Alizadehsani R, Lovell NH, Lotfollahi M, Alinejad-Rokny H. Deep learning in spatially resolved transcriptfomics: a comprehensive technical view. Brief Bioinform 2024; 25:bbae082. [PMID: 38483255 PMCID: PMC10939360 DOI: 10.1093/bib/bbae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/22/2024] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Spatially resolved transcriptomics (SRT) is a pioneering method for simultaneously studying morphological contexts and gene expression at single-cell precision. Data emerging from SRT are multifaceted, presenting researchers with intricate gene expression matrices, precise spatial details and comprehensive histology visuals. Such rich and intricate datasets, unfortunately, render many conventional methods like traditional machine learning and statistical models ineffective. The unique challenges posed by the specialized nature of SRT data have led the scientific community to explore more sophisticated analytical avenues. Recent trends indicate an increasing reliance on deep learning algorithms, especially in areas such as spatial clustering, identification of spatially variable genes and data alignment tasks. In this manuscript, we provide a rigorous critique of these advanced deep learning methodologies, probing into their merits, limitations and avenues for further refinement. Our in-depth analysis underscores that while the recent innovations in deep learning tailored for SRT have been promising, there remains a substantial potential for enhancement. A crucial area that demands attention is the development of models that can incorporate intricate biological nuances, such as phylogeny-aware processing or in-depth analysis of minuscule histology image segments. Furthermore, addressing challenges like the elimination of batch effects, perfecting data normalization techniques and countering the overdispersion and zero inflation patterns seen in gene expression is pivotal. To support the broader scientific community in their SRT endeavors, we have meticulously assembled a comprehensive directory of readily accessible SRT databases, hoping to serve as a foundation for future research initiatives.
Collapse
Affiliation(s)
- Roxana Zahedi
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia
| | - Reza Ghamsari
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia
| | - Ahmadreza Argha
- The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, 2052, NSW, Australia
| | - Callum Macphillamy
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, 5371, Australia
| | - Amin Beheshti
- School of Computing, Macquarie University, Sydney, 2109, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Waurn Ponds, Melbourne, VIC, 3216, Australia
| | - Nigel H Lovell
- The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, 2052, NSW, Australia
| | - Mohammad Lotfollahi
- Computational Health Center, Helmholtz Munich, Germany
- Wellcome Sanger Institute, Cambridge, UK
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, 2052, NSW, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, 2052, NSW, Australia
| |
Collapse
|
5
|
Rabilloud N, Allaume P, Acosta O, De Crevoisier R, Bourgade R, Loussouarn D, Rioux-Leclercq N, Khene ZE, Mathieu R, Bensalah K, Pecot T, Kammerer-Jacquet SF. Deep Learning Methodologies Applied to Digital Pathology in Prostate Cancer: A Systematic Review. Diagnostics (Basel) 2023; 13:2676. [PMID: 37627935 PMCID: PMC10453406 DOI: 10.3390/diagnostics13162676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Deep learning (DL), often called artificial intelligence (AI), has been increasingly used in Pathology thanks to the use of scanners to digitize slides which allow us to visualize them on monitors and process them with AI algorithms. Many articles have focused on DL applied to prostate cancer (PCa). This systematic review explains the DL applications and their performances for PCa in digital pathology. Article research was performed using PubMed and Embase to collect relevant articles. A Risk of Bias (RoB) was assessed with an adaptation of the QUADAS-2 tool. Out of the 77 included studies, eight focused on pre-processing tasks such as quality assessment or staining normalization. Most articles (n = 53) focused on diagnosis tasks like cancer detection or Gleason grading. Fifteen articles focused on prediction tasks, such as recurrence prediction or genomic correlations. Best performances were reached for cancer detection with an Area Under the Curve (AUC) up to 0.99 with algorithms already available for routine diagnosis. A few biases outlined by the RoB analysis are often found in these articles, such as the lack of external validation. This review was registered on PROSPERO under CRD42023418661.
Collapse
Affiliation(s)
- Noémie Rabilloud
- Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes University, 35033 Rennes, France (S.-F.K.-J.)
| | - Pierre Allaume
- Department of Pathology, Rennes University Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (P.A.)
| | - Oscar Acosta
- Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes University, 35033 Rennes, France (S.-F.K.-J.)
| | - Renaud De Crevoisier
- Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes University, 35033 Rennes, France (S.-F.K.-J.)
- Department of Radiotherapy, Centre Eugène Marquis, 35033 Rennes, France
| | - Raphael Bourgade
- Department of Pathology, Nantes University Hospital, 44000 Nantes, France
| | | | - Nathalie Rioux-Leclercq
- Department of Pathology, Rennes University Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (P.A.)
| | - Zine-eddine Khene
- Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes University, 35033 Rennes, France (S.-F.K.-J.)
- Department of Urology, Rennes University Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Romain Mathieu
- Department of Urology, Rennes University Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Karim Bensalah
- Department of Urology, Rennes University Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France
| | - Thierry Pecot
- Facility for Artificial Intelligence and Image Analysis (FAIIA), Biosit UAR 3480 CNRS-US18 INSERM, Rennes University, 2 Avenue du Professeur Léon Bernard, 35042 Rennes, France
| | - Solene-Florence Kammerer-Jacquet
- Impact TEAM, Laboratoire Traitement du Signal et de l’Image (LTSI) INSERM, Rennes University, 35033 Rennes, France (S.-F.K.-J.)
- Department of Pathology, Rennes University Hospital, 2 rue Henri Le Guilloux, CEDEX 09, 35033 Rennes, France; (P.A.)
| |
Collapse
|
6
|
Park HE, Jo SH, Lee RH, Macks CP, Ku T, Park J, Lee CW, Hur JK, Sohn CH. Spatial Transcriptomics: Technical Aspects of Recent Developments and Their Applications in Neuroscience and Cancer Research. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206939. [PMID: 37026425 PMCID: PMC10238226 DOI: 10.1002/advs.202206939] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/10/2023] [Indexed: 06/04/2023]
Abstract
Spatial transcriptomics is a newly emerging field that enables high-throughput investigation of the spatial localization of transcripts and related analyses in various applications for biological systems. By transitioning from conventional biological studies to "in situ" biology, spatial transcriptomics can provide transcriptome-scale spatial information. Currently, the ability to simultaneously characterize gene expression profiles of cells and relevant cellular environment is a paradigm shift for biological studies. In this review, recent progress in spatial transcriptomics and its applications in neuroscience and cancer studies are highlighted. Technical aspects of existing technologies and future directions of new developments (as of March 2023), computational analysis of spatial transcriptome data, application notes in neuroscience and cancer studies, and discussions regarding future directions of spatial multi-omics and their expanding roles in biomedical applications are emphasized.
Collapse
Affiliation(s)
- Han-Eol Park
- Center for Nanomedicine, Institute for Basic Science, Yonsei University, Seoul, 03722, Republic of Korea
- Graduate Program in Nanobiomedical Engineering, Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Song Hyun Jo
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Rosalind H Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Christian P Macks
- Center for Nanomedicine, Institute for Basic Science, Yonsei University, Seoul, 03722, Republic of Korea
- Graduate Program in Nanobiomedical Engineering, Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Chung Whan Lee
- Department of Chemistry, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Junho K Hur
- Department of Genetics, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chang Ho Sohn
- Center for Nanomedicine, Institute for Basic Science, Yonsei University, Seoul, 03722, Republic of Korea
- Graduate Program in Nanobiomedical Engineering, Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Pielawski N, Andersson A, Avenel C, Behanova A, Chelebian E, Klemm A, Nysjö F, Solorzano L, Wählby C. TissUUmaps 3: Improvements in interactive visualization, exploration, and quality assessment of large-scale spatial omics data. Heliyon 2023; 9:e15306. [PMID: 37131430 PMCID: PMC10149187 DOI: 10.1016/j.heliyon.2023.e15306] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023] Open
Abstract
Background and objectives Spatially resolved techniques for exploring the molecular landscape of tissue samples, such as spatial transcriptomics, often result in millions of data points and images too large to view on a regular desktop computer, limiting the possibilities in visual interactive data exploration. TissUUmaps is a free, open-source browser-based tool for GPU-accelerated visualization and interactive exploration of 107+ data points overlaying tissue samples. Methods Herein we describe how TissUUmaps 3 provides instant multiresolution image viewing and can be customized, shared, and also integrated into Jupyter Notebooks. We introduce new modules where users can visualize markers and regions, explore spatial statistics, perform quantitative analyses of tissue morphology, and assess the quality of decoding in situ transcriptomics data. Results We show that thanks to targeted optimizations the time and cost associated with interactive data exploration were reduced, enabling TissUUmaps 3 to handle the scale of today's spatial transcriptomics methods. Conclusion TissUUmaps 3 provides significantly improved performance for large multiplex datasets as compared to previous versions. We envision TissUUmaps to contribute to broader dissemination and flexible sharing of largescale spatial omics data.
Collapse
Affiliation(s)
- Nicolas Pielawski
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Axel Andersson
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Christophe Avenel
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Andrea Behanova
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Eduard Chelebian
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Anna Klemm
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Fredrik Nysjö
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| | - Leslie Solorzano
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Carolina Wählby
- Department of Information Technology and SciLifeLab BioImage Informatics Facility, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Sailer V, von Amsberg G, Duensing S, Kirfel J, Lieb V, Metzger E, Offermann A, Pantel K, Schuele R, Taubert H, Wach S, Perner S, Werner S, Aigner A. Experimental in vitro, ex vivo and in vivo models in prostate cancer research. Nat Rev Urol 2023; 20:158-178. [PMID: 36451039 DOI: 10.1038/s41585-022-00677-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/02/2022]
Abstract
Androgen deprivation therapy has a central role in the treatment of advanced prostate cancer, often causing initial tumour remission before increasing independence from signal transduction mechanisms of the androgen receptor and then eventual disease progression. Novel treatment approaches are urgently needed, but only a fraction of promising drug candidates from the laboratory will eventually reach clinical approval, highlighting the demand for critical assessment of current preclinical models. Such models include standard, genetically modified and patient-derived cell lines, spheroid and organoid culture models, scaffold and hydrogel cultures, tissue slices, tumour xenograft models, patient-derived xenograft and circulating tumour cell eXplant models as well as transgenic and knockout mouse models. These models need to account for inter-patient and intra-patient heterogeneity, the acquisition of primary or secondary resistance, the interaction of tumour cells with their microenvironment, which make crucial contributions to tumour progression and resistance, as well as the effects of the 3D tissue network on drug penetration, bioavailability and efficacy.
Collapse
Affiliation(s)
- Verena Sailer
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Gunhild von Amsberg
- Department of Oncology and Hematology, University Cancer Center Hamburg Eppendorf and Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, University Hospital Heidelberg and National Center for Tumour Diseases, Heidelberg, Germany
| | - Jutta Kirfel
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Verena Lieb
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Eric Metzger
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Anne Offermann
- Institute for Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Klaus Pantel
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Roland Schuele
- Department of Urology, Center for Clinical Research, University of Freiburg Medical Center, Freiburg, Germany
| | - Helge Taubert
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Wach
- Research Division Molecular Urology, Department of Urology and Paediatric Urology, University Hospital Erlangen, Erlangen, Germany
| | - Sven Perner
- University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Stefan Werner
- Institute for Tumour Biology, Center for Experimental Medicine, University Clinics Hamburg-Eppendorf, Hamburg, Germany
- Mildred-Scheel-Nachwuchszentrum HaTRiCs4, University Cancer Center Hamburg, Hamburg, Germany
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Medical Faculty, Leipzig, Germany.
| |
Collapse
|
9
|
Fan Z, Luo Y, Lu H, Wang T, Feng Y, Zhao W, Kim P, Zhou X. SPASCER: spatial transcriptomics annotation at single-cell resolution. Nucleic Acids Res 2023; 51:D1138-D1149. [PMID: 36243975 PMCID: PMC9825565 DOI: 10.1093/nar/gkac889] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 01/30/2023] Open
Abstract
In recent years, the explosive growth of spatial technologies has enabled the characterization of spatial heterogeneity of tissue architectures. Compared to traditional sequencing, spatial transcriptomics reserves the spatial information of each captured location and provides novel insights into diverse spatially related biological contexts. Even though two spatial transcriptomics databases exist, they provide limited analytical information. Information such as spatial heterogeneity of genes and cells, cell-cell communication activities in space, and the cell type compositions in the microenvironment are critical clues to unveil the mechanism of tumorigenesis and embryo differentiation. Therefore, we constructed a new spatial transcriptomics database, named SPASCER (https://ccsm.uth.edu/SPASCER), designed to help understand the heterogeneity of tissue organizations, region-specific microenvironment, and intercellular interactions across tissue architectures at multiple levels. SPASCER contains datasets from 43 studies, including 1082 sub-datasets from 16 organ types across four species. scRNA-seq was integrated to deconvolve/map spatial transcriptomics, and processed with spatial cell-cell interaction, gene pattern and pathway enrichment analysis. Cell-cell interactions and gene regulation network of scRNA-seq from matched spatial transcriptomics were performed as well. The application of SPASCER will provide new insights into tissue architecture and a solid foundation for the mechanistic understanding of many biological processes in healthy and diseased tissues.
Collapse
Affiliation(s)
- Zhiwei Fan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yangyang Luo
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huifen Lu
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tiangang Wang
- School of Life Science and Technology, Xidian University, Xi’an 710126, China
| | - YuZhou Feng
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiling Zhao
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
10
|
Alsaleh L, Li C, Couetil JL, Ye Z, Huang K, Zhang J, Chen C, Johnson TS. Spatial Transcriptomic Analysis Reveals Associations between Genes and Cellular Topology in Breast and Prostate Cancers. Cancers (Basel) 2022; 14:4856. [PMID: 36230778 PMCID: PMC9562681 DOI: 10.3390/cancers14194856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cancer is the leading cause of death worldwide with breast and prostate cancer the most common among women and men, respectively. Gene expression and image features are independently prognostic of patient survival; but until the advent of spatial transcriptomics (ST), it was not possible to determine how gene expression of cells was tied to their spatial relationships (i.e., topology). METHODS We identify topology-associated genes (TAGs) that correlate with 700 image topological features (ITFs) in breast and prostate cancer ST samples. Genes and image topological features are independently clustered and correlated with each other. Themes among genes correlated with ITFs are investigated by functional enrichment analysis. RESULTS Overall, topology-associated genes (TAG) corresponding to extracellular matrix (ECM) and Collagen Type I Trimer gene ontology terms are common to both prostate and breast cancer. In breast cancer specifically, we identify the ZAG-PIP Complex as a TAG. In prostate cancer, we identify distinct TAGs that are enriched for GI dysmotility and the IgA immunoglobulin complex. We identified TAGs in every ST slide regardless of cancer type. CONCLUSIONS These TAGs are enriched for ontology terms, illustrating the biological relevance to our image topology features and their potential utility in diagnostic and prognostic models.
Collapse
Affiliation(s)
- Lujain Alsaleh
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46202, USA
| | - Chen Li
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Justin L. Couetil
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Ze Ye
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kun Huang
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
- Regenstrief Institute, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - Chao Chen
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Travis S. Johnson
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Indiana Biosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Qiao Y, Zhao L, Luo C, Luo Y, Wu Y, Li S, Bu D, Zhao Y. Multi-modality artificial intelligence in digital pathology. Brief Bioinform 2022; 23:6702380. [PMID: 36124675 PMCID: PMC9677480 DOI: 10.1093/bib/bbac367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022] Open
Abstract
In common medical procedures, the time-consuming and expensive nature of obtaining test results plagues doctors and patients. Digital pathology research allows using computational technologies to manage data, presenting an opportunity to improve the efficiency of diagnosis and treatment. Artificial intelligence (AI) has a great advantage in the data analytics phase. Extensive research has shown that AI algorithms can produce more up-to-date and standardized conclusions for whole slide images. In conjunction with the development of high-throughput sequencing technologies, algorithms can integrate and analyze data from multiple modalities to explore the correspondence between morphological features and gene expression. This review investigates using the most popular image data, hematoxylin-eosin stained tissue slide images, to find a strategic solution for the imbalance of healthcare resources. The article focuses on the role that the development of deep learning technology has in assisting doctors' work and discusses the opportunities and challenges of AI.
Collapse
Affiliation(s)
- Yixuan Qiao
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianhe Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| | - Chunlong Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Luo
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Shengtong Li
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dechao Bu
- Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhao
- Corresponding authors: Yi Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences; Shandong First Medical University & Shandong Academy of Medical Sciences. Tel.: +86 10 6260 0822; Fax: +86 10 6260 1356; E-mail: ; Lianhe Zhao, Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences. Tel.: +86 18513983324; E-mail:
| |
Collapse
|