1
|
Zhang H, Qi L, Cai Y, Gao X. Gastrin-releasing peptide receptor (GRPR) as a novel biomarker and therapeutic target in prostate cancer. Ann Med 2024; 56:2320301. [PMID: 38442298 PMCID: PMC10916925 DOI: 10.1080/07853890.2024.2320301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
Aim: This comprehensive review aims to explore the potential applications of Gastrin-releasing peptide receptor (GRPR) in the diagnosis and treatment of prostate cancer. Additionally, the study investigates the role of GRPR in prognostic assessment for individuals afflicted with prostate cancer.Methods: The review encompasses a thorough examination of existing literature and research studies related to the upregulation of GRPR in various tumor types, with a specific focus on prostate. The review also evaluates the utility of GRPR as a molecular target in prostate cancer research, comparing its significance to the well-established Prostate-specific membrane antigen (PSMA). The integration of radionuclide-targeted therapy with GRPR antagonists is explored as an innovative therapeutic approach for individuals with prostate cancer.Results: Research findings suggest that GRPR serves as a promising molecular target for visualizing low-grade prostate cancer. Furthermore, it is demonstrated to complement the detection of lesions that may be negative for PSMA. The integration of radionuclide-targeted therapy with GRPR antagonists presents a novel therapeutic paradigm, offering potential benefits for individuals undergoing treatment for prostate cancer.Conclusions: In conclusion, this review highlights the emerging role of GRPR in prostate cancer diagnosis and treatment. Moreover, the integration of radionuclide-targeted therapy with GRPR antagonists introduces an innovative therapeutic approach that holds promise for improving outcomes in individuals dealing with prostate cancer. The potential prognostic value of GRPR in assessing the disease's progression adds another dimension to its clinical significance in the realm of urology.
Collapse
Affiliation(s)
- Honghu Zhang
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, P. R. China
| | - Lin Qi
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, P. R. China
| | - Yi Cai
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, P. R. China
| | - Xiaomei Gao
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha City, P. R. China
| |
Collapse
|
2
|
Wang R, Kang W, Liu Z, Zheng Y, Sui H, Li L, Wang J, Xiang J, Peng X, Chen X, Zhu Z, Zhang J. Head-to-Head Comparison of [ 68Ga]Ga-NOTA-RM26 and [ 18F]FDG PET/CT in Patients with Gastrointestinal Stromal Tumors: A Prospective Study. J Nucl Med 2024:jnumed.124.267810. [PMID: 39448271 DOI: 10.2967/jnumed.124.267810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common stromal tumors in the gastrointestinal tract. This study was designed to evaluate a gastrin-releasing peptide receptor antagonist PET tracer, [68Ga]Ga-NOTA-RM26, and compare it with [18F]FDG PET/CT in the assessment of patients with GISTs. Methods: With institutional review board approval and informed consent, 30 patients with suspected or proven GISTs based on abdominal CT or gastroscopy were recruited. All patients underwent [68Ga]Ga-NOTA-RM26 and [18F]FDG PET/CT scans. Pathology and other patient information were collected. Results: No radiopharmaceutical-related adverse events were observed in the patients. In total, 18 lesions in 16 patients were diagnosed as GIST, 3 patients were diagnosed with schwannoma, and 4 patients were diagnosed with leiomyoma. In 18 GISTs, the mean SUVmax of [68Ga]Ga-NOTA-RM26 PET was significantly higher than that of [18F]FDG PET (17.07 ± 19.57 vs. 2.28 ± 1.65; P < 0.01), and [68Ga]Ga-NOTA-RM26 PET/CT had a higher tumor detection rate than did [18F]FDG PET/CT (88.9% vs. 50%; P < 0.01). The uptake of [68Ga]Ga-NOTA-RM26 in GISTs was significantly higher than that in 2 other benign tumors (leiomyoma or schwannoma) (17.07 ± 19.57 vs. 4.23 ± 1.77; P = 0.014). With the SUVmax cutoff value of 6.0, the sensitivity of 68Ga-NOTA-RM26 PET/CT in diagnosing GISTs is 72% and the specificity is 85.7%. Conclusion: Compared with [18F]FDG PET/CT, [68Ga]Ga-NOTA-RM26 PET/CT is a promising and effective imaging modality for the detection of GISTs.
Collapse
Affiliation(s)
- Rongxi Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, Helios, Singapore
| | - Weiming Kang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yumin Zheng
- Department of Nuclear Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Huimin Sui
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Linlin Li
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiarou Wang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jialin Xiang
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xingtong Peng
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, Helios, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Departments Chemical and Biomolecular Engineering, and Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore; and
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China;
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore;
- Theranostics Center of Excellence, Yong Loo Lin School of Medicine, National University of Singapore, Helios, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
3
|
van Leeuwen FWB, Buckle T, van Oosterom MN, Rietbergen DDD. The Rise of Molecular Image-Guided Robotic Surgery. J Nucl Med 2024; 65:1505-1511. [PMID: 38991755 DOI: 10.2967/jnumed.124.267783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Following early acceptance by urologists, the use of surgical robotic platforms is rapidly spreading to other surgical fields. This empowerment of surgical perception via robotic advances occurs in parallel to developments in intraoperative molecular imaging. Convergence of these efforts creates a logical incentive to advance the decades-old image-guided robotics paradigm. This yields new radioguided surgery strategies set to optimally exploit the symbiosis between the growing clinical translation of robotics and molecular imaging. These strategies intend to advance surgical precision by increasing dexterity and optimizing surgical decision-making. In this state-of-the-art review, topic-related developments in chemistry (tracer development) and engineering (medical device development) are discussed, and future scientific robotic growth markets for molecular imaging are presented.
Collapse
Affiliation(s)
- Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands; and
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Vosoughi S, Salek N, Zolghadri S, Aghamiri SMR, Delavari M. Optimized Production of 188Re-HYNIC-Bombesin: New Therapeutic Agent for GRPR Targeting. Nucl Med Mol Imaging 2024; 58:300-309. [PMID: 39036461 PMCID: PMC11255143 DOI: 10.1007/s13139-024-00866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 07/23/2024] Open
Abstract
Purpose One of the most interesting methods to deliver therapeutic doses of ionizing radiation to tumor sites is radiolabeled compounds. Bombesin peptide binds to gastrin-releasing peptide receptors (GRPRs) with great affinity. Through its appropriate physical characteristics and accessibility as the 188W/188Re generator, 188Re can be effectively used to develop a therapeutic radio complex. In this study, 188Re-HYNIC-BBN was prepared under optimal conditions. Methods Optimization of the effective parameters on 188Re-HYNIC-BBN radio-labeling yield like ligand concentration, pH, reaction time, and temperature were performed. The final product's radiochemical purity was measured by RTLC and HPLC. The stability of the radio-complex was checked in PBS buffer (4 °C) and human blood serum (37 °C). The partition coefficient of the final radio-complex was studied using standard procedure. Finally, the biodistribution of 188Re-HYNIC-BBN and free 188Re in different organs of the rats were compared in various intervals. Results The final product was prepared with a specific activity of 7.11 TBq/mmol and radiochemical purity > 95% at the optimized conditions (pH = 4-5, reaction time = 45 min, temp = 95℃). This radio-complex was found to be stable in PBS and blood serum over 24 h. LogPo/w was - 1.78, showing the high hydrophilic nature of the radio-complex. The biodistribution of 188Re-HYNIC-BBN demonstrated the fast clearance of the radio-peptide from the blood circulation. The most portion of the radioactivity was excreted from the body via the urinary tract and the remaining activity was accumulated in GRPR-expressing organs. Conclusion The special characteristics of the complex introduce 188Re-HYNIC-BBN as a new therapeutic agent for targeting GRPRs, however, more biological data is still needed.
Collapse
Affiliation(s)
- Sara Vosoughi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Box 14395‑836, North Kargar Street, Tehran, Iran
| | - Nafise Salek
- Nuclear Fuel Research School, Nuclear Science and Technology Research Institute (NSTRI), Box 14395‑836, North Kargar Street, Tehran, Iran
| | - Samaneh Zolghadri
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Box 14395‑836, North Kargar Street, Tehran, Iran
| | | | - Milad Delavari
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Box 14395‑836, North Kargar Street, Tehran, Iran
| |
Collapse
|
5
|
Baun C, Naghavi-Behzad M, Hildebrandt MG, Gerke O, Thisgaard H. Gastrin-releasing peptide receptor as a theranostic target in breast cancer: a systematic scoping review. Semin Nucl Med 2024; 54:256-269. [PMID: 38342656 DOI: 10.1053/j.semnuclmed.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/13/2024]
Abstract
The gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in breast cancer, making it a promising target for both imaging and therapy within a theranostic framework. Various radioligands targeting GRPR have undergone investigation in preclinical and clinical studies related to breast cancer. This systematic scoping review aimed to assess the current evidence on GRPR-targeted radioligands for diagnostic and therapeutic applications in breast cancer. The methodology followed the PRISMA-ScR protocol. The literature search was conducted in September 2023 and encompassed MEDLINE, Embase, Cochrane, and Scopus databases. We included original peer-reviewed studies focused on breast cancer patients or in vivo breast cancer models. Two reviewers performed the study selection process independently. Data were extracted, synthesized, and categorized into preclinical and clinical studies, further subdivided based on radioligand properties. A total of 35 original studies were included in the review, with three of them evaluating therapeutic outcomes. The results indicated that GRPR-radioantagonists are superior to GRPR-agonists, exhibiting preferable in vivo stability, rapid, specific tumor targeting, and enhanced retention. Both preclinical and clinical evaluations demonstrated renal excretion and high uptake in normal GRPR-expressing tissue, primarily the pancreas. A significant positive correlation was observed between GRPR and estrogen-receptor expression. In the clinical setting, GRPR-radioligands effectively detected primary tumors and, to a lesser extent, lymph node metastases. Moreover, GRPR-targeted radioantagonists successfully identified distant metastases originating from various sites in advanced metastatic disease, strongly correlated with positive estrogen receptor expression. Preclinical therapeutic evaluation of GRPR-radioligands labeled with lutetium-177 showed promising tumor responses, and none of the studies reported any observed or measured side effects, indicating a safe profile. In conclusion, the evidence presented in this review indicates a preference for GRPR-targeted antagonists over agonists, owing to their superior kinetics and promising diagnostic potential. Clinical assessments suggested diagnostic value for GRPR-targeted theranostics in breast cancer patients, particularly those with high estrogen receptor expression. Nevertheless, in the therapeutic clinical context, paying attention to the radiation dose administered to the pancreas and kidneys is crucial.
Collapse
Affiliation(s)
- Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Mohammad Naghavi-Behzad
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Malene Grubbe Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Center for Personalized Response Monitoring in Oncology (PREMIO), Odense University Hospital, Odense, Denmark; Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Kanellopoulos P, Mattsson A, Abouzayed A, Obeid K, Nock BA, Tolmachev V, Maina T, Orlova A. Preclinical evaluation of new GRPR-antagonists with improved metabolic stability for radiotheranostic use in oncology. EJNMMI Radiopharm Chem 2024; 9:13. [PMID: 38366299 PMCID: PMC10873254 DOI: 10.1186/s41181-024-00242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND The gastrin-releasing peptide receptor (GRPR) has been extensively studied as a biomolecular target for peptide-based radiotheranostics. However, the lack of metabolic stability and the rapid clearance of peptide radioligands, including radiolabeled GRPR-antagonists, often impede clinical application. Aiming at circumventing these drawbacks, we have designed three new GRPR-antagonist radioligands using [99mTc]Tc-DB15 ([99mTc]Tc-N4-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt; AMA: p-aminomethylaniline; DIG: diglycolate) as a motif, due to its high GRPR-affinity and stability to neprilysin (NEP). The new analogues carry the DOTAGA-chelator (1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid) through different linkers at the N-terminus to allow for labeling with the theranostic radionuclide pair In-111/Lu-177. After labeling with In-111 the following radioligands were evaluated: (i) [111In]In-AU-SAR-M1 ([111In]In-DOTAGA-AMA-DIG-DPhe-Gln-Trp-Ala-Val-Sar-His-Leu-NHEt), (ii) [111In]In-AU-SAR-M2 ([111In]In-[DOTAGA-Arg]AU-SAR-M1) and (iii) [111In]In-AU-SAR-M3 ([111In]In-[DOTAGA-DArg]AU-SAR-M1). RESULTS These radioligands were compared in a series of in vitro assays using prostate adenocarcinoma PC-3 cells and in murine models. They all displayed high and GRPR-specific uptake in PC-3 cells. Analysis of mice blood collected 5 min post-injection (pi) revealed similar or even higher metabolic stability of the new radioligands compared with [99mTc]Tc-DB15. The stability could be further increased when the mice were treated with Entresto® to in situ induce NEP-inhibition. In PC-3 xenograft-bearing mice, [111In]In-AU-SAR-M1 displayed the most favourable biodistribution profile, combining a good tumor retention with the highest tumor-to-organ ratios, with the kidneys as the dose-limiting organ. CONCLUSIONS These findings strongly point at AU-SAR-M1 as a promising radiotherapeutic candidate when labeled with Lu-177, or other medically appealing therapeutic radiometals, especially when combined with in situ NEP-inhibition. To this goal further investigations are currently pursued.
Collapse
Affiliation(s)
- Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Adam Mattsson
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Karim Obeid
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden
| | - Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75183, Uppsala, Sweden
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15341, Athens, Greece
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 75183, Uppsala, Sweden.
- Science for Life Laboratory, Uppsala University, 75237, Uppsala, Sweden.
| |
Collapse
|
7
|
D’Onofrio A, Engelbrecht S, Läppchen T, Rominger A, Gourni E. GRPR-targeting radiotheranostics for breast cancer management. Front Med (Lausanne) 2023; 10:1250799. [PMID: 38020178 PMCID: PMC10657217 DOI: 10.3389/fmed.2023.1250799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Breast Cancer (BC) is the most common cancer worldwide and, despite the advancements made toward early diagnosis and novel treatments, there is an urgent need to reduce its mortality. The Gastrin-Releasing Peptide Receptor (GRPR) is a promising target for the development of theranostic radioligands for luminal BC with positive estrogen receptor (ER) expression, because GRPR is expressed not only in primary lesions but also in lymph nodes and distant metastasis. In the last decades, several GRPR-targeting molecules have been evaluated both at preclinical and clinical level, however, most of the studies have been focused on prostate cancer (PC). Nonetheless, given the relevance of non-invasive diagnosis and potential treatment of BC through Peptide Receptor Radioligand Therapy (PRRT), this review aims at collecting the available preclinical and clinical data on GRPR-targeting radiopeptides for the imaging and therapy of BC, to better understand the current state-of-the-art and identify future perspectives and possible limitations to their clinical translation. In fact, since luminal-like tumors account for approximately 80% of all BC, many BC patients are likely to benefit from the development of GRPR-radiotheranostics.
Collapse
Affiliation(s)
| | | | | | | | - Eleni Gourni
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Abouzayed A, Kanellopoulos P, Gorislav A, Tolmachev V, Maina T, Nock BA, Orlova A. Preclinical Characterization of a Stabilized Gastrin-Releasing Peptide Receptor Antagonist for Targeted Cancer Theranostics. Biomolecules 2023; 13:1134. [PMID: 37509170 PMCID: PMC10377574 DOI: 10.3390/biom13071134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Radiolabeled gastrin-releasing peptide receptor (GRPR) antagonists have shown great promise for the theranostics of prostate cancer; however, their suboptimal metabolic stability leaves room for improvements. It was recently shown that the replacement of Gly11 with Sar11 in the peptidic [D-Phe6,Leu13-NHEt,des-Met14]BBN(6-14) chain stabilized the [99mTc]Tc-DB15 radiotracer against neprilysin (NEP). We herein present DOTAGA-PEG2-(Sar11)RM26 (AU-RM26-M1), after Gly11 to Sar11-replacement. The impact of this replacement on the metabolic stability and overall biological performance of [111In]In-AU-RM26-M1 was studied using a head-to-head comparison with the unmodified reference [111In]In-DOTAGA-PEG2-RM26. In vitro, the cell uptake of [111In]In-AU-RM26-M1 could be significantly reduced in the presence of a high-excess GRPR-blocker that demonstrated its specificity. The cell uptake of both radiolabeled GRPR antagonists increased with time and was superior for [111In]In-AU-RM26-M1. The dissociation constant reflected strong affinities for GRPR (500 pM for [111In]In-AU-RM26-M1). [111In]In-AU-RM26-M1 showed significantly higher stability in peripheral mice blood at 5 min pi (88 ± 8% intact) than unmodified [111In]In-DOTAGA-PEG2-RM26 (69 ± 2% intact; p < 0.0001). The administration of a NEP inhibitor had no significant impact on the Sar11-compound (91 ± 2% intact; p > 0.05). In vivo, [111In]In-AU-RM26-M1 showed high and GRPR-mediated uptake in the PC-3 tumors (7.0 ± 0.7%IA/g vs. 0.9 ± 0.6%IA/g in blocked mice) and pancreas (2.2 ± 0.6%IA/g vs. 0.3 ± 0.2%IA/g in blocked mice) at 1 h pi, with rapid clearance from healthy tissues. The tumor uptake of [111In]In-AU-RM26-M1 was higher than for [111In]In-DOTAGA-PEG2-RM26 (at 4 h pi, 5.7 ± 1.8%IA/g vs. 3 ± 1%IA/g), concordant with its higher stability. The implanted PC-3 tumors were visualized with high contrast in mice using [111In]In-AU-RM26-M1 SPECT/CT. The Gly11 to Sar11-substitution stabilized [111In]In-DOTAGA-PEG2-(Sar11)RM26 against NEP without negatively affecting other important biological features. These results support the further evaluation of AU-RM26-M1 for prostate cancer theranostics after labeling with clinically relevant radionuclides.
Collapse
Affiliation(s)
- Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
| | - Panagiotis Kanellopoulos
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece; (T.M.); (B.A.N.)
| | - Alisa Gorislav
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 83 Uppsala, Sweden;
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece; (T.M.); (B.A.N.)
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece; (T.M.); (B.A.N.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; (A.A.); (P.K.); (A.G.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
9
|
Abouzayed A, Borin J, Lundmark F, Rybina A, Hober S, Zelchan R, Tolmachev V, Chernov V, Orlova A. The GRPR Antagonist [ 99mTc]Tc-maSSS-PEG 2-RM26 towards Phase I Clinical Trial: Kit Preparation, Characterization and Toxicity. Diagnostics (Basel) 2023; 13:diagnostics13091611. [PMID: 37175001 PMCID: PMC10178091 DOI: 10.3390/diagnostics13091611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Gastrin-releasing peptide receptors (GRPRs) are overexpressed in the majority of primary prostate tumors and in prostatic lymph node and bone metastases. Several GRPR antagonists were developed for SPECT and PET imaging of prostate cancer. We previously reported a preclinical evaluation of the GRPR antagonist [99mTc]Tc-maSSS-PEG2-RM26 (based on [D-Phe6, Sta13, Leu14-NH2]BBN(6-14)) which bound to GRPR with high affinity and had a favorable biodistribution profile in tumor-bearing animal models. In this study, we aimed to prepare and test kits for prospective use in an early-phase clinical study. The kits were prepared to allow for a one-pot single-step radiolabeling with technetium-99m pertechnetate. The kit vials were tested for sterility and labeling efficacy. The radiolabeled by using the kit GRPR antagonist was evaluated in vitro for binding specificity to GRPR on PC-3 cells (GRPR-positive). In vivo, the toxicity of the kit constituents was evaluated in rats. The labeling efficacy of the kits stored at 4 °C was monitored for 18 months. The biological properties of [99mTc]Tc-maSSS-PEG2-RM26, which were obtained after this period, were examined both in vitro and in vivo. The one-pot (gluconic acid, ethylenediaminetetraacetic acid, stannous chloride, and maSSS-PEG2-RM26) single-step radiolabeling with technetium-99m was successful with high radiochemical yields (>97%) and high molar activities (16-24 MBq/nmol). The radiolabeled peptide maintained its binding properties to GRPR. The kit constituents were sterile and non-toxic when tested in living subjects. In conclusion, the prepared kit is considered safe in animal models and can be further evaluated for use in clinics.
Collapse
Affiliation(s)
- Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Jesper Borin
- Department of Protein Science, KTH Royal Institute of Technology, 114 17 Stockholm, Sweden
| | - Fanny Lundmark
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Anastasiya Rybina
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, 114 17 Stockholm, Sweden
| | - Roman Zelchan
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Vladimir Chernov
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
10
|
Nock BA, Kanellopoulos P, Joosten L, Mansi R, Maina T. Peptide Radioligands in Cancer Theranostics: Agonists and Antagonists. Pharmaceuticals (Basel) 2023; 16:ph16050674. [PMID: 37242457 DOI: 10.3390/ph16050674] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The clinical success of radiolabeled somatostatin analogs in the diagnosis and therapy-"theranostics"-of tumors expressing the somatostatin subtype 2 receptor (SST2R) has paved the way for the development of a broader panel of peptide radioligands targeting different human tumors. This approach relies on the overexpression of other receptor-targets in different cancer types. In recent years, a shift in paradigm from internalizing agonists to antagonists has occurred. Thus, SST2R-antagonist radioligands were first shown to accumulate more efficiently in tumor lesions and clear faster from the background in animal models and patients. The switch to receptor antagonists was soon adopted in the field of radiolabeled bombesin (BBN). Unlike the stable cyclic octapeptides used in the case of somatostatin, BBN-like peptides are linear, fast to biodegradable and elicit adverse effects in the body. Thus, the advent of BBN-like antagonists provided an elegant way to obtain effective and safe radiotheranostics. Likewise, the pursuit of gastrin and exendin antagonist-based radioligands is advancing with exciting new outcomes on the horizon. In the present review, we discuss these developments with a focus on clinical results, commenting on challenges and opportunities for personalized treatment of cancer patients by means of state-of-the-art antagonist-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Berthold A Nock
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| | | | - Lieke Joosten
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR "Demokritos", 15310 Athens, Greece
| |
Collapse
|
11
|
Phase I Trial of [99mTc]Tc-maSSS-PEG2-RM26, a Bombesin Analogue Antagonistic to Gastrin-Releasing Peptide Receptors (GRPRs), for SPECT Imaging of GRPR Expression in Malignant Tumors. Cancers (Basel) 2023; 15:cancers15061631. [PMID: 36980517 PMCID: PMC10046460 DOI: 10.3390/cancers15061631] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The gastrin-releasing peptide receptor (GRPR) is overexpressed in prostate cancer (PCa) and in hormone-driven breast cancer (BCa). The aim of this phase I clinical trial was to evaluate safety, biodistribution, and dosimetry after the administration of the recently developed GRPR-targeting antagonistic bombesin analogue [99mTc]Tc-maSSS-PEG2-RM26 in PCa and BCa patients. Planar and whole-body SPECT/CT imaging was performed in six PCa patients and seven BCa patients 2, 4, 6, and 24 h post the intravenous administration of 40 µg of [99mTc]Tc-maSSS-PEG2-RM26 (600–700 MBq). No adverse events or pathological changes were observed. The rapid blood clearance of [99mTc]Tc-maSSS-PEG2-RM26 was observed with predominantly hepatobiliary excretion. The effective doses were 0.0053 ± 0.0007 for male patients and 0.008 ± 0.003 mSv/MBq for female patients. The accumulation of [99mTc]Tc-maSSS-PEG2-RM26 in tumors was observed in four out of six PCa and in seven out of seven BCa patients. In four BCa patients, a high uptake of the agent into the axillary lymph nodes was detected. Immunohistochemistry revealed positive GRPR expression in 60% of primary PCa, 71.4% of BCa tumors, and 50% of examined BCa lymph nodes. In conclusion, a single administration of [99mTc]Tc-maSSS-PEG2-RM26 was safe and well tolerated. [99mTc]Tc-maSSS-PEG2-RM26 SPECT may be useful for tumor detection in PCa and BCa patients, pending further studies.
Collapse
|
12
|
Gorica J, De Feo MS, Filippi L, Frantellizzi V, Schillaci O, De Vincentis G. Gastrin-releasing peptide receptor agonists and antagonists for molecular imaging of breast and prostate cancer: from pre-clinical studies to translational perspectives. Expert Rev Mol Diagn 2022; 22:991-996. [PMID: 36369779 DOI: 10.1080/14737159.2022.2145187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Prostate and breast cancer represent a leading cause of cancer-related death worldwide with a dramatic social and demographic impact. Gastrin-releasing peptide receptors (GRPRs), part of the bombesin (BBN) family, have been found overexpressed in both the aforementioned malignancies, and have emerged as a potentially useful target to combine imaging and therapy in a unique, synergistic approach, namely 'theranostics.' AREAS COVERED The biological characteristics of GRPRs, as well as their aberrant expression in breast and prostate cancer, are covered. Furthermore, the role of the different available GRPR agonists and antagonists, labeled with radionuclides suitable for molecular imaging through single photon computed tomography (SPECT) or positron emission computed (PET/CT), is reviewed, with a particular focus on the potential theranostic implications. EXPERT OPINION GRPR-targeted molecular imaging of breast and prostate cancer gave promising results in pre-clinical studies. Notably, GRPRs' expression was found to be inversely correlated with disease progression in both prostate and breast cancer. Among the different GRPR agonists and antagonists applied as imaging probes, RM26 presented particularly interesting applications, with meaningful theranostic potential, but its diagnostic performance resulted highly influenced by the choice of the chelator-radionuclide complex, being long-life radionuclides more suitable for obtaining high-contrast imaging.
Collapse
Affiliation(s)
- Joana Gorica
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, Rome, Italy
| | - Luca Filippi
- Department of Nuclear Medicine, Santa Maria Goretti Hospital, Latina, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, Rome, Italy
| |
Collapse
|
13
|
Günther T, Konrad M, Stopper L, Kunert JP, Fischer S, Beck R, Casini A, Wester HJ. Optimization of the Pharmacokinetic Profile of [ 99mTc]Tc-N 4-Bombesin Derivatives by Modification of the Pharmacophoric Gln-Trp Sequence. Pharmaceuticals (Basel) 2022; 15:ph15091133. [PMID: 36145354 PMCID: PMC9500665 DOI: 10.3390/ph15091133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Current radiolabeled gastrin-releasing peptide receptor (GRPR) ligands usually suffer from high accumulation in GRPR-positive organs (pancreas, stomach), limiting tumor-to-background contrast in the abdomen. In novel N4-bombesin derivatives this was addressed by substitutions at the Gln7-Trp8 site within the MJ9 peptide (H-Pip5-phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2) either by homoserine (Hse7), β-(3-benzothienyl) alanine (Bta8) or α-methyl tryptophan (α-Me-Trp8), with the aim of optimizing pharmacokinetics. We prepared and characterized the peptide conjugates 6-carboxy-1,4,8,11-tetraazaundecane (N4)-asp-MJ9, N4-asp-[Bta8]MJ9, N4-[Hse7]MJ9 and N4-[α-Me-Trp8]MJ9, and evaluated these compounds in vitro (GRPR affinity via IC50,inverse; internalization; lipophilicity via logD7.4) and in vivo (biodistribution and μSPECT/CT studies at 1 h post injection (p.i.) in PC-3 tumor-bearing CB17-SCID mice). 99mTc-labeling resulted in radiochemical yields (RCYs) > 95%. All 99mTc-labeled MJ9 analogues showed comparable or higher GRPR affinity than the external reference [99mTc]Tc-Demobesin 4. Receptor-bound fractions were noticeably higher than that of the reference. Despite a slightly enhanced lipophilicity, all novel MJ9 derivatives revealed improved in vivo pharmacokinetics compared to the reference. The Bta8-modified ligand revealed the most favorable tumor-to-abdomen contrast at 1 h p.i. Substitutions at the Gln7-Trp8 site within GRPR ligands hold great potential to modify pharmacokinetics for improved imaging.
Collapse
|
14
|
Tolmachev V, Vorobyeva A. Radionuclides in Diagnostics and Therapy of Malignant Tumors: New Development. Cancers (Basel) 2022; 14:cancers14020297. [PMID: 35053459 PMCID: PMC8773826 DOI: 10.3390/cancers14020297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence: ; Tel.: +46-7083-874-87
| |
Collapse
|
15
|
Mansi R, Nock BA, Dalm SU, Busstra MB, van Weerden WM, Maina T. Radiolabeled Bombesin Analogs. Cancers (Basel) 2021; 13:cancers13225766. [PMID: 34830920 PMCID: PMC8616220 DOI: 10.3390/cancers13225766] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Recent medical advancements have strived for a personalized medicine approach to patients, aimed at optimizing therapy outcomes with minimum toxicity. In this respect, nuclear medicine methodologies have been playing increasingly important roles. For example, the overexpression of peptide receptors, such as the gastrin-releasing peptide receptor (GRPR), on tumor cells as opposed to their lack of expression in healthy surrounding tissues can be elegantly exploited with the aid of “smart” peptide carriers, such as the analogs of the amphibian 14-peptide bombesin (BBN). These molecules can bring clinically attractive radionuclides to malignant lesions in prostate, breast, and other human cancers, sparing healthy tissues. Depending upon the radionuclide in question, diagnostic imaging with single-photon emission computed tomography (SPECT) or positron emission tomography (PET) has been pursued, identifying patients who are eligible for peptide radionuclide receptor therapy (PRRT) in an integrated “theranostic” approach. In the present review, we (i) discuss the major steps taken in the development of anti-GRPR theranostic radioligands, with a focus on those selected for clinical testing; (ii) comment on the present status in this field of research; and (iii) reflect on the current limitations as well as on new opportunities for their broader and more successful clinical applications. Abstract The gastrin-releasing peptide receptor (GRPR) is expressed in high numbers in a variety of human tumors, including the frequently occurring prostate and breast cancers, and therefore provides the rationale for directing diagnostic or therapeutic radionuclides on cancer lesions after administration of anti-GRPR peptide analogs. This concept has been initially explored with analogs of the frog 14-peptide bombesin, suitably modified at the N-terminus with a number of radiometal chelates. Radiotracers that were selected for clinical testing revealed inherent problems associated with these GRPR agonists, related to low metabolic stability, unfavorable abdominal accumulation, and adverse effects. A shift toward GRPR antagonists soon followed, with safer analogs becoming available, whereby, metabolic stability and background clearance issues were gradually improved. Clinical testing of three main major antagonist types led to promising outcomes, but at the same time brought to light several limitations of this concept, partly related to the variation of GRPR expression levels across cancer types, stages, previous treatments, and other factors. Currently, these parameters are being rigorously addressed by cell biologists, chemists, nuclear medicine physicians, and other discipline practitioners in a common effort to make available more effective and safe state-of-the-art molecular tools to combat GRPR-positive tumors. In the present review, we present the background, current status, and future perspectives of this endeavor.
Collapse
Affiliation(s)
- Rosalba Mansi
- Division of Radiopharmaceutical Chemistry, Clinic of Radiology and Nuclear Medicine University Hospital Basel, 4031 Basel, Switzerland;
| | - Berthold A. Nock
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece;
| | - Simone U. Dalm
- Erasmus Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (S.U.D.); (M.B.B.); (W.M.v.W.)
| | - Martijn B. Busstra
- Erasmus Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (S.U.D.); (M.B.B.); (W.M.v.W.)
| | - Wytske M. van Weerden
- Erasmus Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (S.U.D.); (M.B.B.); (W.M.v.W.)
| | - Theodosia Maina
- Molecular Radiopharmacy, INRaSTES, NCSR “Demokritos”, 15310 Athens, Greece;
- Correspondence: ; Tel.: +30-650-3908/3891
| |
Collapse
|