1
|
White AJ, Kelly-Hedrick M, Miranda SP, Abdelbarr MM, Lázaro-Muñoz G, Pouratian N, Shen F, Nahed BV, Williamson T. Bioethics and Neurosurgery: An Overview of Existing and Emerging Topics for the Practicing Neurosurgeon. World Neurosurg 2024; 190:181-186. [PMID: 39004179 DOI: 10.1016/j.wneu.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Neurosurgery is a field with complex ethical issues. In this article, we aim to provide an overview of key and emerging ethical issues in neurosurgery with a focus on issues relevant to practicing neurosurgeons. These issues include those of informed consent, capacity, clinical trials, emerging neurotechnology, innovation, equity and justice, and emerging bioethics areas including community engagement and organizational ethics. We argue that bioethics can help neurosurgeons think about and address these issues, and, in turn, the field of bioethics can benefit from engagement by neurosurgeons. Several ideas for increasing engagement in bioethics are proposed.
Collapse
Affiliation(s)
- Alexandra J White
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Margot Kelly-Hedrick
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA.
| | - Stephen P Miranda
- Department of Neurosurgery, University of Pennsylvania, Pennsylvania, Pennsylvania, USA
| | | | | | - Nader Pouratian
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, Texas, USA
| | - Francis Shen
- Center for Bioethics, Harvard Medical School, Boston, Massachusetts, USA; Harvard Law School, Cambridge, Massachusetts, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Theresa Williamson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Wanjari M, Mittal G, Prasad R. AI-Driven innovations for managing ependymoma in neurosurgery. Neurosurg Rev 2024; 47:590. [PMID: 39256263 DOI: 10.1007/s10143-024-02871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Affiliation(s)
- Mayur Wanjari
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND, India.
| | - Gaurav Mittal
- Department of Medicine, Mahatma Gandhi Institute of Medical Sciences, Wardha, IND, India
| | - Roshan Prasad
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND, India
| |
Collapse
|
3
|
Iftikhar M, Saqib M, Zareen M, Mumtaz H. Artificial intelligence: revolutionizing robotic surgery: review. Ann Med Surg (Lond) 2024; 86:5401-5409. [PMID: 39238994 PMCID: PMC11374272 DOI: 10.1097/ms9.0000000000002426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/25/2024] [Indexed: 09/07/2024] Open
Abstract
Robotic surgery, known for its minimally invasive techniques and computer-controlled robotic arms, has revolutionized modern medicine by providing improved dexterity, visualization, and tremor reduction compared to traditional methods. The integration of artificial intelligence (AI) into robotic surgery has further advanced surgical precision, efficiency, and accessibility. This paper examines the current landscape of AI-driven robotic surgical systems, detailing their benefits, limitations, and future prospects. Initially, AI applications in robotic surgery focused on automating tasks like suturing and tissue dissection to enhance consistency and reduce surgeon workload. Present AI-driven systems incorporate functionalities such as image recognition, motion control, and haptic feedback, allowing real-time analysis of surgical field images and optimizing instrument movements for surgeons. The advantages of AI integration include enhanced precision, reduced surgeon fatigue, and improved safety. However, challenges such as high development costs, reliance on data quality, and ethical concerns about autonomy and liability hinder widespread adoption. Regulatory hurdles and workflow integration also present obstacles. Future directions for AI integration in robotic surgery include enhancing autonomy, personalizing surgical approaches, and refining surgical training through AI-powered simulations and virtual reality. Overall, AI integration holds promise for advancing surgical care, with potential benefits including improved patient outcomes and increased access to specialized expertise. Addressing challenges and promoting responsible adoption are essential for realizing the full potential of AI-driven robotic surgery.
Collapse
|
4
|
Nardone V, Marmorino F, Germani MM, Cichowska-Cwalińska N, Menditti VS, Gallo P, Studiale V, Taravella A, Landi M, Reginelli A, Cappabianca S, Girnyi S, Cwalinski T, Boccardi V, Goyal A, Skokowski J, Oviedo RJ, Abou-Mrad A, Marano L. The Role of Artificial Intelligence on Tumor Boards: Perspectives from Surgeons, Medical Oncologists and Radiation Oncologists. Curr Oncol 2024; 31:4984-5007. [PMID: 39329997 PMCID: PMC11431448 DOI: 10.3390/curroncol31090369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The integration of multidisciplinary tumor boards (MTBs) is fundamental in delivering state-of-the-art cancer treatment, facilitating collaborative diagnosis and management by a diverse team of specialists. Despite the clear benefits in personalized patient care and improved outcomes, the increasing burden on MTBs due to rising cancer incidence and financial constraints necessitates innovative solutions. The advent of artificial intelligence (AI) in the medical field offers a promising avenue to support clinical decision-making. This review explores the perspectives of clinicians dedicated to the care of cancer patients-surgeons, medical oncologists, and radiation oncologists-on the application of AI within MTBs. Additionally, it examines the role of AI across various clinical specialties involved in cancer diagnosis and treatment. By analyzing both the potential and the challenges, this study underscores how AI can enhance multidisciplinary discussions and optimize treatment plans. The findings highlight the transformative role that AI may play in refining oncology care and sustaining the efficacy of MTBs amidst growing clinical demands.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80131 Naples, Italy
| | - Federica Marmorino
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Marco Maria Germani
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | | | | | - Paolo Gallo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80131 Naples, Italy
| | - Vittorio Studiale
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Ada Taravella
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Matteo Landi
- Unit of Medical Oncology 2, Azienda Ospedaliera Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80131 Naples, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80131 Naples, Italy
| | - Sergii Girnyi
- Department of General Surgery and Surgical Oncology, "Saint Wojciech" Hospital, "Nicolaus Copernicus" Health Center, 80-462 Gdańsk, Poland
| | - Tomasz Cwalinski
- Department of General Surgery and Surgical Oncology, "Saint Wojciech" Hospital, "Nicolaus Copernicus" Health Center, 80-462 Gdańsk, Poland
| | - Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Aman Goyal
- Adesh Institute of Medical Sciences and Research, Bathinda 151109, Punjab, India
| | - Jaroslaw Skokowski
- Department of General Surgery and Surgical Oncology, "Saint Wojciech" Hospital, "Nicolaus Copernicus" Health Center, 80-462 Gdańsk, Poland
- Department of Medicine, Academy of Applied Medical and Social Sciences-AMiSNS: Akademia Medycznych I Spolecznych Nauk Stosowanych, 82-300 Elbląg, Poland
| | - Rodolfo J Oviedo
- Nacogdoches Medical Center, Nacogdoches, TX 75965, USA
- Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77021, USA
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA
| | - Adel Abou-Mrad
- Centre Hospitalier Universitaire d'Orléans, 45100 Orléans, France
| | - Luigi Marano
- Department of General Surgery and Surgical Oncology, "Saint Wojciech" Hospital, "Nicolaus Copernicus" Health Center, 80-462 Gdańsk, Poland
- Department of Medicine, Academy of Applied Medical and Social Sciences-AMiSNS: Akademia Medycznych I Spolecznych Nauk Stosowanych, 82-300 Elbląg, Poland
| |
Collapse
|
5
|
Liu X, Liu F, Jin L, Wu J. Evolution of Neurosurgical Robots: Historical Progress and Future Direction. World Neurosurg 2024; 191:49-57. [PMID: 39116942 DOI: 10.1016/j.wneu.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
In 1985, Professor KWOH first introduced robots into neurosurgery. Since then, advancements of stereotactic frames, radiographic imaging, and neuronavigation have led to the dominance of classic stereotactic robots. A comprehensive retrieval was performed using academic databases and search agents to acquire professional information, with a cutoff date of June, 2024. This reveals a multitude of emerging technologies are coming to the forefront, including tremor filtering, motion scaling, obstacle avoidance, force sensing, which have made significant contributions to the high efficiency, high precision, minimally invasive, and exact efficacy of robot-assisted neurosurgery. Those technologies have been applied in innovative magnetic resonance-compatible neurosurgical robots, such as Neuroarm and Neurobot, with real-time image-guided surgery. Despite these advancements, the major challenge is considered as magnetic resonance compatibility in terms of space, materials, driving, and imaging. Future research directions are anticipated to focus on 1) robotic precise perception; 2) artificial intelligence; and 3) the advancement of telesurgery.
Collapse
Affiliation(s)
- Xi Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Feili Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Lei Jin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China.
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Awuah WA, Adebusoye FT, Wellington J, David L, Salam A, Weng Yee AL, Lansiaux E, Yarlagadda R, Garg T, Abdul-Rahman T, Kalmanovich J, Miteu GD, Kundu M, Mykolaivna NI. Recent Outcomes and Challenges of Artificial Intelligence, Machine Learning, and Deep Learning in Neurosurgery. World Neurosurg X 2024; 23:100301. [PMID: 38577317 PMCID: PMC10992893 DOI: 10.1016/j.wnsx.2024.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/23/2023] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Neurosurgeons receive extensive technical training, which equips them with the knowledge and skills to specialise in various fields and manage the massive amounts of information and decision-making required throughout the various stages of neurosurgery, including preoperative, intraoperative, and postoperative care and recovery. Over the past few years, artificial intelligence (AI) has become more useful in neurosurgery. AI has the potential to improve patient outcomes by augmenting the capabilities of neurosurgeons and ultimately improving diagnostic and prognostic outcomes as well as decision-making during surgical procedures. By incorporating AI into both interventional and non-interventional therapies, neurosurgeons may provide the best care for their patients. AI, machine learning (ML), and deep learning (DL) have made significant progress in the field of neurosurgery. These cutting-edge methods have enhanced patient outcomes, reduced complications, and improved surgical planning.
Collapse
Affiliation(s)
| | | | - Jack Wellington
- Cardiff University School of Medicine, Cardiff University, Wales, United Kingdom
| | - Lian David
- Norwich Medical School, University of East Anglia, United Kingdom
| | - Abdus Salam
- Department of Surgery, Khyber Teaching Hospital, Peshawar, Pakistan
| | | | | | - Rohan Yarlagadda
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Tulika Garg
- Government Medical College and Hospital Chandigarh, India
| | | | | | | | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | | |
Collapse
|
7
|
Chukwujindu E, Faiz H, Ai-Douri S, Faiz K, De Sequeira A. Role of artificial intelligence in brain tumour imaging. Eur J Radiol 2024; 176:111509. [PMID: 38788610 DOI: 10.1016/j.ejrad.2024.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Artificial intelligence (AI) is a rapidly evolving field with many neuro-oncology applications. In this review, we discuss how AI can assist in brain tumour imaging, focusing on machine learning (ML) and deep learning (DL) techniques. We describe how AI can help in lesion detection, differential diagnosis, anatomic segmentation, molecular marker identification, prognostication, and pseudo-progression evaluation. We also cover AI applications in non-glioma brain tumours, such as brain metastasis, posterior fossa, and pituitary tumours. We highlight the challenges and limitations of AI implementation in radiology, such as data quality, standardization, and integration. Based on the findings in the aforementioned areas, we conclude that AI can potentially improve the diagnosis and treatment of brain tumours and provide a path towards personalized medicine and better patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Khunsa Faiz
- McMaster University, Department of Radiology, L8S 4L8, Canada.
| | | |
Collapse
|
8
|
Seghier ML. 7 T and beyond: toward a synergy between fMRI-based presurgical mapping at ultrahigh magnetic fields, AI, and robotic neurosurgery. Eur Radiol Exp 2024; 8:73. [PMID: 38945979 PMCID: PMC11214939 DOI: 10.1186/s41747-024-00472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Presurgical evaluation with functional magnetic resonance imaging (fMRI) can reduce postsurgical morbidity. Here, we discuss presurgical fMRI mapping at ultra-high magnetic fields (UHF), i.e., ≥ 7 T, in the light of the current growing interest in artificial intelligence (AI) and robot-assisted neurosurgery. The potential of submillimetre fMRI mapping can help better appreciate uncertainty on resection margins, though geometric distortions at UHF might lessen the accuracy of fMRI maps. A useful trade-off for UHF fMRI is to collect data with 1-mm isotropic resolution to ensure high sensitivity and subsequently a low risk of false negatives. Scanning at UHF might yield a revival interest in slow event-related fMRI, thereby offering a richer depiction of the dynamics of fMRI responses. The potential applications of AI concern denoising and artefact removal, generation of super-resolution fMRI maps, and accurate fusion or coregistration between anatomical and fMRI maps. The latter can benefit from the use of T1-weighted echo-planar imaging for better visualization of brain activations. Such AI-augmented fMRI maps would provide high-quality input data to robotic surgery systems, thereby improving the accuracy and reliability of robot-assisted neurosurgery. Ultimately, the advancement in fMRI at UHF would promote clinically useful synergies between fMRI, AI, and robotic neurosurgery.Relevance statement This review highlights the potential synergies between fMRI at UHF, AI, and robotic neurosurgery in improving the accuracy and reliability of fMRI-based presurgical mapping.Key points• Presurgical fMRI mapping at UHF improves spatial resolution and sensitivity.• Slow event-related designs offer a richer depiction of fMRI responses dynamics.• AI can support denoising, artefact removal, and generation of super-resolution fMRI maps.• AI-augmented fMRI maps can provide high-quality input data to robotic surgery systems.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Healtcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
9
|
Kashif M, Muthana A, Al-Qudah AM, Hoz SS. The influence of artificial intelligence on neurological surgery and patient outcome. Surg Neurol Int 2024; 15:211. [PMID: 38974533 PMCID: PMC11225402 DOI: 10.25259/sni_321_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Affiliation(s)
- Muhammad Kashif
- Department of Neurosurgery, Medical School, Midwestern University, Glendale, United States
| | - Ahmed Muthana
- Department of Neurosurgery, University of Baghdad, College of Medicine, Medical City, Baghdad, Iraq
| | - Abdullah M. Al-Qudah
- University of Pittsburgh Medical Center (UPMC) Stroke Institute, Department of Neurology, University of Pittsburgh Medical Center, Pennsylvania, United States
| | - Samer S. Hoz
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
10
|
Stamate E, Piraianu AI, Ciobotaru OR, Crassas R, Duca O, Fulga A, Grigore I, Vintila V, Fulga I, Ciobotaru OC. Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years. Diagnostics (Basel) 2024; 14:1103. [PMID: 38893630 PMCID: PMC11172021 DOI: 10.3390/diagnostics14111103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) can radically change almost every aspect of the human experience. In the medical field, there are numerous applications of AI and subsequently, in a relatively short time, significant progress has been made. Cardiology is not immune to this trend, this fact being supported by the exponential increase in the number of publications in which the algorithms play an important role in data analysis, pattern discovery, identification of anomalies, and therapeutic decision making. Furthermore, with technological development, there have appeared new models of machine learning (ML) and deep learning (DP) that are capable of exploring various applications of AI in cardiology, including areas such as prevention, cardiovascular imaging, electrophysiology, interventional cardiology, and many others. In this sense, the present article aims to provide a general vision of the current state of AI use in cardiology. RESULTS We identified and included a subset of 200 papers directly relevant to the current research covering a wide range of applications. Thus, this paper presents AI applications in cardiovascular imaging, arithmology, clinical or emergency cardiology, cardiovascular prevention, and interventional procedures in a summarized manner. Recent studies from the highly scientific literature demonstrate the feasibility and advantages of using AI in different branches of cardiology. CONCLUSIONS The integration of AI in cardiology offers promising perspectives for increasing accuracy by decreasing the error rate and increasing efficiency in cardiovascular practice. From predicting the risk of sudden death or the ability to respond to cardiac resynchronization therapy to the diagnosis of pulmonary embolism or the early detection of valvular diseases, AI algorithms have shown their potential to mitigate human error and provide feasible solutions. At the same time, limits imposed by the small samples studied are highlighted alongside the challenges presented by ethical implementation; these relate to legal implications regarding responsibility and decision making processes, ensuring patient confidentiality and data security. All these constitute future research directions that will allow the integration of AI in the progress of cardiology.
Collapse
Affiliation(s)
- Elena Stamate
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (E.S.); (V.V.)
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
| | - Alin-Ionut Piraianu
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
| | - Oana Roxana Ciobotaru
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Railway Hospital Galati, 800223 Galati, Romania
| | - Rodica Crassas
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Oana Duca
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Ana Fulga
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei Street, 800578 Galati, Romania
| | - Ionica Grigore
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Vlad Vintila
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (E.S.); (V.V.)
- Clinical Department of Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 37 Dionisie Lupu Street, 4192910 Bucharest, Romania
| | - Iuliu Fulga
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei Street, 800578 Galati, Romania
| | - Octavian Catalin Ciobotaru
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Railway Hospital Galati, 800223 Galati, Romania
| |
Collapse
|
11
|
Ma A, Yan X, Qu Y, Wen H, Zou X, Liu X, Lu M, Mo J, Wen Z. Amide proton transfer weighted and diffusion weighted imaging based radiomics classification algorithm for predicting 1p/19q co-deletion status in low grade gliomas. BMC Med Imaging 2024; 24:85. [PMID: 38600452 PMCID: PMC11005152 DOI: 10.1186/s12880-024-01262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND 1p/19q co-deletion in low-grade gliomas (LGG, World Health Organization grade II and III) is of great significance in clinical decision making. We aim to use radiomics analysis to predict 1p/19q co-deletion in LGG based on amide proton transfer weighted (APTw), diffusion weighted imaging (DWI), and conventional MRI. METHODS This retrospective study included 90 patients histopathologically diagnosed with LGG. We performed a radiomics analysis by extracting 8454 MRI-based features form APTw, DWI and conventional MR images and applied a least absolute shrinkage and selection operator (LASSO) algorithm to select radiomics signature. A radiomics score (Rad-score) was generated using a linear combination of the values of the selected features weighted for each of the patients. Three neuroradiologists, including one experienced neuroradiologist and two resident physicians, independently evaluated the MR features of LGG and provided predictions on whether the tumor had 1p/19q co-deletion or 1p/19q intact status. A clinical model was then constructed based on the significant variables identified in this analysis. A combined model incorporating both the Rad-score and clinical factors was also constructed. The predictive performance was validated by receiver operating characteristic curve analysis, DeLong analysis and decision curve analysis. P < 0.05 was statistically significant. RESULTS The radiomics model and the combined model both exhibited excellent performance on both the training and test sets, achieving areas under the curve (AUCs) of 0.948 and 0.966, as well as 0.909 and 0.896, respectively. These results surpassed the performance of the clinical model, which achieved AUCs of 0.760 and 0.766 on the training and test sets, respectively. After performing Delong analysis, the clinical model did not significantly differ in predictive performance from three neuroradiologists. In the training set, both the radiomic and combined models performed better than all neuroradiologists. In the test set, the models exhibited higher AUCs than the neuroradiologists, with the radiomics model significantly outperforming resident physicians B and C, but not differing significantly from experienced neuroradiologist. CONCLUSIONS Our results suggest that our algorithm can noninvasively predict the 1p/19q co-deletion status of LGG. The predictive performance of radiomics model was comparable to that of experienced neuroradiologist, significantly outperforming the diagnostic accuracy of resident physicians, thereby offering the potential to facilitate non-invasive 1p/19q co-deletion prediction of LGG.
Collapse
Affiliation(s)
- Andong Ma
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Xinran Yan
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Yaoming Qu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Haitao Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Xia Zou
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Xinzi Liu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Mingjun Lu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Jianhua Mo
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Haizhu District, 253 Gongye Middle Avenue, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
12
|
Amin A, Cardoso SA, Suyambu J, Abdus Saboor H, Cardoso RP, Husnain A, Isaac NV, Backing H, Mehmood D, Mehmood M, Maslamani ANJ. Future of Artificial Intelligence in Surgery: A Narrative Review. Cureus 2024; 16:e51631. [PMID: 38318552 PMCID: PMC10839429 DOI: 10.7759/cureus.51631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Artificial intelligence (AI) is the capability of a machine to execute cognitive processes that are typically considered to be functions of the human brain. It is the study of algorithms that enable machines to reason and perform mental tasks, including problem-solving, object and word recognition, and decision-making. Once considered science fiction, AI today is a fact and an increasingly prevalent subject in both academic and popular literature. It is expected to reshape medicine, benefiting both healthcare professionals and patients. Machine learning (ML) is a subset of AI that allows machines to learn and make predictions by recognizing patterns, thus empowering the medical team to deliver better care to patients through accurate diagnosis and treatment. ML is expanding its footprint in a variety of surgical specialties, including general surgery, ophthalmology, cardiothoracic surgery, and vascular surgery, to name a few. In recent years, we have seen AI make its way into the operating theatres. Though it has not yet been able to replace the surgeon, it has the potential to become a highly valuable surgical tool. Rest assured that the day is not far off when AI shall play a significant intraoperative role, a projection that is currently marred by safety concerns. This review aims to explore the present application of AI in various surgical disciplines and how it benefits both patients and physicians, as well as the current obstacles and limitations facing its seemingly unstoppable rise.
Collapse
Affiliation(s)
- Aamir Amin
- Cardiothoracic Surgery, Harefield Hospital, Guy's and St Thomas' NHS Foundation Trust, London, GBR
| | - Swizel Ann Cardoso
- Major Trauma Services, University Hospital Birmingham NHS Foundation Trust DC, Birmingham, GBR
| | - Jenisha Suyambu
- Medicine, University of Perpetual Help System Data - Jonelta Foundation School of Medicine, Las Piñas, PHL
| | | | - Rayner P Cardoso
- Medicine and Surgery, All India Institute of Medical Sciences, Jodhpur, Jodhpur, IND
| | - Ali Husnain
- Radiology, Northwestern University, Lahore, PAK
| | - Natasha Varghese Isaac
- Medicine and Surgery, St John's Medical College Hospital, Rajiv Gandhi University of Health Sciences, Bengaluru, IND
| | - Haydee Backing
- Medicine, Universidad de San Martin de Porres, Lima, PER
| | - Dalia Mehmood
- Community Medicine, Fatima Jinnah Medical University, Lahore, PAK
| | - Maria Mehmood
- Internal Medicine, Shalamar Medical and Dental College, Lahore, PAK
| | | |
Collapse
|
13
|
MacCormac O, Noonan P, Janatka M, Horgan CC, Bahl A, Qiu J, Elliot M, Trotouin T, Jacobs J, Patel S, Bergholt MS, Ashkan K, Ourselin S, Ebner M, Vercauteren T, Shapey J. Lightfield hyperspectral imaging in neuro-oncology surgery: an IDEAL 0 and 1 study. Front Neurosci 2023; 17:1239764. [PMID: 37790587 PMCID: PMC10544348 DOI: 10.3389/fnins.2023.1239764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Hyperspectral imaging (HSI) has shown promise in the field of intra-operative imaging and tissue differentiation as it carries the capability to provide real-time information invisible to the naked eye whilst remaining label free. Previous iterations of intra-operative HSI systems have shown limitations, either due to carrying a large footprint limiting ease of use within the confines of a neurosurgical theater environment, having a slow image acquisition time, or by compromising spatial/spectral resolution in favor of improvements to the surgical workflow. Lightfield hyperspectral imaging is a novel technique that has the potential to facilitate video rate image acquisition whilst maintaining a high spectral resolution. Our pre-clinical and first-in-human studies (IDEAL 0 and 1, respectively) demonstrate the necessary steps leading to the first in-vivo use of a real-time lightfield hyperspectral system in neuro-oncology surgery. Methods A lightfield hyperspectral camera (Cubert Ultris ×50) was integrated in a bespoke imaging system setup so that it could be safely adopted into the open neurosurgical workflow whilst maintaining sterility. Our system allowed the surgeon to capture in-vivo hyperspectral data (155 bands, 350-1,000 nm) at 1.5 Hz. Following successful implementation in a pre-clinical setup (IDEAL 0), our system was evaluated during brain tumor surgery in a single patient to remove a posterior fossa meningioma (IDEAL 1). Feedback from the theater team was analyzed and incorporated in a follow-up design aimed at implementing an IDEAL 2a study. Results Focusing on our IDEAL 1 study results, hyperspectral information was acquired from the cerebellum and associated meningioma with minimal disruption to the neurosurgical workflow. To the best of our knowledge, this is the first demonstration of HSI acquisition with 100+ spectral bands at a frame rate over 1Hz in surgery. Discussion This work demonstrated that a lightfield hyperspectral imaging system not only meets the design criteria and specifications outlined in an IDEAL-0 (pre-clinical) study, but also that it can translate into clinical practice as illustrated by a successful first in human study (IDEAL 1). This opens doors for further development and optimisation, given the increasing evidence that hyperspectral imaging can provide live, wide-field, and label-free intra-operative imaging and tissue differentiation.
Collapse
Affiliation(s)
- Oscar MacCormac
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
- Department of Neurosurgery, King's College Hospital, London, United Kingdom
| | - Philip Noonan
- Hypervision Surgical Limited, London, United Kingdom
| | - Mirek Janatka
- Hypervision Surgical Limited, London, United Kingdom
| | | | - Anisha Bahl
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
| | - Jianrong Qiu
- School of Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Matthew Elliot
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
- Department of Neurosurgery, King's College Hospital, London, United Kingdom
| | - Théo Trotouin
- Hypervision Surgical Limited, London, United Kingdom
| | - Jaco Jacobs
- Hypervision Surgical Limited, London, United Kingdom
| | - Sabina Patel
- Department of Neurosurgery, King's College Hospital, London, United Kingdom
| | - Mads S. Bergholt
- School of Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Keyoumars Ashkan
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
- Department of Neurosurgery, King's College Hospital, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
- Hypervision Surgical Limited, London, United Kingdom
| | - Michael Ebner
- Hypervision Surgical Limited, London, United Kingdom
| | - Tom Vercauteren
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
- Hypervision Surgical Limited, London, United Kingdom
| | - Jonathan Shapey
- School of Biomedical Engineering and Imaging Science, King's College London, London, United Kingdom
- Department of Neurosurgery, King's College Hospital, London, United Kingdom
- Hypervision Surgical Limited, London, United Kingdom
| |
Collapse
|
14
|
Khan DZ, Hanrahan JG, Baldeweg SE, Dorward NL, Stoyanov D, Marcus HJ. Current and Future Advances in Surgical Therapy for Pituitary Adenoma. Endocr Rev 2023; 44:947-959. [PMID: 37207359 PMCID: PMC10502574 DOI: 10.1210/endrev/bnad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
The vital physiological role of the pituitary gland, alongside its proximity to critical neurovascular structures, means that pituitary adenomas can cause significant morbidity or mortality. While enormous advancements have been made in the surgical care of pituitary adenomas, numerous challenges remain, such as treatment failure and recurrence. To meet these clinical challenges, there has been an enormous expansion of novel medical technologies (eg, endoscopy, advanced imaging, artificial intelligence). These innovations have the potential to benefit each step of the patient's journey, and ultimately, drive improved outcomes. Earlier and more accurate diagnosis addresses this in part. Analysis of novel patient data sets, such as automated facial analysis or natural language processing of medical records holds potential in achieving an earlier diagnosis. After diagnosis, treatment decision-making and planning will benefit from radiomics and multimodal machine learning models. Surgical safety and effectiveness will be transformed by smart simulation methods for trainees. Next-generation imaging techniques and augmented reality will enhance surgical planning and intraoperative navigation. Similarly, surgical abilities will be augmented by the future operative armamentarium, including advanced optical devices, smart instruments, and surgical robotics. Intraoperative support to surgical team members will benefit from a data science approach, utilizing machine learning analysis of operative videos to improve patient safety and orientate team members to a common workflow. Postoperatively, neural networks leveraging multimodal datasets will allow early detection of individuals at risk of complications and assist in the prediction of treatment failure, thus supporting patient-specific discharge and monitoring protocols. While these advancements in pituitary surgery hold promise to enhance the quality of care, clinicians must be the gatekeepers of the translation of such technologies, ensuring systematic assessment of risk and benefit prior to clinical implementation. In doing so, the synergy between these innovations can be leveraged to drive improved outcomes for patients of the future.
Collapse
Affiliation(s)
- Danyal Z Khan
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - John G Hanrahan
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| | - Stephanie E Baldeweg
- Department of Diabetes & Endocrinology, University College London Hospitals NHS Foundation Trust, London NW1 2BU, UK
- Centre for Obesity and Metabolism, Department of Experimental and Translational Medicine, Division of Medicine, University College London, London WC1E 6BT, UK
| | - Neil L Dorward
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
- Digital Surgery Ltd, Medtronic, London WD18 8WW, UK
| | - Hani J Marcus
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TY, UK
| |
Collapse
|
15
|
Lee Y, Choi HJ, Kim H, Kim S, Kim MS, Cha H, Eum YJ, Cho H, Park JE, You SH. Feasibility of artificial intelligence-driven interfractional monitoring of organ changes by mega-voltage computed tomography in intensity-modulated radiotherapy of prostate cancer. Radiat Oncol J 2023; 41:186-198. [PMID: 37793628 PMCID: PMC10556843 DOI: 10.3857/roj.2023.00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
PURPOSE High-dose radiotherapy (RT) for localized prostate cancer requires careful consideration of target position changes and adjacent organs-at-risk (OARs), such as the rectum and bladder. Therefore, daily monitoring of target position and OAR changes is crucial in minimizing interfractional dosimetric uncertainties. For efficient monitoring of the internal condition of patients, we assessed the feasibility of an auto-segmentation of OARs on the daily acquired images, such as megavoltage computed tomography (MVCT), via a commercial artificial intelligence (AI)-based solution in this study. MATERIALS AND METHODS We collected MVCT images weekly during the entire course of RT for 100 prostate cancer patients treated with the helical TomoTherapy system. Based on the manually contoured body outline, the bladder including prostate area, and rectal balloon regions for the 100 MVCT images, we trained the commercially available fully convolutional (FC)-DenseNet model and tested its auto-contouring performance. RESULTS Based on the optimally determined hyperparameters, the FC-DenseNet model successfully auto-contoured all regions of interest showing high dice similarity coefficient (DSC) over 0.8 and a small mean surface distance (MSD) within 1.43 mm in reference to the manually contoured data. With this well-trained AI model, we have efficiently monitored the patient's internal condition through six MVCT scans, analyzing DSC, MSD, centroid, and volume differences. CONCLUSION We have verified the feasibility of utilizing a commercial AI-based model for auto-segmentation with low-quality daily MVCT images. In the future, we will establish a fast and accurate auto-segmentation and internal organ monitoring system for efficiently determining the time for adaptive replanning.
Collapse
Affiliation(s)
- Yohan Lee
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyun Joon Choi
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyemi Kim
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sunghyun Kim
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Mi Sun Kim
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyejung Cha
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Ju Eum
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyosung Cho
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Korea
| | - Jeong Eun Park
- Department of Radiation Convergence Engineering, Yonsei University, Wonju, Korea
| | - Sei Hwan You
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
16
|
Williams SC, Marcus HJ. Editorial: Investigations into the potential benefits of artificial intelligence and deep learning to surgical oncologists. Front Oncol 2023; 13:1243305. [PMID: 37496656 PMCID: PMC10368360 DOI: 10.3389/fonc.2023.1243305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Affiliation(s)
- Simon C. Williams
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
- Department of Neurosurgery, St George’s University Hospital, London, United Kingdom
| | - Hani J. Marcus
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
- Division of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
17
|
Planells H, Parmar V, Marcus HJ, Pandit AS. From theory to practice: what is the potential of artificial intelligence in the future of neurosurgery? Expert Rev Neurother 2023; 23:1041-1046. [PMID: 37997765 DOI: 10.1080/14737175.2023.2285432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Hannah Planells
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Viraj Parmar
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Hani J Marcus
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Anand S Pandit
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- High-dimensional Neurology, Institute of Neurology, London, UK
| |
Collapse
|
18
|
Mathematical Assessment of Machine Learning Models Used for Brain Tumor Diagnosis. Diagnostics (Basel) 2023; 13:diagnostics13040618. [PMID: 36832106 PMCID: PMC9955898 DOI: 10.3390/diagnostics13040618] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The brain is an intrinsic and complicated component of human anatomy. It is a collection of connective tissues and nerve cells that regulate the principal actions of the entire body. Brain tumor cancer is a serious mortality factor and a highly intractable disease. Even though brain tumors are not considered a fundamental cause of cancer deaths worldwide, about 40% of other cancer types are metastasized to the brain and transform into brain tumors. Computer-aided devices for diagnosis through magnetic resonance imaging (MRI) have remained the gold standard for the diagnosis of brain tumors, but this conventional method has been greatly challenged with inefficiencies and drawbacks related to the late detection of brain tumors, high risk in biopsy procedures, and low specificity. To circumvent these underlying hurdles, machine learning models have recently been developed to enhance computer-aided diagnosis tools for advanced, precise, and automatic early detection of brain tumors. This study takes a novel approach to evaluate machine learning models (support vector machine (SVM), random forest (RF), gradient-boosting model (GBM), convolutional neural network (CNN), K-nearest neighbor (KNN), AlexNet, GoogLeNet, CNN VGG19, and CapsNet) used for the early detection and classification of brain tumors by deploying the multicriteria decision-making method called fuzzy preference ranking organization method for enrichment evaluations (PROMETHEE), based on selected parameters, in this study: prediction accuracy, precision, specificity, recall, processing time, and sensitivity. To validate the results of our proposed approach, we performed a sensitivity analysis and cross-checking analysis with the PROMETHEE model. The CNN model, with an outranking net flow of 0.0251, is considered the most favorable model for the early detection of brain tumors. The KNN model, with a net flow of -0.0154, is the least appealing option. The findings of this study support the applicability of the proposed approach for making optimal choices regarding the selection of machine learning models. The decision maker is thus afforded the opportunity to expand the range of considerations which they must rely on in selecting the preferred models for early detection of brain tumors.
Collapse
|
19
|
Mosa DT, Mahmoud A, Zaki J, Sorour SE, El-Sappagh S, Abuhmed T. Henry gas solubility optimization double machine learning classifier for neurosurgical patients. PLoS One 2023; 18:e0285455. [PMID: 37167226 PMCID: PMC10174516 DOI: 10.1371/journal.pone.0285455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
This study aims to predict head trauma outcome for Neurosurgical patients in children, adults, and elderly people. As Machine Learning (ML) algorithms are helpful in healthcare field, a comparative study of various ML techniques is developed. Several algorithms are utilized such as k-nearest neighbor, Random Forest (RF), C4.5, Artificial Neural Network, and Support Vector Machine (SVM). Their performance is assessed using anonymous patients' data. Then, a proposed double classifier based on Henry Gas Solubility Optimization (HGSO) is developed with Aquila optimizer (AQO). It is implemented for feature selection to classify patients' outcome status into four states. Those are mortality, morbidity, improved, or the same. The double classifiers are evaluated via various performance metrics including recall, precision, F-measure, accuracy, and sensitivity. Another contribution of this research is the original use of hybrid technique based on RF-SVM and HGSO to predict patient outcome status with high accuracy. It determines outcome status relationship with age and mode of trauma. The algorithm is tested on more than 1000 anonymous patients' data taken from a Neurosurgical unit of Mansoura International Hospital, Egypt. Experimental results show that the proposed method has the highest accuracy of 99.2% (with population size = 30) compared with other classifiers.
Collapse
Affiliation(s)
- Diana T Mosa
- Department of Information Systems, Faculty of Computers and Information, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Amena Mahmoud
- Department of Computer Sciences, Faculty of Computers and Information, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - John Zaki
- Department of Computer and Systems, Faculty of Engineering, Mansoura University, Mansoura, Egypt
| | - Shaymaa E Sorour
- Preparation- Computer Science and Education, Faculty of Specific Education, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Shaker El-Sappagh
- Faculty of Computer Science and Engineering, Galala University, Suez, Egypt
- Faculty of Computers & Artificial Intelligence, Benha University, Banha, Egypt
- College of computing and informatics, Sungkyunkwan University, Seoul, Republic of Korea
| | - Tamer Abuhmed
- College of computing and informatics, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Philip AK, Samuel BA, Bhatia S, Khalifa SAM, El-Seedi HR. Artificial Intelligence and Precision Medicine: A New Frontier for the Treatment of Brain Tumors. Life (Basel) 2022; 13:24. [PMID: 36675973 PMCID: PMC9866715 DOI: 10.3390/life13010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain tumors are a widespread and serious neurological phenomenon that can be life- threatening. The computing field has allowed for the development of artificial intelligence (AI), which can mimic the neural network of the human brain. One use of this technology has been to help researchers capture hidden, high-dimensional images of brain tumors. These images can provide new insights into the nature of brain tumors and help to improve treatment options. AI and precision medicine (PM) are converging to revolutionize healthcare. AI has the potential to improve cancer imaging interpretation in several ways, including more accurate tumor genotyping, more precise delineation of tumor volume, and better prediction of clinical outcomes. AI-assisted brain surgery can be an effective and safe option for treating brain tumors. This review discusses various AI and PM techniques that can be used in brain tumor treatment. These new techniques for the treatment of brain tumors, i.e., genomic profiling, microRNA panels, quantitative imaging, and radiomics, hold great promise for the future. However, there are challenges that must be overcome for these technologies to reach their full potential and improve healthcare.
Collapse
Affiliation(s)
- Anil K. Philip
- School of Pharmacy, University of Nizwa, Birkat Al Mouz, Nizwa 616, Oman
| | - Betty Annie Samuel
- School of Pharmacy, University of Nizwa, Birkat Al Mouz, Nizwa 616, Oman
| | - Saurabh Bhatia
- Natural and Medical Science Research Center, University of Nizwa, Birkat Al Mouz, Nizwa 616, Oman
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 24 Uppsala, Sweden
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
| |
Collapse
|
21
|
Iqbal J, Jahangir K, Mashkoor Y, Sultana N, Mehmood D, Ashraf M, Iqbal A, Hafeez MH. The future of artificial intelligence in neurosurgery: A narrative review. Surg Neurol Int 2022; 13:536. [DOI: 10.25259/sni_877_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Background:
Artificial intelligence (AI) and machine learning (ML) algorithms are on the tremendous rise for being incorporated into the field of neurosurgery. AI and ML algorithms are different from other technological advances as giving the capability for the computer to learn, reason, and problem-solving skills that a human inherits. This review summarizes the current use of AI in neurosurgery, the challenges that need to be addressed, and what the future holds.
Methods:
A literature review was carried out with a focus on the use of AI in the field of neurosurgery and its future implication in neurosurgical research.
Results:
The online literature on the use of AI in the field of neurosurgery shows the diversity of topics in terms of its current and future implications. The main areas that are being studied are diagnostic, outcomes, and treatment models.
Conclusion:
Wonders of AI in the field of medicine and neurosurgery hold true, yet there are a lot of challenges that need to be addressed before its implications can be seen in the field of neurosurgery from patient privacy, to access to high-quality data and overreliance on surgeons on AI. The future of AI in neurosurgery is pointed toward a patient-centric approach, managing clinical tasks, and helping in diagnosing and preoperative assessment of the patients.
Collapse
Affiliation(s)
- Javed Iqbal
- School of Medicine, King Edward Medical University Lahore, Punjab, Pakistan,
| | - Kainat Jahangir
- School of Medicine, Dow University of Health Sciences, Karachi, Sindh, Pakistan,
| | - Yusra Mashkoor
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Sindh, Pakistan,
| | - Nazia Sultana
- School of Medicine, Government Medical College, Siddipet, Telangana, India,
| | - Dalia Mehmood
- Department of Community Medicine, Fatima Jinnah Medical University, Lahore, Punjab, Pakistan,
| | - Mohammad Ashraf
- Wolfson School of Medicine, University of Glasgow, Scotland, United Kingdom,
| | - Ather Iqbal
- House Officer, Holy Family Hospital Rawalpindi, Punjab, Pakistan,
| | | |
Collapse
|
22
|
Busnatu ȘS, Niculescu AG, Bolocan A, Andronic O, Pantea Stoian AM, Scafa-Udriște A, Stănescu AMA, Păduraru DN, Nicolescu MI, Grumezescu AM, Jinga V. A Review of Digital Health and Biotelemetry: Modern Approaches towards Personalized Medicine and Remote Health Assessment. J Pers Med 2022; 12:1656. [PMID: 36294795 PMCID: PMC9604784 DOI: 10.3390/jpm12101656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
With the prevalence of digitalization in all aspects of modern society, health assessment is becoming digital too. Taking advantage of the most recent technological advances and approaching medicine from an interdisciplinary perspective has allowed for important progress in healthcare services. Digital health technologies and biotelemetry devices have been more extensively employed for preventing, detecting, diagnosing, monitoring, and predicting the evolution of various diseases, without requiring wires, invasive procedures, or face-to-face interaction with medical personnel. This paper aims to review the concepts correlated to digital health, classify and describe biotelemetry devices, and present the potential of digitalization for remote health assessment, the transition to personalized medicine, and the streamlining of clinical trials.
Collapse
Affiliation(s)
- Ștefan Sebastian Busnatu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Bolocan
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Octavian Andronic
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | | | - Alexandru Scafa-Udriște
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | | | - Dan Nicolae Păduraru
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Mihnea Ioan Nicolescu
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Viorel Jinga
- Department of Cardiology, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania
| |
Collapse
|
23
|
Busnatu Ș, Niculescu AG, Bolocan A, Petrescu GED, Păduraru DN, Năstasă I, Lupușoru M, Geantă M, Andronic O, Grumezescu AM, Martins H. Clinical Applications of Artificial Intelligence-An Updated Overview. J Clin Med 2022; 11:jcm11082265. [PMID: 35456357 PMCID: PMC9031863 DOI: 10.3390/jcm11082265] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Artificial intelligence has the potential to revolutionize modern society in all its aspects. Encouraged by the variety and vast amount of data that can be gathered from patients (e.g., medical images, text, and electronic health records), researchers have recently increased their interest in developing AI solutions for clinical care. Moreover, a diverse repertoire of methods can be chosen towards creating performant models for use in medical applications, ranging from disease prediction, diagnosis, and prognosis to opting for the most appropriate treatment for an individual patient. In this respect, the present paper aims to review the advancements reported at the convergence of AI and clinical care. Thus, this work presents AI clinical applications in a comprehensive manner, discussing the recent literature studies classified according to medical specialties. In addition, the challenges and limitations hindering AI integration in the clinical setting are further pointed out.
Collapse
Affiliation(s)
- Ștefan Busnatu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandra Bolocan
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - George E. D. Petrescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - Dan Nicolae Păduraru
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - Iulian Năstasă
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - Mircea Lupușoru
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - Marius Geantă
- Centre for Innovation in Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Octavian Andronic
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.B.); (A.B.); (G.E.D.P.); (D.N.P.); (I.N.); (M.L.); (O.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
- Correspondence:
| | - Henrique Martins
- Faculty of Health Sciences, Universidade da Beira Interior, 6200-506 Covilha, Portugal;
| |
Collapse
|
24
|
Das A, Bano S, Vasconcelos F, Khan DZ, Marcus HJ, Stoyanov D. Reducing Prediction volatility in the surgical workflow recognition of endoscopic pituitary surgery. Int J Comput Assist Radiol Surg 2022; 17:1445-1452. [PMID: 35362848 PMCID: PMC9307536 DOI: 10.1007/s11548-022-02599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
Abstract
Purpose: Workflow recognition can aid surgeons before an operation when used as a training tool, during an operation by increasing operating room efficiency, and after an operation in the completion of operation notes. Although several methods have been applied to this task, they have been tested on few surgical datasets. Therefore, their generalisability is not well tested, particularly for surgical approaches utilising smaller working spaces which are susceptible to occlusion and necessitate frequent withdrawal of the endoscope. This leads to rapidly changing predictions, which reduces the clinical confidence of the methods, and hence limits their suitability for clinical translation. Methods: Firstly, the optimal neural network is found using established methods, using endoscopic pituitary surgery as an exemplar. Then, prediction volatility is formally defined as a new evaluation metric as a proxy for uncertainty, and two temporal smoothing functions are created. The first (modal, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M_n$$\end{document}Mn) mode-averages over the previous n predictions, and the second (threshold, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_n$$\end{document}Tn) ensures a class is only changed after being continuously predicted for n predictions. Both functions are independently applied to the predictions of the optimal network. Results: The methods are evaluated on a 50-video dataset using fivefold cross-validation, and the optimised evaluation metric is weighted-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_1$$\end{document}F1 score. The optimal model is ResNet-50+LSTM achieving 0.84 in 3-phase classification and 0.74 in 7-step classification. Applying threshold smoothing further improves these results, achieving 0.86 in 3-phase classification, and 0.75 in 7-step classification, while also drastically reducing the prediction volatility. Conclusion: The results confirm the established methods generalise to endoscopic pituitary surgery, and show simple temporal smoothing not only reduces prediction volatility, but actively improves performance.
Collapse
Affiliation(s)
- Adrito Das
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom.
| | - Sophia Bano
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| | - Francisco Vasconcelos
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| | - Danyal Z Khan
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Hani J Marcus
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| |
Collapse
|
25
|
Ahrens LC, Krabbenhøft MG, Hansen RW, Mikic N, Pedersen CB, Poulsen FR, Korshoej AR. Effect of 5-Aminolevulinic Acid and Sodium Fluorescein on the Extent of Resection in High-Grade Gliomas and Brain Metastasis. Cancers (Basel) 2022; 14:cancers14030617. [PMID: 35158885 PMCID: PMC8833379 DOI: 10.3390/cancers14030617] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Surgery is essential in the treatment of high-grade gliomas (HGG) and gross total resection (GTR) is known to increase the overall survival and progression-free survival. Several studies have shown that fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) increases GTR considerably compared to white light surgery (65% vs. 36%). In recent years, sodium fluorescein (SF) has become an increasingly popular agent for fluorescence-guided surgery due to numerous utility benefits compared to 5-ALA, including lower cost, non-toxicity, easy administration during surgery and a wide indication range covering all contrast-enhancing lesions with disruption of the blood-brain barrier in the CNS. However, currently, SF is an off-label agent and the level of evidence for use in HGG surgery is inferior compared to 5-ALA. Here, we give an update and review the latest literature on fluorescence-guided surgery with 5-ALA and SF for brain tumors with emphasis on fluorescence-guided surgery in HGG and brain metastases. Further, we assess the advantages and disadvantages of both fluorophores and discuss their future perspectives.
Collapse
Affiliation(s)
- Lasse Cramer Ahrens
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J618, DK8200 Aarhus, Denmark; (M.G.K.); (N.M.)
- Correspondence: (L.C.A.); (A.R.K.); Tel.: +45-(20)-254418 (L.C.A.)
| | - Mathias Green Krabbenhøft
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J618, DK8200 Aarhus, Denmark; (M.G.K.); (N.M.)
| | - Rasmus Würgler Hansen
- Department of Neurosurgery, Odense University Hospital, DK5000 Odense, Denmark; (R.W.H.); (C.B.P.); (F.R.P.)
| | - Nikola Mikic
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J618, DK8200 Aarhus, Denmark; (M.G.K.); (N.M.)
- Department of Clinical Medicine, Aarhus University, Incuba Skejby, Building 2, Palle Juul-Jensens Boulevard 82, J618, DK8200 Aarhus, Denmark
| | - Christian Bonde Pedersen
- Department of Neurosurgery, Odense University Hospital, DK5000 Odense, Denmark; (R.W.H.); (C.B.P.); (F.R.P.)
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, DK5000 Odense, Denmark; (R.W.H.); (C.B.P.); (F.R.P.)
| | - Anders Rosendal Korshoej
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J618, DK8200 Aarhus, Denmark; (M.G.K.); (N.M.)
- Department of Clinical Medicine, Aarhus University, Incuba Skejby, Building 2, Palle Juul-Jensens Boulevard 82, J618, DK8200 Aarhus, Denmark
- Correspondence: (L.C.A.); (A.R.K.); Tel.: +45-(20)-254418 (L.C.A.)
| |
Collapse
|